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Substantial controversies exist in the exploration of the molecular mechanism of heart
failure (HF) and pose challenges to the diagnosis of HF and the discovery of specific
drugs for the treatment. Recently, cardiac transthyretin (TTR) amyloidosis is becoming
recognized as one of major causes of underdiagnosed HF. The investigation and
modulation of TTR misfolding and amyloidal aggregation open up a new revenue to
reveal the molecular mechanisms of HF and provide new possibilities for the treatment
of HF. The aim of this review is to briefly introduce the recent advances in the study of
TTR native and misfolding structures, discuss the correlation between the genotype
and phenotype of cardiac TTR amyloidosis, and summarize the therapeutic
applications of TTR structural stabilizers in the treatment of TTR amyloidosis-
associated HF.
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INTRODUCTION

Heart failure (HF) is a clinical syndrome that originates from the insufficient cardiac output to
accommodate the need of peripheral tissues or organs due to the cardiac systolic or diastolic
dysfunction (McMurray and Pfeffer, 2005). HF is a global pandemic, affecting at least 40 million
people worldwide. Its prevalence increases with aging populations (Triposkiadis et al., 2019).
Roughly 2% of adults suffered from this disease and this ratio further increases by 4–8% for the
senior population with ages of 65 years or older (GBD 2015 Disease and Injury Incidence and
Prevalence Collaborators, 2016). Nowadays, HF is emerging as one of leading causes of
hospitalization among elderly people. The treatment of symptomatic HF is a notorious
challenge with a 5-years survival rate of 50% (Metra and Teerlink, 2017). HF has imposed a
huge economic burden to global healthcare systems. Globally, about $108 billion must be spent
annually for the treatment of HF including $65 billion in direct medical costs and $43 billion
attributed to indirect costs (GBD 2015 Disease and Injury Incidence and Prevalence
Collaborators, 2016). Due to the high prevalence, poor prognosis, and enormous burden on
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healthcare systems, it raises an urgent requirement for a better
understanding of the mechanism of HF. There are many
factors that cause HF including cardiac factors (e.g.,
coronary artery disease, heart attack, hypertension, faulty
heart valves, cardiomyopathy, myocarditis, congenital heart
defects, and heart arrhythmias), and non-cardiac factors (such
as diabetes, emphysema, HIV, hyperthyroidism,
hypothyroidism, hemochromatosis, severe forms of anemia,
amyloidosis, drug or alcohol misuse, and certain medications).
The treatment for HF include pharmacologic treatments (such
as the administration of angiotensin-converting enzyme
inhibitor (or angiotensin II receptor blockers) and beta
blocker), aerobic exercise, and symptom treatment (such as
diuretic, sodium restriction, digoxin). The mechanism
research providing valuable targets for drug discovery can
be translated to improve the treatment of HF. However,
many pathogenic mechanisms leading to HF have been
proposed, such as neurohormonal activation, inflammation,
abnormal immunity activation, amyloidogenesis, increased
hemodynamic overload, ischemia-related dysfunction, which
cause the comprehension in the clinical treatment of HF.
Substantial challenges and debates remain in the
exploration of the molecular mechanism of HF.

Currently, extensive attempts have been made toward
understanding the mechanisms that cause the development of
HF. Distinct hypotheses have been made to explain the
occurrence of HF from different perspectives including
neurohormonal activation, inflammation, and immunity
(Zhang et al., 2017; Lam et al., 2018; Stanciu, 2019). 1)
Neurohormonal activation (Lam et al., 2018). This theory
hypothesizes that when the cardiac output is greatly reduced
at the early stage of HF, the activation of the adrenergic nervous
system and the renin-angiotensin-aldosterone system (RAAS)
generates compensatory feedbacks (strengthened cardiac
contractility, peripheral vasoconstriction, and sodium and fluid
retention) to maintain the effective circulating volume. The
consequences of neurohormonal activation are two-sided: a
sufficient circulation in a short-term period and a cardiac
remodeling as a long-term negative outcome. Increased plasma
levels of several neurohormonal biomarkers (e.g., plasma renin,
aldosterone, norepinephrine, and endothelin 1) promote
fibroblast proliferation, extracellular matrix deposition, and
increased oxidative stress. Thus, it leads to a series of
decompensated cardiac dysfunctions, such as cardiac fibrosis,
dilated chamber, weakened contractile function, and decreased
stroke volume (Lam et al., 2018). 2) Inflammation (Stanciu,
2019). Pro-inflammatory cytokines, including interleukin-1β
(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α
(TNF-α) are produced by the stimulated cardiomyocytes. Pro-
inflammatory cytokines promote the expansion of macrophages
in the cardiac tissues and the recruitment of peripheral blood
monocytes to heart. As a result, the inflammatory cascade is
magnified and triggers cardiac hypertrophy and cardiac fibrosis
(Stanciu, 2019). 3) Immunity (Zhang et al., 2017). In the state of
heart damage, dendritic cells (DCs) are switched to a mature state
with enhanced antigen-presenting capacity and facilitate the
release of pro-inflammatory cytokines. Subsequently, mature

DCs induce the differentiation of native T cells into CD4+

T cells and CD8+ T cells, leading to a breaking self-tolerance,
i.e., the cytotoxicity and adaptive immune response to heart tissue
(Zhang et al., 2017).

The mechanisms discussed above have been applied to guide
the therapeutic pharmacy design. However, the discovered
drugs are unsuccessful in the treatment of the HF patients
with characteristic amyloid deposits in myocardium. A recent
investigation of cardiac amyloidosis prevalence revealed that the
incidence rate of cardiac amyloidosis among the hospitalized
patients in the United States increased substantially since 2000
from 18 per 100,000 person-years to 55 per 100,000 person-
years in 2012 (Gilstrap et al., 2019). The mainly amyloidal
components that infiltrate in the heart causing cardiac
amyloidosis are immunoglobulin light chain amyloid fibril
protein (AL) and transthyretin amyloidosis (ATTR), and thus
cardiac amyloidosis can be classified into AL-cardiac
amyloidosis (AL-CA) and TTR-cardiac amyloidosis (ATTR-
CA) (Benson et al., 2018). Emerging results suggest that AL-
CA is responsible for 70% of patients with cardiac amyloidosis
(Oerlemans et al., 2019). The population prevalence of ATTR-
CA is less certain, may be responsible for 30% of HF patients
with preserved ejection fraction aged 75 or older (Maurer et al.,
2017; Oerlemans et al., 2019). TTR is mainly synthesized in the
liver and the brain choroid plexus, circulating in peripheral
plasma and cerebrospinal fluid (Fleming et al., 2009). The main
physiological activity exerted by TTR is thought to be a
transporter of thyroxine and retinol. TTR may also
participate in the maintenance of normal cognitive processes
and nerve regeneration during ageing (Fleming et al., 2009). As
shown in Figure 1A, pathological TTR amyloidosis is a
multiple-step protein assembly process involving: 1) amino
acid mutations lead to a dissociation of native TTR tetramers
into abnormally TTR monomers; 2) misfolded TTR monomers
associate into oligomers and protofibrils; 3) TTR oligomers and
protofibrils elongate to form mature amyloidal fibrils (Dobson,
2003). The exposure of TTR amyloidal intermediates,
i.e., oligomers and protofibrils, to myocardial cells induces
caspase-3 activation, triggering the onset of programmed cell
death (Sousa et al., 2001). It leads to the degradation of
myocardial cells, cardiac atrophy, and progressive infiltration,
in which the receptors of advanced glycosylation end products
(RAGE) also participate the organ injury generated by ATTR.
Consequently, the deposition of ATTR results in cardiac
conduction abnormalities and diastolic dysfunction (Marcoux
et al., 2015; Michels da Silva et al., 2019). The prevalence of TTR
amyloid deposit in heart is estimated to be 13% in the HF
patients aged 60 or older with preserved ejection fraction. This
proportion further increases to 32% for the patients aged 75 and
older (González-López et al., 2015). The average age of onset for
wild-type ATTR is 75 years and for hereditary ATTR is 45 years
(Nakagawa et al., 2016; He et al., 2019). Cardiac ATTR is
frequently accompanied by debilitating neurological with or
without cardiac complications (Traynor et al., 2019). For the HF
patients aged 60 or older with ATTR, they may also suffer from
hypertension, coronary heart disease, and chronic obstructive
pulmonary disease, etc. The amyloidosis of TTR is regarded as
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an underdiagnosed cause of HF and provides a new avenue to
understand the mechanism of HF development.

In this review, we summarize the recent structural andmedical
advances of cardiac TTR amyloidosis studies. We illuminate the
potential relationship between the genotype and phenotype of
ATTR, discuss the impact of amino acid mutation on TTR
activities, and outline the current therapeutic approaches
against ATTR in clinical practice.

THE STRUCTURAL CONVERSION OF TTR
AMYLOIDOGENESIS

Elucidating the TTR conformational change from native state to
misfolded state is crucial for uncovering the molecular

mechanism of TTR amyloid fibrosis. Substantial technical
efforts have been applied toward studying the structural
conversion of TTR using a series of experimental approaches,
such as X-ray crystallography, nuclear magnetic resonance
(NMR) spectroscopy, and cryo-electron microscopy (Cryo-
EM), despite the heterogeneity and polymorphism in TTR
folding and assembly manner, which create a challenge for
structural characterization.

X-ray crystal diffraction experiments revealed that the native
human TTR is folded into a globular structure consisting of eight
antiparallel strands (denoted as from A to H) and one short
α-helix (Wojtczak et al., 2010; Palaninathan, 2012) (Figure 1A).
The eight ß-strands are associated into two groups of twisted ß-
sheets. Specifically, A, D, G, and H strands are tethered by
interstrand hydrogen bonds into an inner ß-sheet, whereas B,

FIGURE 1 | The molecular pathway of TTR amyloidal aggregation. (A) The structural illustration of the dissociation of TTR tetramer into monomer and the
aggregation of TTR misfolded monomer. Different protein chains are indicated by different colors. The structures of TTR tetramer, dimer, and monomer are drawn by
using the crystallographic data of PDB ID 1F41. (B) The chemical structures of tafamidis and diflunisal (left) and the representative model of structural stabilizers
occupying the thyroxine binding site (right, the structure is drawn by using the crystallographic data of PDB ID 2ROX). Gray, a TTR tetramer; red, two binding
structural stabilizers.
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C, E, and F strands constitute an outer ß-sheet. The inner and
outer ß-sheets are packed with each other in a layer-by-layer
manner. The H and F strands are located at the edges of ß-sheets,
providing active sites for interacting with the H′ and F′ strands
from the adjacent TTR monomer, respectively. Thus, two TTR
monomers are held together to form a dimer via interstrand
hydrogen bonds. The dimerization of TTR renders two inner ß-
sheets to form an extended ß-sheet pleat containing of A, D, G, H,
and A′, D′, G′, H’ strands. Two inner extended ß-sheet pleats
further wrap around each other, generating a dimer-dimer
interface. Consequently, native human TTR is organized as a
tetrameric cluster possessing an inner core (A, D, G, and H
strands) and presenting an outer surface (B, C, E, and F strands).

In vitro experiments revealed that acidic pH conditions and
the mutations identified from patients induce the dissociation of
TTR tetramer into monomers and trigger the misfolding of
monomer into amyloidal aggregates (Vieira and Saraiva,
2014). The destabilization of TTR tetrameric structure can be
tracked by NMR. The acidification of solution triggers the flexible
loop region between A and B to interact with A strand, leading to
conformational changes occurring in the inner core domain (Lim
et al., 2016). The impact of single amino acid mutation on the
stability of native TTR tetramer is attributed to a propagation of
structural perturbation from the mutation site to the entire inner/
outer ß-sheet domains (Leach et al., 2018). The transmission
electron micrographs showed that the TTR amyloid aggregates
are rigid and unbranched fibrils with several micrometers in
length and 70 to 130 Å in diameter (Serpell et al., 1995). A TTR
fibril composes of two to three protofilaments. Each
protofilaments are 25–35 Å in diameter and interwind with
each other (Serpell, 1996). Synchrotron X-ray fiber diffraction
pattern of TTR aggregate showed an intense 4.7 to 4.8 Å reflection
on the meridian (Serpell, 1996; Sunde et al., 1997). It
demonstrates that the periodicity of TTR protein arrangement
along the fibril axis is 4.7–4.8 Å. This result suggests that the
misfolded TTR proteins adopt a typical cross-β conformation and
are stacked perpendicular to the elongation of protofilament
(Serpell, 1996; Sunde et al., 1997). Multiple complementary
methods have been used to reveal the atomic level structural
model for the misfolded TTR aggregate, including scanning
tunneling microscopy (STM) and X-ray crystallography for the
key segments of TTR, and Cryo-EM for the full length of TTR. By
using STM, the assembly structures of TTR 105–115 segment
were observed by Yu et al. at a single-molecular level (Yu et al.,
2018). In the STM images, TTR 105–115 segments present as
linear lamella structures. Individual peptides are parallel to each
other and packed into a protofilament-like structure. The
distance between two adjacent peptide axes is 4.0 ± 0.2 Å,
which is consistent with the structural features of cross-β
conformation. Saelices et al. analyzed the crystal structures of
13 hexapeptide segments derived from the key amyloidogenic
domains of TTR and found distinct assembly behaviors encoded
by different TTR regions (Saelices et al., 2018). The segments
from the C-terminal region of TTR (corresponding to the
residues from 50 to 127) were observed to form in-register ß-
sheets and pair as steric zippers. For instance, the crystalline
structure of TTR 80–85 segment (80KALGIS85) shows that the

TTR 80–85 ß-strands are assembled into anti-parallel ß-sheets.
The side chains protruding from the surface of ß-sheet drive two
ß-sheets to stack in layer-by-layer and form a tightly
interdigitating steric zipper interface that is free from water. In
contrast, the segments from the N-terminus (corresponding to
the residues from 1 to 50) form out-of-register ß-sheets. For
example, the anti-parallel ß-sheet formed by TTR 28–33 segment
(28VAVHVF33) exhibits a wet and loosely stacking interface to
interact with another TTR 28–33 ß-sheet, whereas the side chains
from the same ß-sheet are self-complementing. To understand
the folding structure of a full length TTR protein, Schmidt et al.
investigated the molecular arrangement in a TTR fibril extracted
from the tissue of a patient with hereditary Val30Met ATTR by
Cryo-EM (Matthias Schmidt et al., 2019). The Cryo-EM
experiment revealed that the misfolded TTR Val30Met protein
consists of three ß-arch regions (TTR 11–35, 70–111, and
106–123) and 13 ß-strands (i.e., TTR 12–16, 19–21, 25–34,
60–62, 64–66, 70–73, 75–77, 79–80, 91–99, 103–104, 107–108,
114–115, and 118–122). Consistent with the X-ray
crystallography results from TTR segments, the C-terminal
motif of full length TTR Val30Met Cryo-EM structure is
folded into multiple in-register ß-sheets. Whereas the
N-terminal motif of TTR Cryo-EM structure presents one out-
of-register ß-hairpin region involving the residues from 11 to 35
and two unstructured regions including the regions 1–10 and
36–50. Different from the key segment crystal structures, the full
length TTR adopts a parallel ß-sheet conformation in the Cryo-
EM structure.

TTR GENOTYPE AND CARDIAC
PHENOTYPE

ATTR is relatively common in the men older than 60 years and
often regarded as senile amyloidosis (Grogan et al., 2016). Any
step during the conversion from the soluble native state to
amyloidal fibrils may significantly alter the progression of
fibril formation, such as acidification, proteolysis, and the co-
assembly with other non-fibrous substances. For example, the co-
existence of glycosaminoglycan and serum amyloid P component
obviously accelerates the misfolding and association of TTR
(Kisilevsky, 2000; Zhang and Li, 2010). Point mutation in the
TTR gene is another key factor that causes the occurrence of
TTR-associated HF. Hereditary transthyretin amyloid
cardiomyopathy (ATTR-CM) is an autosomal dominant
single-gene genetic disease (Damrauer et al., 2019). Up to
now, more than 120 types of point mutations have been
identified (Ruberg et al., 2019). The common symptoms of
hereditary ATTR (hATTR) typically include progressive
infiltration of amyloidal deposit, early right-sided heart failure,
and late systolic ejection fraction reduction. Patients could also
have syndromes of peripheral neuropathy, autonomic
neuropathy, cardiomyopathy, eye disease, and spinal
amyloidosis (Koga et al., 2003; Rapezzi et al., 2010; Maurer
et al., 2017). Changes in the heart function caused by TTR
amyloidal deposition include cardiac systolic or diastolic
dysfunction. Patients usually suffer from orthostatic
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hypotension and cannot tolerate RAAS inhibitor treatment. Some
severe cases could result in HF and suffer from syncope caused by
arrhythmia or heart block, and angina or infarction caused by
amyloid deposits in the coronary arteries (Finsterer et al., 2018).
In addition to heart diseases, other illnesses generated by
hereditary TTR include polyneuropathy, sensorimotor
polyneuropathy, glaucoma, intravitreal deposition, nephrotic
syndrome, and renal failure (Michels da Silva et al., 2019).
General diagnosis of hereditary TTR requires extracardiac
tissue biopsy (lower fat, small salivary glands, rectal mucosa or
kidney, and nerve) (Ando et al., 2013; Jamet et al., 2015). The TTR
amyloidal deposit appears as an amorphous transparent
substance in the optical microscopic image and can be labeled
by Congo red or thioflavin T immunohistology (Schönland et al.,
2012). The diagnosis of ATTR-CM requires an intracardiac tissue
biopsy to manifest the presence of TTR amyloid deposits in the
myocardium (Ruberg et al., 2012). In the clinical examination, a
low electrocardiography (ECG) voltage in which the amplitudes
of all the QRS complexes in the limb are smaller than 0.5 mV in
the limb is frequently observed (Damy et al., 2016). Some patients
may also exhibit one or more of the following diagnostic
characteristics: a speckled appearance of the myocardium on
echocardiography with end-diastolic thickness of the ventricular
septum >1.2 cm, excessive uptake of technetium-99 m (Tc-99m)
scintillation agent by the heart with ATTR amyloidosis, delayed
enhancement of subendothelial gadolinium on cardiac magnetic
resonance imaging (MRI), multiple occurrences of osteolytic
lesions of myeloma, and cystic bone lesions of dialysis-related
amyloidosis (Sousa et al., 2001; Jurcut et al., 2010). It is necessary
to point out that imaging techniques only provide supporting
evidences, and the gold standard for the diagnosis of ATTR is still
lacking. The current diagnosis in clinical practice for ATTR-CM
includes: 1) a noninvasive nuclear scintigraphy by using planar
and SPECT imaging; 2) an invasive endomyocardial biopsy,
i.e., the histology with Congo red staining with apple-green
birefringence; and 3) a genetic testing to determine if the
disease is due to a hereditary mutation in the TTR gene
(Gillmore et al., 2016; Maurer et al., 2018; Dorbala et al., 2019).

Recorded TTR mutations associated with cardiac phenotypes
includes Val122Ile, Thr60Ala, Leu111Met, Ile68Leu, Val30Met,
Val30Met, Phe33Leu, Asp38Val, Asp38Val, Gly47Glu, Gly53Glu,
Glu54Lys, Leu55Pro, Glu61Lys, Tyr69His, Ser77Tyr, His88Arg,
and Tyr114Cys (Maurer et al., 2016; Damy et al., 2019). Point
mutations mostly locate at the terminal regions of the TTR
protein, resulting in an abnormal folding structure and
diminished tetramer stability. TTR mutation sites are diverse
and could lead to a variety of clinical symptoms. Familial amyloid
polyneuropathy (FAP), familial amyloid cardiomyopathy (FAC),
and familial leptomeningeal amyloidosis are the three main
phenotypes of inherited ATTR amyloidosis. The main
phenotype of heart disease in hATTR patients is aggressive
cardiomyopathy (Sun et al., 2018). Val122Ile, Val30Met,
Thr60Ala, Leu111Met, Ile68Leu showed obvious cardiac
phenotypes in the large sample cohort (Reilly et al., 1995; de
Carvalho et al., 2000; Sattianayagam et al., 2012; Quarta et al.,
2015). The clinical manifestations are more frequent in middle-
age and older men with severely damaged cardiac structure.

Examined by echocardiography, invasive cardiomyopathy
where strong echoes occur in the left ventricular myocardium
is accompanied by pericardial effusion and atrial enlargement
(González-López et al., 2017). Val122Ile is the frequently
occurred mutation that causes FAC (Quarta et al., 2015).
Patients with congestive heart failure, conduction block, and
intractable arrhythmia need the implantation of pacemakers
with/without cardioverter defibrillators (Maurer et al., 2016).
Val30Met mutation usually causes FAP. Cardiac
manifestations are mainly manifested in different types of
heart block, and most patients require pacemaker implantation
(Damy et al., 2019). Patients with Thr60Ala mutation can develop
late-onset restrictive cardiomyopathy as well as sensorimotor and
autonomic polyneuropathy (Zanazzi et al., 2019). Patients with
Leu111Met mutation have a higher propensity to develop carpal
tunnel syndrome as the initial manifestation and a liver
transplantation is necessary for the treatment (Liepnieks and
Benson, 2007). In a family study of patients with Ile68Leu
mutation, the presence of amyloid aggregates was observed in
the spinal canal of patients (Salvi et al., 2003). Despite the
heterogeneity of mutation sites, the clinical characteristics and
natural history of cardiac phenotype also generate difficulty for
the diagnosis and treatment of ATTR. A long-term follow-up
study of the Asian population (23 patients) revealed that the
overall survival rates at 12, 24, 36, 48, and 60 months after
diagnosis were 77.8, 55.6, 38.9, 27.8, and 11.1%, respectively
(He et al., 2019). The low prognosis of ATTR is correlated
with two facts. First, the onset symptoms were not obvious in
the heart. Within the 23 patients, only five patients were observed
to possess a low left ventricle ejection fraction (ejection fraction
<50%). Second, the clinical characteristics of ATTR were
heterogeneous, e.g., 78.3% of patients had abnormal
electrocardiography and 56.5% of patients displayed
pseudoinfarct pattern. This result highlights the complexity in
the ATTR phenotypes and the difficulty to avoid misdiagnosis in
practice (He et al., 2019).

Motivated by the different clinical phenotypes of the above-
mentioned TTR mutants, a series of studies were approached to
investigate the pathogenic mechanisms of TTR mutants. For
example, Wright et al. used 19F-NMR technology to monitor
in real time and found that amyloidal aggregation was caused by
V122I mutation (Benjamin et al., 2018). The dissociation of TTR
tetramer into monomer is revealed to be the rate-limiting step.
Jiang et al. demonstrated that the mutation of V122I makes the
Gibbs free energy of tetramer 3 times higher than that of the wild-
type, and thus the energetic barrier of tetramer dissociation is
significantly reduced by the mutation of V122I (Jiang et al., 2001).
The dissociation of TTR tetramers is accelerated by the V122I
mutant in favor of kinetics and thermodynamics. It is worth to
note that, the observation with TTR V122I mutant that the single
site mutation at the key site of TTR promotes the dissociation of
TTR tetramer is probably a general mechanism existing in the
misfolding process of other types of TTR pathogenic mutations.
As a summary, the cardiac phenotype-related pathogenic site
accelerates the rate-limiting step of dissociation of tetramers into
monomers, resulting in massive formation of TTR amyloidal
aggregates and the accumulation of the clinical phenotype of HF.
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THE CLINICAL PRACTICE OF TTR
STRUCTURAL STABILIZER

Current therapeutic approaches toward the treatment of ATTR-
CM focus on drug administration and surgical operation. Because
95% of plasma TTR is synthesized from liver, liver
transplantation was firstly proved as the only potentially
curative treatment for TTR amyloidosis in 1990s (Adams
et al., 2019). The transplanted healthy liver produced normal
and stable form of tetramers, which lowers the concentration of
amyloidogenic monomers in blood and halts disease progress
(Muchtar et al., 2017). However, the transplantation faces several
challenges including the limited supply of livers and the long-
term usage of immune suppressive therapy (Heymann and Tacke,
2016). Therefore, the majority of patients with ATTR need more
affordable and accessible options. The structural stabilizer
preventing the dissociation of TTR tetramer is a promising
candidate. Several stabilizers have been approved by the Food
and Drug Administration (FDA) for the treatment of ATTR-CM
worldwide. Herein, we describe the pharmacological mechanism
of stabilizers and summarize its clinical data.

Vigorous screening experiments and structure-based drug
design studies have been carried out to identify TTR tetramers
stabilizers at molecule level. More than 1,000 small aromatic
molecules dynamically stabilizing TTR tetramers have been
designed and synthesized (Gavrin et al., 2012). Most of these
compounds were designed as a mimic of thyroxine, a natural
hormone that specifically binds to the cavity of tetrameric TTR.
These species share a similar chemical skeleton: two aromatic
rings conjugated by a linker. The introduction of a polar group,
halogen, or alkyl group into the aromatic ring facilitates the
formation of electrostatic interactions and hydrophobic
interactions between the thyroxine mimics and the binding
pocket in the TTR protein (Gavrin et al., 2012). As manifested
in the co-crystal structure of TTR binding with thyroxine mimic,
the synthetic mimic occupies the thyroxine binding site and does
not disturb TTR’s native structure (Gavrin et al., 2012). At low pH
conditions, where TTR tetramers are prone to aggregate, the
presence of thyroxine mimic in TTR solution greatly improve
the stability of TTR against denaturation (Wiseman et al., 2005).
The plausible mechanism underlying the stabilizing impact by
thyroxine mimic is attributed to the elevated energy barrier of

TTR tetramer dissociation leading to less amyloidal fibril
formation and thus reducing the rate of amyloidogenesis
progression (Johnson et al., 2012). As for increasing the
bioavailability of compound, it is important to avoid the
non-specific binding of thyroxine mimic to the abundant
proteins in serum and increase the selectivity of the compounds
toward thyroxine TTR binding site (Connelly et al., 2010).

Two TTR kinetic stabilizers, tafamidis and diflunisal, have
been selected and used in clinical trials (chemical structures are
shown in Figure 1B). Tafamidis, a non-steroidal anti-
inflammatory drug (non-NSAID) benzoxazole derivative, is the
first stabilizer approved to halt the progression of cardiac
impairment in TTR familial amyloid cardiomyopathy (Maurer
et al., 2018). The tafamidis phase III transthyretin amyloidosis
cardiomyopathy (ATTR-ACT) trial is a multicenter blinded
study in 441 patients with ATTR-CM who received placebo
20 mg, tafamidis 20 mg, or tafamidis 80 mg daily with a
randomization ratio of 2:2:1 (Table 1). This investigation
exhibits a striking cardiovascular outcome in the patients with
oral intake of tafamidis at 80 mg/day (Maurer et al., 2018). Over a
period of 30 months, all-cause mortality decreased from 42.9% to
29.5%, and cardiovascular-related hospitalizations reduced from
0.70 to 0.48 annually. Both of mortality and morbidity endpoints
all achieved statistical significance. This remarkable result proves
that 80 mg dose of tafamidis not only relieves symptoms of HF
but also improves a long-term prognosis of ATTR-CM. The
general molecular mechanism of structural stabilizer can be
applied to interpret the pharmacological activity that tafamidis
selectively occupies the thyroxine binding site, preventing the
structural conversion from native tetramer to denatured
monomers (Figure 1B). Consequently, the possibility of TTR
misfolding and amyloidal aggregation is substantially reduced
(Bulawa et al., 2012). Tafamidis circulates in serum or plasma
mainly in the form of binding with plasma proteins (99%) and
undergoes the metabolic pathway through glucuronidation
(Bulawa et al., 2012). Up to date, Tafamidis has been
approved as the first-line exclusive drug in the treatment of
TTR amyloidosis in US, Europe, and Japan.

Diflunisal is a NSAID that was previously administered in the
clinical practice as an antipyretic, analgesic, and anti-
inflammatory agent (Enthoven et al., 2016). Recent
investigations revealed that diflunisal can be applied to

TABLE 1 | Clinical trials of structural stabilizers in patients with ATTR-CM.

Trial Design of
trials

N Treatment Follow-
up

Primary outcome

Tafamidis
Maurer et al.,

2018
International randomized,
double-blind

441 Tafamidis 20 mg, or tafamidis 80 mg daily in a
2:2:1 randomization

30 months All-cause mortality; cardiovascular-related
hospitalizations

Diflunisal
Rosenblum et al.,

2017
Retrospective study 120 500 mg daily 16 years The composite outcome of death or

orthotropic heart transplantNon-randomization
Berk et al., 2013 International randomized,

double-blind
130 250 mg twice daily or placebo in a 1:1

randomization
2 years Neuropathy impairment score plus 7 nerve

tests
Castano et al.,

2012
Retrospective study 13 250 mg twice daily non-randomization Cardiac structure (left ventricular mass),

function (ejection fraction)
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facilitate nervous and cardiac repair and regeneration (Miller
et al., 2004; Sekijima et al., 2006). In a clinical trial including 120
patients with TTR cardiac amyloidosis demonstrates that an
increased survival is associated with diflunisal treatment
(Rosenblum et al., 2017) (Table 1). In an international
randomized double-blind trial, a total of 130 patients received
diflunisal or placebo twice daily for 2 years (diflunisal 250 mg, n �
64; placebo group, n � 66) (Berk et al., 2013) (Table 1). Compared
to the placebo group, diflunisal significantly slowed down the
progression of nervous amyloidal disease and enhanced the
cardiac functions. Nowadays, diflunisal has been approved by
FDA for the clinical application, but some side effects have also
been reported. For example, diflunisal can lead to a decline (6%)
in estimated glomerular filtration rate (Ikram et al., 2018). A
chronical administration of diflunisal can slow down the renal
blood flow and thus becomes inadvisable to some patients with
renal insufficiency. Therefore, Diflunisal is a second line drug for
ATTR-CM. In the future, randomized trials with large samples
are needed to collect more evidence for evaluate the safety of
diflunisal in the treatment of ATTR-CM.

CONCLUSION

The investigations of TTR misfolding and amyloidal aggregation
at molecular level have greatly improved the understanding the
mechanism of HF and promoted the treatment of HF. The
destabilization and dissociation of TTR tetramers into
abnormally TTR monomers lead to the misfolded TTR
monomers, which abnormally assemble into oligomers,
protofibrils, and mature amyloidal fibrils. Structural stabilizers
such as tafamidis and diflunisal can block the dissociation of TTR

tetramer and facilitate the treatment of patients with TTR
amyloidosis. With the gradual deepening of the research on
the structure of TTR protein, there will be a profound
understanding of the mechanism of TTR-associated HF. We
note that, there still remain challenges in the research that
need to be urgently studied, including: 1) the discovery of
compounds to reverse the association state of TTR from
amyloidal state to native folding state; 2) the misfolding
structures of TTR amyloidal oligomers and the structure-based
drug design to specifically target the amyloidal intermediates of
TTR; 3) the therapeutic approaches to promote cardiac repair and
preserve cardiac function against the dysfunction caused by TTR
amyloidosis. The efforts made in these aspects will benefit the
medical treatment of TTR-related patients in the future.
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