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microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA
degradation or translational repression. Accumulated studies have demonstrated that
miRs participate in various biological processes including cell differentiation, proliferation,
apoptosis, metabolism and development, and the dysregulation of miRs expression are
involved in different human diseases, such as neurological, cardiovascular disease and
cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely
in cardiovascular disease and cancer. In this review, we summarize and discuss the
studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from
different aspects of pathological processes of diseases, including carcinogenesis,
angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms
of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic
marker or therapeutic target in cardiovascular disease or cancer.
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INTRODUCTION

microRNAs (miRs) are small non-coding RNAs with 19-23 nucleotides (nt) in length that modulate
target genes through mRNA degradation or translational repression (Bartel, 2004; Ahmed et al.,
2018). miRs biogenesis includes canonical and non-canonical pathways, and has been summarized in
several reviews (Bartel, 2004; O’Brien et al., 2018). miR genes are transcribed by RNA polymerase II
to generate primary miR transcripts (pri-miRs), which is cleaved by RNase III endonuclease Drosha
to produce about 60–70 nt stem loop intermediate, termed miR precursor, or the pre-miR. The pre-
miR is transported by Ran-GTP and export receptor Exportin-5 from nucleus to the cytoplasm. In
canonical pathway of miRs genesis, pre-miR is processed by another RNase III endonuclease, Dicer,
to produce miR:miR duplex comprising the mature miR strand and its complementarystrand. The
mature miR is loaded into the cytoplasmic RNA-induced silencing complex (RISC) where it binds to
the 3′-untranslated region (UTR) of target mRNAs with complementary sites, resulting in mRNA
degradation or its translational repression.

miRs are implicated in various biological processes, including cell differentiation (Chen et al.,
2004), proliferation, apoptosis (Brennecke et al., 2003), metabolism (Joacim et al., 2008), and
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development (Gerhard et al., 2006), and in pathological situations
like hypoxic cellular injury and repairing (Chen et al., 2013; Ge L.
et al., 2019). Over 1/3 of human protein–coding genes are
modulated by miRs (Lewis et al., 2005). Growing evidence has
demonstrated that numerous miRs are dysregulated in human
diseases. Some miRs are upregulated, such as miR-25 in heart
failure (Christine et al., 2014), miR-133a in acute myocardial
infarction (Wang et al., 2013), miR-155-5p in chronic kidney
disease and nocturnal hypertension (Klimczak et al., 2017) are
enhanced, while some miRs are downregulated in other diseases,
such as miR-320a in arrhythmogenic cardiomyopathy
(Sommariva et al., 2017), both miR-133 and miR-1 in
hypertrophic cardiomyopathy (Alessandra et al., 2007), miR-
107 in Alzheimer’s disease (Wang et al., 2008), and miR-503-
5p in non-small cell lung cancer (Yang et al., 2014) are reduced.
Therefore, therapies that inhibit miR function or restore its
function have been developed for human diseases (Couzin,
2008; Manel, 2011).

microRNA-503 (miR-503) is an intragenic miR located on the
chromosomal location Xq26.3 and clustered with miR-424 in
human (Griffiths-Jones et al., 2008). It belongs to the miR-16
family (Caporali and Emanueli, 2011), and was first identified in
human retinoblastoma tissues by microRNA microarray analysis
(Zhao et al., 2009). The other members of miR-16 family are miR-
15a, miR-15b, miR-16, miR-195, miR-424 and miR-497, miR-16
family have similarity in their individual seed sequences (Caporali
and Emanueli, 2011). According to gene nomenclature, in
human, there are two different mature miR-503, one is hsa-
miR-503-5p, derived from 5′ends of pre-miR-503, the other is
hsa-miR-503-3p, derived from 3′ends of pre-miR-503, both are
excised from the same precursor microRNA (Griffiths-Jones
et al., 2006), and thus, miR-503 rather than miR-503-5p is
usually used. Although these “5p” and “3p” miRs are
originated from a single primary transcript, they have different
sequences and mRNA targets, therefore, they have different, even
converse roles in biological function (Almeida et al., 2012).
Accumulated evidence has also shown that miR-503 modulates
various biological processes, and the dysregulation of miR-503 is
associated with human diseases. In this review, we will mainly
focus on describing the roles of miR-503 in human diseases,
especially cardiovascular disease and cancer, from different
aspects of physiological or pathological processes, including
cell differentiation, proliferation, apoptosis, carcinogenesis,
angiogenesis, tissue fibrosis and oxidative stress.

Physiological Roles of miR-503 in
Regulating Cell Differentiation
The relationship between cell proliferation and cell differentiation
is complicated, and the imbalance of cell proliferation and
differentiation can result in a variety of diseases such as cancer
(Ruijtenberg and van Den Heuvel, 2016). MiR-424/-503 was
found to a polycistronic microRNA cluster, the loci of them
were separated by 383 bases on the genome (Forrest et al., 2009).
In the differentiation of monoblasts into monocytes,
overexpression of either miR-424 or miR-503 can induce cell
cycle arrest at G1 phase by targeting an anti-differentiative miR-9

and several regulators of cell cycle, therefore, both miR-424 and
miR-503 can partially promote monocytic differentiation and
inhibit cell proliferation at G1 phase in the cell cycle (Forrest et al.,
2009). Consistent with this, induction of G1 phase cell cycle
arrest, which is mainly caused by the suppression of cyclin-
dependent-kinase 2 (cdk2), is a critical step during myogenesis
(Sarkar et al., 2010). miR-424 and miR-503 were induced in the
differentiation of myoblasts into myotubes and promotedcdk2
inhibition by downregulating Cdc25A (Sarkar et al., 2010).
Cdc25A, a phosphatase that is the target gene of both miR-
424 and miR-503, can get rid of the inhibitory phosphorylation
on cdk2, and thus promote cell cycle progress (Sarkar et al., 2010).
In another study, miR-322/-503 cluster was found to be
abundantly expressed in the earliest mice cardiac progenitor
cells, it induced cardiac and skeletal muscle cell differentiation
but inhibited neural lineages, which is likely mediated by
targeting the RNA-binding protein CUG-binding protein Elav-
like family member 1 (Shen et al., 2016). Taken together, miR-503
is a regulator in cell differentiation.

miR-503 Expression Level and Its Molecular
Targets During Cell Proliferation and
Apoptosis
miRs have been demonstrated to regulate cell proliferation and
apoptosis. Here, studies of miR-503 in regulating cell
proliferation or apoptosis in vitro are summarized and listed
in Table 1.

In human aortic smooth muscle cells (SMCs), treatment with
platelet-derived growth factor (PDGF) reduced miR-503
expression level significantly in a dose and time-dependent
manner, while overexpression of miR-503 inhibited SMCs
proliferation and migration induced by PDGF, miR-503 played
this role by downregulating its target insulin receptor (Bi et al.,
2016). Carotid artery stenosis (CAS) is a kind of atherosclerotic
vascular disease, and the abnormal cell proliferation of vascular
SMCs is related with the occurrence of CAS (Faxon et al., 2004).
Yan et al., (2020) reported that plasma level of miR-503 in
asymptomatic patients with CAS was lower compared with
that in healthy individuals, and they also demonstrated that
overexpression of miR-503 in vascular SMCs in vitro inhibited
cell proliferation, and miR-503 inhibitor counteracted this effect.
It is concluded that miR-503 can be a potential diagnostic marker
for CAS and that miR-503 overexpression may improve CAS by
inhibition of cell proliferation of vascular SMCs (Yan et al., 2020).
However, Cremer et al., (2019) reported that long noncoding
RNA (lncRNA) MALAT1 (metastasis-associated lung
adenocarcinoma transcript 1) expression level was reduced in
atherosclerotic vessels of symptomatic patients, and that
transplantation of MALAT1-deficient bone marrow cells in
apolipoprotein E-deficient (Apoe−/−) mice promoted
atherosclerosis in vivo, the MALAT1 targets including miR-
503 in Apoe−/− Malat1−/− bone marrow cells were increased.
In animal model of atherosclerosis, miR-503 was also increased in
aortic roots of Apoe−/−Malat1−/−mice, and inhibition ofmiR-503
in vitro in bone marrow mononuclear cells from Apoe−/−

Malat1−/−mice reduced cell adhesion to endothelial cells
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pre-stimulated by tumor necrosis factor-α (TNF-α). However,
whether overexpression or inhibition of miR-503 can alleviate
atherosclerosis needs further studies in vivo.

In human endometriotic cyst stromal cells (ECSCs) (Hirakawa
et al., 2016), the expression level of miR-503 was downregulated
due to DNA hypermethylation, and miR-503 overexpression in
ECSCs resulted in inhibition of cell proliferation, induction of cell
apoptosis and reduction of extracellular matrix (ECM)
contractility by suppressing its targets cyclinD1, B-cell
lymphoma/leukemia-2 (Bcl-2), Ras homology A (RhoA), Rho-
associated coiled-coil-forming protein kinase (ROCK1), ROCK2
and vascular endothelial growth factor A (VEGFA) (Hirakawa
et al., 2016). In murine bone marrow-derived dentritic cells
(BMDCs) (Min et al., 2013), some miRs including miR-503,
miR-21, miR-155, miR-146a, miR-142, miR-22 and miR-16-1
were elevated when BMDCs were cocultured with tumor cells,
and miR-503 downregulated the expression level of its target Bcl-
2 at transcript and protein levels, leading to BMDCs apoptosis,
while inhibition of miR-503 prolonged BMDCs lifespan, and thus
may improve antitumor response in BMDCs.

Under hypoxia condition, the role of miR-503 is inconsistent
in different cell types (Keighron et al., 2018; Wen et al., 2018). For
instance, Endothelial progenitor cells (EPCs) are a kind of blood
cells which have the characteristics of vascular regeneration
(Keighron et al., 2018). In mouse bone marrow derived EPCs,
miR-503 was downregulated under hypoxia condition (Wen
et al., 2018), and its overexpression inhibited cell proliferation,
migration and angiogenesis of EPCs via regulating its target
Apelin, which is encoded by APLN gene. APLN gene encodes
preproapelin, then preproapelin is cleaved to several apelin
peptides including apelin-36, -17, -12, and -13 (Wysocka et al.,
2018). However, in bone marrow-derived mesenchymal stem
cells, Nie et al., (2011) reported that miR-503 was upregulated
following 6 h of hypoxia stimulation, inhibition of miR-503
aggravated mesenchymal stem cells apoptosis.

In non-small cell lung cancer (NSCLC) cell lines, Sun et al.,
(2017) demonstrated that overexpression of miR-503-3p
suppressed cell proliferation and induced cell apoptosis via
downregulating its target p21. p21 is one of cyclin dependent
kinase inhibitor proteins (CDKIs) which include Ink4 family and
KIP family (Watanabe et al., 1998). However, Chen et al., (2017)
reported that long non-coding RNA SNHG20 promoted cell
proliferation of NSCLC cell lines partly by downregulating p21
expression. Zhang and Yan (2012) reported that carboxylated
multiwalled carbon nanotubes (MWCNTs) treatment inhibited
cell proliferation and induced p21 protein overexpression in cells

without detectable DNA damage and apoptosis, and the
upregulated p21 protein inhibited the function of cyclin
D/cdk4,6 complex, then inactivated retinoblastoma (Rb)
phosphorylation leading to cell cycle arrest at G1/S phase. In
mouse embryonic fibroblasts p21 −/− cells, MWCNTs treatment
didn’t induce cell cycle arrest at G1/S phase (Zhang and Yan,
2012). From Sun Y et al.’s study (Sun et al., 2017), it is inferred
that the downregulation of p21 mediated by miR-503-3p in
NSCLC cell lines can inhibit cell proliferation and promote
cell apoptosis. However, Chen ZY et al.’s study (Chen et al.,
2017) indicated that the downregulation of p21 mediated by
SNHG20 in NSCLC cell lines promoted cell proliferation. While
Zhang Y et al.’s study (Zhang and Yan, 2012) inferred that
upregulation of p21 can inhibit cell proliferation. Thus, p21
has a dual role in cell proliferation and apoptosis, and this
dual role depends on its cellular localization, and p21
regulation of cell proliferation and apoptosis has been
extensively reviewed elsewhere (Kreis et al., 2019; Manu et al.,
2019). The inconsistent role of p21 mediated by miR-503-3p or
SNHG20 in NSCLC cell lines may be due to the different cell lines
used. However, the inconsistency from these studies needs to be
investigated further.

In podocytes, high glucose (HG) treatment increased miR-503
expression level in a time and dose-dependent manner and
decreased E2F transcription factor 3 (E2F3) expression level
(Zha et al., 2019). miR-503 overexpression increased podocytes
apoptosis, while its inhibition improved renal function in rats of
Diabetes mellitus via targeting E2F3 (Zha et al., 2019). In human
microvascular endothelial cells (HMEC-1) (Chen et al., 2020),
HG treatment also increased miR-503 expression level markedly,
but decreased the expression of Apelin-12, which was proven to
be a miR-503 target by luciferase assay. miR-503 inhibited
Apelin-12 expression, while it up-regulated the
phosphorylation of JNK and p38MAPK. In contrast, inhibition
of miR-503 alleviated oxidative stress, inflammation and
apoptosis induced by HG in HMEC-1 cells (Chen et al., 2020).
The expression level of miR-503 induced by HG in both types of
cells is consistent, and the increase of miR-503 contributes to cell
apoptosis under HG condition.

Roles of miR-503 in Carcinogenesis
Accumulated evidence has shown that miR-503 is implicated in
carcinogenesis and angiogenesis. Uncontrolled angiogenesis
contributes to tumor growth and invasiveness (Peter and
Rakesh, 2011). miR-503 expression is dysregulated in tumor or
cancer. In this section, we summarize the related findings of

TABLE 1 | Roles of miR-503 in cells and its targets.

miRs Cell types Identified targets References

miR-503-5p Human aortic SMCs INSR Bi et al., (2016)
miR-503-5p ECSCs Cyclin D1, Bcl-2, VEGFA and ROCK1 Hirakawa et al., (2016)
miR-503-5p EPCs Apelin Wen et al., (2018)
miR-503-5p BMDCs Bcl-2 Min et al., (2013)
miR-503-3p Lung cancer cells p21 Sun et al., (2017)
miR-503-5p Podocytes E2F3 Zha et al., (2019)
miR-503-5p HMEC Apelin-12 Chen et al., (2020)
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miR-503 in cancer and list in Table 2. The role of miR-503 in
angiogenesis will be discussed in the next section.

PI3K/Akt signaling pathway plays an important role in cell
growth and cell survival (Cantley, 2002). Phosphionositide 3-
kinaes (PI3Ks) consists of catalytic subunits and regulatory
subunits, and PI3Kp85 is one of the regulatory subunits
(Fruman et al., 1998). In human NSCLC, miR-503
expression level was downregulated in lung cancer tissues
compared with adjacent non-cancerous tissues (Yang et al.,
2014), while its overexpression impeded tumor growth,
metastasis and cell proliferation in a xenografted mice
model, and in NSCLC cell lines. Both PI3Kp85 and IKK-β
were proven as direct targets of miR-503 by luciferase assay
(Yang et al., 2014). IκB kinase β (IKK-β) has been shown to
link inflammation to cancer, and deletion of IKK-β can reduce
colitis-associated tumor incidence and attenuate tumor
growth (Greten et al., 2004). In NSCLC, miR-503 might act
as a tumor suppressor by downregulating its targets PI3K p85
and IKK-β (Yang et al., 2014).

In human hepatocellular carcinomas (HCC) tumor, two
studies have consistently reported that miR-503 expression
level was downregulated in tumor tissues compared with
matched adjacent normal tissues (Xiao et al., 2013; Zhou et al.,
2013), and miR-503 was also downregulated in HCC cell lines
compared with normal liver cell line L02 (Xiao et al., 2013), its
down-regulation may be due to epigenetically modulation of the
promoter of miR-503 (Zhou et al., 2013). The down-regulation of
miR-503 was correlated with the low survival rate of HCC
patients (Xiao et al., 2013). Overexpression of miR-503
impeded tumor growth and angiogenesis in a hepatoma
xenograft mouse model (Zhou et al., 2013). In vitro, miR-503
overexpression repressed human umbilical vein endothelial cells
(HUVECs) capillary tube formation, HCC cell proliferation and
colony formation, and induced cell cycle arrest at G1 phase in
HCC cells through inhibiting its targets, fibroblast growth factor-
b (FGF2), VEGFA, cyclin D3 and E2F3 (Xiao et al., 2013; Zhou
et al., 2013).

In breast cancer, the reports about miR-503 expression level
from different cancer stages are inconsistent. Li et al., (2014)
found that miR-424/-503 cluster was significantly higher in breast
cancer tissues from patients with metastasis than that without
metastasis. Smad7 and Smurf2 are inhibitory factors of
transforming growth factor beta (TGF-β), and the targets of
miR-424/-503 cluster. Overexpression of this cluster
suppressed Smad7 and Smurf2 expression and activated TGF-
β signaling, promoting breast cancer cells metastasis in nude
mice, while inhibition of miR-424/-503 cluster in breast cancer
cells attenuated metastasis in nude mice and improved host
survival, suggesting that miR-424/-503 cluster act as “onco-
miR” in breast cancer. However, in another two studies, miR-
503 in cancer tissues or cells was shown to be reduced remarkably
compared to adjacent non-cancerous tissues and non-malignant
breast epithelial cells (Long et al., 2015; Yan J. et al., 2017).
Moreover, miR-503 was lower in T2-T4 stage of breast cancer
than that in T1 stage (Yan J. et al., 2017). Overexpression of miR-
503 impeded breast cancer cell proliferation and invasion through
inhibiting its target genes Insulin-like growth factor 1 receptor
(IGF-1R) (Yan J. et al., 2017) and CCND1 (encoding cyclin D1)
(Long et al., 2015). IGF-1R belongs to IGF receptor family, and
IGF-1R signaling pathway participates in tumor growth and
metastasis (Tognon and Sorensen, 2012). Therefore, the
inconsistence of miR-503 expression level in different stages of
breast cancer needs more evidences, the effects of its
overexpression or inhibition in breast cancer on metastasis
deserve further investigation.

In breast cancer, miR-503-3p expression level was found to be
higher in cancer tissues and plasma of patients compared with
adjacent normal tissues and plasma of healthy subjects, and the
high level of miR-503-3p was correlated with breast cancer
metastasis (Zhao et al., 2017). Smad2 and E-cadherin were
proven as miR-503-3p targets by luciferase assay, and the
mRNA levels of both Smad2 and E-cadherin were lower in
cancer tissues of patients compared with adjacent normal
tissues, and it has been demonstrated in vitro that miR-503-3p

TABLE 2 | The expression level and targets of miR-503 in cancer.

miRs Cancer types Upregulated↑/downregulated↓ Identified targets References

miR-503-5p HCC ↓ FGF2, VEGFA Zhou et al., (2013)
miR-503-5p HCC ↓ Cyclin D3, E2F3 Xiao et al., (2013)
miR-503-5p NSCLC ↓ PI3K p85, IKK-β Yang et al., (2014)
miR-424/-503 Breast cancer NA Smad7, Smurf2 Li et al., (2014)
miR-503-5p Breast cancer ↓ IGF-1R Yan J. et al., (2017)
miR-503-5p Breast cancer ↓ CCND1 Long et al., (2015)
miR-503-3p Breast cancer ↑ Smad2, E-cadherin Zhao et al., (2017)
miR-503-5p CC ↓ AKT2 Fu et al., (2019)
miR-503-5p Prostate cancer ↓ ZNF217 Jiang et al., (2016)
miR-503-5p GBM ↓ IGF-1R Zhang et al., (2014)
miR-503-5p GBM ↑ PDCD4 Guo et al., (2017)
miR-503-5p CRC ↓ E2F3 Chang et al., (2015)
miR-503-5p CRC ↑ CaSR Noguchi et al., (2016)
miR-503-5p GC ↓ HMGA2 Li et al., (2019)
miR-503-5p Osteosarcoma ↓ IGF-1R Wang et al., (2017)
miR-503-5p ESCC ↑ PRKACA Wu et al., (2018)
miR-503-5p Retinoblastoma ↑ PTPN12 Cheng and Liu (2019)

NA, Not applicable.
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promotes Epithelial-mesenchymal transition (EMT) and tumor
metastasis by downregulation of Smad2 and E-cadherin. Tumor
metastasis is a complicated process, it contains EMT and
Mesenchymal-epithelial transition (MET). E-cadherin is one of
EMT markers, and loss of this protein promotes metastasis
(Heerboth et al., 2015). Smads family are intracellular effectors
of the TGF-beta superfamily, and Smad2 is one member of
Receptor Activated Smads family (Hanna et al., 2021).

In cervical cancer (CC), the expression level of miR-503 in
cancer tissues of patients was downregulated compared with
adjacent normal tissues, and overexpression of miR-503 in CC
cell lines inhibited cell proliferation and colony formation by
targeting AKT2, while miR-503 inhibitor reversed these effects
(Fu et al., 2019). The mRNA expression level of AKT2 is higher in
cancer tissues than that in adjacent normal tissues, and it was
proven as miR-503 target by luciferase assay. AKT2 is one
isoform of AKT (also called protein kinase B), and activation
of AKT promotes cell proliferation and survival (Osaki et al.,
2004). Thus, miR-503 may act as a tumor suppressor in CC (Fu
et al., 2019). In prostate cancer, miR-503 expression level was also
downregulated in cancer tissues of patients compared with
adjacent normal tissues (Jiang et al., 2016), its down-regulation
was associated with invasive features and poor prognosis in
prostate cancer patients. GATA binding protein 3 (GATA3) is
a zinc-binding transcription factor, it is found to bind the
promoter of miR-503 and activate miR-503 transcription,
however, GATA3 expression was also decreased remarkably in
prostate cancer tissues. Zinc finger protein 217 (ZNF217) was
proven as miR-503 target, it is demonstrated that GATA3/miR-
503 axis suppressed the progression of prostate cancer by
inhibiting ZNF217 expression.

In human glioblastoma multiforme (GBM), Zhang et al.,
(2014) found that miR-503 expression level was reduced
markedly in GBM tissues and cells compared with human
normal brain tissues from patients with cerebral trauma, its
overexpression in GBM cells impeded cell proliferation,
migration and tumor invasion, and increased cell apoptosis.
They further demonstrated that miR-503 acted as tumor
suppressor in GBM partially by downregulating its target IGF-
1R and interfering with PI3K/AKT pathway. However, Guo et al.,
(2017) found that the expression level of miR-503 was elevated in
glioblastoma tissues or cancer cells compared to normal human
brain tissue and normal human astrocytes separately. And they
showed that overexpression of miR-503 in glioblastoma cells
increased cell proliferation, and reduced cell apoptosis by
targeting PDCD4 (programmed cell death 4). By contrast,
inhibition of miR-503 impeded cell proliferation (Guo et al.,
2017). PDCD4 is known as one tumor suppressor gene which
inhibits cell proliferation, tumor angiogenesis and induces
apoptosis (Lankat-Buttgereit and Goke, 2009). Zhang et al.,
(2014) compared miR-503 expression level in cancer cells with
that in normal brain tissues and found that miR-503 was
downregulated, Guo et al., (2017) did not describe clearly
from where the normal human brain tissue was obtained.
Thus, the inconsistent expression level of miR-503 between
these two studies may be due to the source of control samples.

Also, the function of miR-503 in glioblastoma between both
studies is inconsistent, this needs to be investigated further.

In colorectal cancer (CRC), the role of miR-503 is also
inconsistent. Chang et al., (2015) reported that miR-503
expression level was reduced remarkably in cancer tissues or
cells compared with adjacent normal tissues and normal colonic
cell line separately, its overexpression in CRC cells suppressed cell
proliferation and increased cell apoptosis rate by targeting E2F3.
Whereas in Noguchi et al.’s study (Noguchi et al., 2016), in
normal mucosa, colorectal adenoma and cancer tissues, the
expression level of miR-503 was increased in sequence from
adenoma to carcinoma, higher miR-503 expression in patients
was related with large tumor size, tumor invasion and metastasis,
and inhibition of miR-503 in CRC cells suppressed cell
proliferation, invasion and migration, which is suggestive that
miR503 acted as an “onco-miR” in CRC by downregulation of
calcium-sensing receptor (CaSR) expression. CaSR is a G protein-
coupled receptor and functions as a tumor suppressor in colon
cancer (Singh et al., 2013). Therefore, the expression level and
function of miR-503 in CRC is inconsistent. In Noguchi et al.’s
study, the control samples were from healthy volunteers, while in
Chang et al.’s study, the control samples were from adjacent
normal tissues of cancer patients, this may explain the
inconsistence of miR-503 expression. Nonetheless, the function
of miR-503 in CRC deserves further investigation.

In other gastrointestinal cancer, such as gastric cancer (GC)
(Li et al., 2019) and esophageal squamous cell carcinoma (ESCC)
(Wu et al., 2018), the miR-503 expression level is converse. miR-
503 expression decreased remarkably in tissues of GC, but highly
expressed in tissues of ESCC, as compared with individual
adjacent non-cancerous tissues (Wu et al., 2018; Li et al.,
2019), while it was lower in tissues of ESCC with metastasis
than that without metastasis (Wu et al., 2018). In GC,
overexpression of miR-503 impeded cell proliferation, invasion
and colony formation in vitro and tumor growth in vivo by
suppressing target gene HMGA2 (encoding High-mobility group
AT-hook 2) and WNT/β-catenin signaling pathway (Li et al.,
2019). Ectopic expression of miR-503 in ESCC cells also impeded
cell proliferation, invasion and metastasis by inducing cellular
autophagy in vitro and in vivo. Protein kinase cAMP-activated
catalytic subunit alpha (PRKACA) was proven as miR-503 target
gene by luciferase assay, and it is suggested that miR-503 induced
autophagy in ESCC cells via the protein kinase A (PKA)/
mammalian target of rapamycin (mTOR) pathway (Wu et al.,
2018).

In osteosarcoma, miR-503 expression level was reduced in
tumor tissues compared with matched adjacent normal tissues,
and it was lower in specimens from patients of T3-T4 stage than
that of T1-T2 stage (Wang et al., 2017). In vitro,miR-503 was also
lower in osteosarcoma cells than that in normal osteoblasts cells,
and overexpression of miR-503 suppressed the proliferation and
invasion of osteosarcoma U2OS cells, thus, it acted as a tumor
suppressor in osteosarcoma via inhibiting its target, IGF-1R.
However, in retinoblastoma (RB) (Cheng and Liu, 2019), miR-
503 was greatly expressed in RB tissues, and acted as an “onco-
miR” by targeting PTPN12.
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Taken together, miR-503 expression level varies in different
types of cancer. However, except for the inconsistent results of
colorectal cancer and glioblastomamultiforme, miR-503 has been
found to be downregulated in most of cancer types, but
upregulated in few cancer types, such as retinoblastoma (Zhao
et al., 2009; Cheng and Liu, 2019), ESCC (Wu et al., 2018) and
adrenocortical carcinoma (Ozata et al., 2011). miR-503 can act as
“onco-miR” or tumor suppressor in different types of cancer. The
expression level and targets of miR-503 in cancer are listed in
Table 2.

Roles of miR-503 in Angiogenesis
Numerous miRNAs, such as miR-92a (Bonauer et al., 2009), miR-
29b (Li et al., 2017), and miR-21 (Liu et al., 2016), are
demonstrated to regulate angiogenesis, and have the
characteristics of anti- or pro-angiogenesis. The miR-16 family
in angiogenesis and diabetes has been reviewed elsewhere
(Caporali and Emanueli, 2011). In this section, we focus on
studies of miR-503 in angiogenesis.

The role of miR-503 in angiogenesis has been demonstrated
in vitro and in vivo (Caporali et al., 2011; Jongmin et al., 2012;
Zhou et al., 2013; Caporali et al., 2015; Wen et al., 2018). In EPCs
(Wen et al., 2018), miR-503 suppressed angiogenesis by targeting
Apelin. In Diabetes mellitus, miR-503 expression level was
significantly higher in ischemic muscles and plasma from
patients with limb ischemia than normal control (Caporali
et al., 2011), and it is also higher in the plasma of diabetic
patients with ischemic stroke than that in non-diabetic
patients with stroke or in control individuals (Sheikhbahaei
et al., 2019). Overexpression of miR-503 suppressed
endothelial cells proliferation, migration and network
formation by suppression of its targets, cdc25A (cell division
cycle 25 A) and CCNE1 (cyclin E1) under normal culture
condition (Caporali et al., 2011). In diabetic mice with limb
ischemia, antagonizing miR-503 improved angiogenesis and
blood flow recovery by upregulating cdc25A and CCNE1
(Caporali et al., 2011). Furthermore, it was found that p75
neurotrophin receptor (p75 NTR) activated NF-κB to bind the
promoter of miR-503 and activated its expression in endothelial
cells exposed to high glucose (Caporali et al., 2015). p75NTR is a
multifunctional membrane receptor of nerve growth factor
(Caporali and Emanueli, 2009).The microparticles carrying
miR-503 were shed from diabetic endothelial cells and
transferred into recipient pericytes, where miR-503 inhibited
pericyte migration and proliferation by targeting EFNB2
(encoding Ephrin-B2) and VEGFA, and subsequently increased
vascular permeability and blocked angiogenesis in post-ischemic
limb muscles of diabetic mice (Caporali et al., 2015).

In hepatocellular carcinomas (Zhou et al., 2013), miR-503
inhibited tumor angiogenesis by down-regulation of FGF2 and
VEGFA. The VEGF family and FGF superfamily are regulators in
angiogenesis (Peter and Rakesh, 2011), VEGF (also known as
VEGFA) is a predominant regulator in the process of
angiogenesis, which stimulates angiogenesis via VEGF
receptor-2, thus, blockers of VEGF is widely used as an anti-
angiogenic agent (Peter and Rakesh, 2011). In glioma cells,
overexpression of miR-503 reduced both LRIG2 (Leucine-rich

repeats and immunoglobulin-like domains protein 2) and
VEGFA expression levels (Sun et al., 2019), and suppressed
angiogenesis in cocultured human cerebral microvascular
endothelial cell line D3 (HCMEC/D3), while miR-503
inhibitor promoted angiogenesis in cocultured HCMEC/D3.
LRIG2 was proven as miR-503 target by luciferase assay,
knockdown of LRIG2 reduced VEGFA expression level along
with the condition of miR-503 inhibitor, therefore, miR-503
regulated angiogenesis in glioma by reducing LRIG2
expression followed by downregulation of VEGFA expression
(Sun S. et al., 2019). LRIG2 belongs to the leucine-rich repeats and
immunoglobulin-like domains family and regulates epidermal
growth factor receptor (EGFR) signaling pathway (Simion et al.,
2014), and downregulation of LRIG2 suppressed angiogenesis in
glioma (Yang et al., 2017). In pulmonary arterial hypertension
(Jongmin et al., 2012), both hsa-miR-424 and hsa-miR-503 were
decreased in pulmonary artery endothelial cells derived from
patients with pulmonary arterial hypertension, and
overexpression of both miRs in animal models of pulmonary
hypertension can alleviate pulmonary hypertension by
downregulation of FGF2 and FGF receptor (FGFR1) (Jongmin
et al., 2012).

In chronic obstructive pulmonary disease (COPD) (Jun et al.,
2017), miR-503 was decreased in lung fibroblasts from COPD
patients, VEGF released by lung fibroblasts from patients with
COPD were higher compared with that from patients without
COPD, it is inferred that miR-503 may regulate fibroblast-
mediated vascular homeostasis in COPD via VEGF signaling,
given that VEGF plays an important role in regulating vascular
homeostasis in various pathological conditions (Tsai et al., 2009;
Liu et al., 2019a). In another clinical trial (Fei et al., 2018), patients
with coronary artery disease (CAD) were divided into good
coronary collateral circulation (CCC) formation group and
poor CCC formation group, and the level of miR-503 in the
plasma from good CCC or poor CCC group was lower compared
with that from control subjects, and miR-503 was negatively
correlated with CCC formation and VEGFA (Fei et al., 2018).
This indicates that miR-503 might suppress CCC formation, and
the downregulation of miR-503 in CAD patients may be a
compensatory effect of protection.

Overall, the role of miR-503 in angiogenesis is consistent in
different studies, and it shows the characteristic of anti-
angiogenesis.

Roles of miR-503 in Tissue Fibrosis
Fibrosis can a significant pathological state in many organs, such
as heart (Gao et al., 2012; Liu et al., 2017; Ge Z. D. et al., 2019),
lung (Yang et al., 2020), kidney and liver, and may result in the
distortions of organ structure and organ dysfunction (Li et al.,
2016; Warisara et al., 2020). Pro-fibrotic mediator TGF-β (Guo
et al., 2010) and its signaling pathways play an important role in
the process of epithelial-mesenchymal transition and tissue
fibrosis (Li et al., 2016; Warisara et al., 2020). Multiple miRs
are involved in fibrosis, for instance, miR-21 stimulated the
development of lung fibrosis (Liu et al., 2010), while miR-101
inhibited cardiac fibrosis after myocardial infarction (MI) (Pan
et al., 2012). Several studies reported that miR-503 was implicated
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in fibrosis (Zhou et al., 2016; Yan W. et al., 2017), in this section,
we list the alterations of miR-503 in fibrosis and discuss howmiR-
503 regulates fibrosis in lung or heart.

Cardiac fibrosis can lead to contractile dysfunction (Xia et al.,
2007; Gao et al., 2012; Li et al., 2015) and cardiac arrhythmia
(Warisara et al., 2020). In mouse heart tissues of cardiac fibrosis
induced by transverse aortic constriction (TAC) and mouse
neonatal cardiac fibroblasts (CFs) cultured with Angiotensin II
(Zhou et al., 2016), miR-503 expression level was upregulated, its
overexpression in neonatal CFs increased cell proliferation and
collagen production mediated by Angiotensin II, while
pretreatment with Apelin-13 and co-transfection of miR-503
in neonatal CFs resulted in inhibition of TGF-β and
connective tissue growth factor (CTGF) expression and
collagen production, Apelin-13 treatment alone decreased cell
proliferation and collagen production, and reduced TGF-β and
CTGF expression levels in neonatal CFs mediated by Angiotensin
II (Zhou et al., 2016). Apelin-13 was identified as target of miR-
503 by luciferase assay, and antagomiR-503 treatment in TAC
mice improved cardiac function and suppressed both TGF-β and
CTGF expression, therefore, miR-503 has the property of
promoting cardiac fibrosis in TAC mouse model. In contrary,
in mouse model of pulmonary fibrosis induced by silica (Yan W.
et al., 2017), miR-503 was reduced in fibrotic lung tissue and cells
exposed to silica compared with control, but long non-coding
RNA MALAT1 was upregulated, and MALAT1 regulated miR-
503 expression by competitively binding to miR-503. Snail is a
transcription factor and recognized as inducer of EMT (Kalluri
and Weinberg, 2009). PI3K p85 was also proven as miR-503
target, and the activation of PI3Kp85/Akt/mTOR/Snail pathway
facilitated the development of EMT and pulmonary fibrosis (Yan
W. et al., 2017), overexpression of miR-503 has been shown to
inhibit silica-induced pulmonary fibrosis by inactivating that
pathway (Yan W. et al., 2017).

From those studies, it is inferred that miR-503 attenuates
pulmonary fibrosis, while it promotes cardiac fibrosis, thus the
findings regarding the function of miR-503 in fibrosis is
contradictory, which may be due to differences in the process
of pulmonary fibrosis and cardiac fibrosis. EMT plays an critical
role in the pathogenesis of pulmonary fibrosis (Heise et al., 2011),
some epithelial cells in the lung can be transformed to fibroblasts
by EMT (Kim et al., 2006). It is notable that there are no epithelial
cells in the heart tissue, however, endothelial-to mesenchymal
transition (EndMT) can be induced in the heart after MI, and
EndMT becomes the source of myofibroblasts and promotes the
production of fibroblastic content (Aisagbonhi et al., 2011).The
molecular mechanism whereby miRs regulate tissue fibrosis
formation is complicated and needs further study.

Roles of miR-503 in Oxidative Stress
Oxidative stress occurs when excessive generation of reactive
oxygen species (ROS) exceeds antioxidant defense systems
(González-Montero et al., 2018; Liu et al., 2020a; Liu et al.,
2020b). ROS include superoxide anion (O2

−), hydroxyl radicals
(.OH), peroxynitrite anion (ONOO−) and hydrogen peroxide
(H2O2), they can cause oxidative damage to the lipids, proteins,
and nucleic acids of cells (González-Montero et al., 2018; Li et al.,

2018; Lei et al., 2019). To remove ROS, cells use intrinsic
antioxidant defense systems, including antioxidative enzymes
and antioxidants, such as superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPx), and glutathione,
to protect against the injurious effects of excessive ROS (Finkel,
2003; Cai et al., 2017; González-Montero et al., 2018).
Hyperglycemia (Rolo and Palmeira, 2006; Yang et al., 2015),
hypoxia (Deng et al., 2017; Tang et al., 2018), ischemia or
ischemia/reperfusion (I/R) (Yu et al., 2015; González-Montero
et al., 2018), all induce oxidative stress.

Multiple miRs have been shown to be involved in the
development of oxidative stress, this topic has been reviewed
elsewhere (Magenta et al., 2013; Nikolai et al., 2018; Carbonell
and Gomes, 2020), and the miRs that have been reported to
regulate antioxidant system are listed in the latest review
(Carbonell and Gomes, 2020). Some miRs can aggravate
oxidative stress, whereas others have the opposite roles. For
instance, the application of miR-223-3p inhibitor can alleviate
hypoxia-induced oxidative stress and apoptosis (Tang et al.,
2018), while miR-377 inhibitor can alleviate renal I/R-induced
oxidative stress and inflammation (Liu et al., 2019b). Both miR-
27a (Zhao Y. et al., 2018) and miR-140-5p (Zhao L. et al., 2018)
can exacerbate oxidative damage by down-regulation of the target
Nrf2 (nuclear factor erythroid 2-related factor 2). Nrf2 is an
important transcription factor which binds to the antioxidant
response element (ARE) (Kensler et al., 2007), and regulates key
genes involved in oxidative stress, such as SOD, CAT, heme
oxygenase 1 (HO-1) and glutamate-cysteine ligase modifier
subunit (GCLM), while Nrf2 expression is also regulated by its
inhibitory protein called Kelch-like ECH-associated protein 1
(Keap1) and plays a critical role in promoting endogenous
antioxidant capacity to combat ischemia-reperfusion injury
induced oxidative stress and organ or tissue injuries (Gao
et al., 2016; Han et al., 2016; Luo et al., 2019). By contrast,
miR-7 can target Keap1 and activate Nrf2 pathway, therefore, it
can relieve oxidative stress and exert cytoprotective effects by
regulating the Nrf2 pathway (Kabaria et al., 2015). Several studies
have reported that miR-503 is involved in oxidative stress (Miao
et al., 2017; Rubattu et al., 2017; Chen et al., 2020; Zhang et al.,
2020). In this section, we summarize and analyze the mechanisms
of miR-503 in oxidative stress.

Myocardial I/R injury can lead to oxidative stress in both the
experimental settings of myocardial I/R (Xia et al., 2003a; Xia
et al., 2003b; Zhengyuan et al., 2005; Liu et al., 2011) and in
patients undergoing open heart surgeries under
cardiopulmonary bypass (Ansley et al., 2003; Xia et al., 2006;
Huang et al., 2011). Varga et al., (2014) reported that miR-503
was downregulated in the isolated rat hearts subjected to 30 min
of left anterior descending coronary artery ligation followed by
120 min of reperfusion, and ischemic postconditioning
attenuated the downregulation of miR-503. However, the
exact role of miR-503 in oxidative stress induced by I/R has
not been explored yet. In diabetic cardiomyopathy (DCM)
(Miao et al., 2017), miR-503 was increased significantly in
the rat heart tissues but decreased by Phase II enzyme
inducer (CPDT) treatment. Nrf2 was proven as miR-503
target by luciferase assay, it was decreased in DCM but
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increased by CPDT treatment (Miao et al., 2017). It is suggested
by Miao et al., (2017) that CPDT can alleviate oxidative stress in
DCM through miR-503/Nrf2/ARE signaling pathway, while the
authors did not simultaneously detect the oxidative stress
markers in the presence of either the miR-503 mimic or an
inhibitor of miR-503 in diabetic rats, nor in cultured
cardiomyocytes exposed to high glucose mimicking the
situation of diabetes. In human microvascular endothelial
cells (Chen et al., 2020), miR-503 inhibitor alleviated HG-
induced oxidative stress by the inactivation of JNK and p38
MAPK phosphorylation, suggesting that miR-503 has the
property of pro-oxidative stress.

In spontaneous hypertension and stroke rat model (Rubattu
et al., 2017), the miR-503 expression level was increased
significantly in brains of Spontaneously Hypertensive Stroke
Prone rats (SHRSP) upon high-salt diet, but reduced in brains
of Spontaneously Hypertensive Stroke Resistant Rats (SHRSR).
The peroxidation end products carbonylated total proteins were
also increased markedly in brains of high-salt-fed SHRSP, but not
in high-salt-fed SHRSR. In contrast, the mRNA and protein
expression levels of uncoupling protein 2 (UCP2) were
decreased significantly in brains of SHRSP upon high-salt diet,
but not in brains of SHRSR. And overexpression of miR-503 in
endothelial cells in vitro decreased UCP2 expression and
increased cell mortality (Rubattu et al., 2017). It is indicated
that the downregulation of UCP2 expression regulated by miR-
503 increases oxidative stress and stroke occurrence in high-salt-
fed SHRSR. UCP2 is a mitochondrial membrane protein and
wildly expressed among organs (Mattiasson and Sullivan, 2006),
and overexpression of UCP2 protected against endothelial
dysfunction of vessels through reducing ROS production
followed by increasing nitric oxide (NO) bioavailability (Tian
et al., 2012). Another study reported that miR-503 expression
level in plasma of patients with moderate and severe ischemic
stroke was highest compared to patients with minor stroke and
control individuals (Zhang et al., 2020). It is also demonstrated
that overexpression of miR-503 increased cell apoptosis and ROS
production, but reduced NO generation in vivo and in intro, while
inhibition of miR503 alleviated apoptosis, oxidative stress, and
increased NO generation by activation of PI3K/AKT/eNOS
pathway, and it is indicated that plasma miR-53 may be an
attractively diagnostic marker or therapeutic target for ischemic
stroke (Zhang et al., 2020).

To summarize, the mechanisms of miR-503 in oxidative stress
is not well understood especially in I/R injury or diabetes, it is
worthy of further investigation.

The Mechanisms of Abnormal miR-503
Expression in Cardiovascular Disease or
Cancer
Studies have shown that miR-503 is expressed abnormally in
human diseases, such as diabetes (Caporali et al., 2011; Xu et al.,
2017), pulmonary arterial hypertension, coronary artery disease
(Fei et al., 2018), ischemic stroke (Zhang et al., 2020) and cancer,
and have explored the roles of miR-503 in diseases by
overexpressing or inhibiting miR-503 in vivo and in vitro. The

potential mechanism of miR-503 in regulating cardiovascular
disease is shown in Figure 1. However, the mechanisms of its
abnormal expression in diseases are little known.

DNA methylation in the promoters of miRs or histone
modifications have been evaluated for the dysregulation of
miRs (Manel, 2011; Druz et al., 2012; Zhang et al., 2016). The
mechanisms governing miR-503 down-regulation or its
activation have been explored in few studies. On the one
hand, several studies have reported the reasons of miR-503
downregulation. Zhou et al., (2013) and Hirakawa et al., (2016)
have shown that the downregulation of miR-503 in HCC
tissues or human endometriotic cyst stromal cells may be
due to DNA hypermethylation near the promoter of miR-
503. Yan W. et al., (2017) reported that lncRNA MALAT1
bound to miR-503 directly as a sponge and downregulated
miR-503 expression in silica-induced pulmonary fibrosis. In
patients with acute MI and in rat model of myocardial I/R
injury, MALAT1 was increased in peripheral blood cells
(Vausort et al., 2014) or myocardial tissues (Sun T. et al.,
2019). Our unpublished data and Varga et al.’s data (Varga
et al., 2014) showed that miR-503 expression level was
downregulated in myocardial tissues following I/R injury.
However, it is yet to be determined whether or not the
downregulation of miR-503 in myocardial I/R injury may
be due to the upregulation of MALAT1 or DNA
methylation. On the other hand, the mechanism governing
the activation of miR-503 expression has also been explored.
Kim et al., (Jongmin et al., 2012) demonstrated that
overexpression of APLN (apelin) induced miR-424/503
expression by regulation of miR-424/503 promoter in
pulmonary artery endothelial cells. Jiang et al., (2016)
showed that miR-503 expression was activated by GATA3
binding to its promoter. Caporali et al., (2015) showed that
NF-κB was activated by p75 neurotrophin receptor (p75 NTR)

FIGURE 1 | The potential mechanism of miR-503 in regulating
cardiovascular disease. Cardiovascular disease induces the abnormal
expression of miR-503. The dysregulation of miR-503 may contribute to
various pathologies, e.g., angiogenesis, cardiac fibrosis and oxidative
stress, and it would subsequently aggravate the severity of cardiovascular
disease. The following targets, FGF2, FGFR1, VEGFA, TGF-β, CTGF, Nrf2,
and PI3K/Akt may be involved in the pathological processes of cardiovascular
disease regulated by miR-503.
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and bond to the promoter of miR-503, leading to miR-503
transcription in endothelial cells. Taken together, the
mechanisms of miR-503 dysregulation are diverse and
complicated in different pathological conditions. Further
investigation of abnormal miR-503 expression is needed for
discovering good therapeutic targets.

CONCLUSION AND FUTURE DIRECTIONS

miR-503 is extensively studied in cancer, and most studies
reported that miR-503 acted as a tumor suppressor, while a
few studies showed miR-503 may function as an “onco-miR”.
Whether overexpression or inhibition of miR-503 in vivo can
suppress tumor growth depends on cancer types, and
preclinical studies are still needed to address the impact of
miR-503 on the development of cancer. In the aspects of tissue
fibrosis or oxidative stress, there are few studies of miR-503
and the mechanisms are little known. Cardiac fibrosis can
occur following by MI, but it is unclear whether the role of
miR-503 in TAC or MI induced cardiac fibrosis is similar.
Oxidative stress is one of risk factors in myocardial I/R injury,
the role of miR-503 in regulating oxidative stress in
myocardial I/R injury is still unknown. To explore miR-503

as therapeutic target or diagnostic marker, further
investigation can be focused on the role of miR-503 in
tissue fibrosis or oxidative stress, and the dysregulation of
miR-503 in cardiovascular disease, especially myocardial I/R
injury deserves further investigation.
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GLOSSARY

ARE antioxidant response element

Bcl-2 B-cell lymphoma/leukemia-2

CTGF connective tissue growth factor

CAD coronary artery disease

CAS Carotid artery stenosis

CC cervical cancer

CCC coronary collateral circulation

BMDCs bone marrow-derived dendritic cells

cdc25A cell division cycle 25 A

COPD chronic obstructive pulmonary disease

CRC colorectal cancer

cdk2 cyclin-dependent-kinase 2

DCM diabetic cardiomyopathy

ESCC esophageal squamous cell carcinoma

EMT epithelial-mesenchymal transition

EPCs epithelial-mesenchymal transition

ECSCs endothelial progenitor cells

E2F3 E2F transcription factor 3

FGF2 fibroblast growth factor-b

FGFR1 FGF receptor

GBM glioblastoma multiforme

GC gastric cancer

HG high glucose

HMEC human microvascular endothelial cells

HCC hepatocellular carcinomas

IGF-1R Insulin-like growth factor 1 receptor

I/R Ischemia/Reperfusion

LRIG2 Leucine-rich repeats and immunoglobulin-like domains protein 2

miRs microRNAs

MI myocardial infarction

nt nucleotides

NSCLC non-small cell lung cancer

ROS reactive oxygen species

SMCs smooth muscle cells

TGF-β transforming growth factor beta

TAC transverse aortic constriction

UCP2 uncoupling protein 2

VEGFA vascular endothelial growth factor A
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