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SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-
19 differ from common acute viral diseases. SARS-CoV-2 infection is necessary but not
sufficient for development of clinical COVID-19 disease. Currently, there are no approved
pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data
suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action
and rationale for dose selection remain obscure. We have investigated several plausible
hypotheses for famotidine activity including antiviral and host-mediated mechanisms of
action. We propose that the principal mechanism of action of famotidine for relieving
COVID-19 symptoms involves on-target histamine receptor H2 activity, and that
development of clinical COVID-19 involves dysfunctional mast cell activation and
histamine release. Based on these findings and associated hypothesis, new COVID-19
multi-drug treatment strategies based on repurposing well-characterized drugs are being
developed and clinically tested, and many of these drugs are available worldwide in
inexpensive generic oral forms suitable for both outpatient and inpatient treatment of
COVID-19 disease.
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INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) is a highly infectious and pathogenic betacoronavirus first
detected in human infections during December 2019 (Wu D.
et al., 2020; Wu and McGoogan, 2020; Zhu et al., 2020).
Coronavirus infectious disease—2019 (COVID-19) is a disease
spectrum causally associated with infection by SARS-CoV-2.
Definitive COVID-19 diagnosis requires the presence of the
virus, which can be isolated, grown, or otherwise detected as
unique SARS-CoV-2 viral nucleic acid sequences. There are
SARS-CoV-2 virus shedding or nucleic acid positive patients
that do not manifest clinical COVID-19 (Danis et al., 2020;
Furukawa et al., 2020; Ki and Task Force for -nCo, 2020; Lai
et al., 2020; Pan et al., 2020; Zou et al., 2020). 13–20% of patients
with symptoms develop severe respiratory compromise requiring
oxygenation, with radiological findings of ground glass opacities
and consolidation (Huang et al., 2020; Shi et al., 2020;Wang et al.,
2020). Up to 80% of SARS-CoV-2 infected patients are
asymptomatic and do not appear to progress to COVID-19
(Tian et al., 2020a; BMJ, 2020; Day, 2020; He et al., 2020; Hu
et al., 2020; Mizumoto et al., 2020; WHO, 2020). Therefore,
SARS-CoV-2 infection is necessary but not sufficient for
development of clinical COVID-19 disease.

Patients with COVID-19 disease can present with a range of
mild to severe non-specific clinical signs and symptoms which
develop 2–14 days after exposure to SARS-CoV-2. These
symptoms include cough or shortness of breath, and at least
two of the following; fever, chills, repeated rigor, myalgia,
headache, oropharyngitis, anosmia, and ageusia (Giacomelli
et al., 2020; Lechien et al., 2020). More severe symptoms
warranting hospital admission include difficulty breathing, a
persistent sense of chest pain or pressure, confusion or
difficulty to arouse, and central cyanosis. Of hospitalized
patients, 20–42% develop Acute Respiratory Disease Syndrome
(ARDS), the most common cause for admission to hospital
intensive care units (ICU). 39–72% of patients admitted to the
ICU will die (CDC, 2020).

Clinical data from a variety of sources indicate that famotidine
treatment may reduce morbidity and mortality associated with
COVID-19, but other studies suggest no clinical benefits from
famotidine treatment. An early retrospective cohort study of
1,620 hospitalized COVID-19 patients indicates that 84
propensity score matched patients receiving famotidine during
hospitalization (oral or IV, 20 mg or 40 mg daily) had a
statistically significant reduced risk for death or intubation
(adjusted hazard ratio (aHR) 0.42, 95% CI 0.21–0.85) and also
a reduced risk for death alone (aHR 0.30, 95% CI 0.11–0.80)
(Freedberg et al., 2020). More recent retrospective studies
concerning famotidine and COVID-19 have been more
variable and generally less sanguine, ranging from no effect
(Cheung et al., 2020; Shoaibi et al., 2020; Yeramaneni et al.,
2020) to effects similar to those originally reported (Odds
Ratio—OR-death 0.37, OR-death or intubation 0.47) (Mather
et al., 2020). The difference in measured outcomes between the
two most recent studies reporting no effect (Shoaibi et al., 2020;
Yeramaneni et al., 2020) and the study from Hartford hospital

(Mather et al., 2020) may have multiple explanations, including
famotidine dosage. An early limited case series suggested that it is
necessary to administer famotidine at higher than standard over-
the-counter doses to relieve COVID-19 symptoms (ergo, high
dose [HD] famotidine treatment) (Janowitz et al., 2020).
Together, these data have been interpreted as indicating that
the increased survival pattern initially reported (Freedberg et al.,
2020) is due to an off-target, non-histamine receptor-mediated
property of famotidine not shared with cimetidine (Borrell, 2020;
Freedberg et al., 2020; Janowitz et al., 2020). HD famotidine was
initially being tested in the United States (US) under an
Investigational New Drug (IND) waiver for treating COVID-
19. This early double blind randomized clinical trial involved high
intravenous famotidine doses in combination with either
hydroxychloroquine or remdesivir (ClinicalTrials.gov
Identifier: NCT04370262), but that trial has been delayed and
is yet to complete enrollment or report results. HD famotidine for
treatment of COVID-19 is now also being clinically tested in
Bangladesh (ClinicalTrials.gov Identifier: NCT04504240), and
Iran (Samimagham et al., 2020). Recent encouraging clinical
reports include simultaneous administration of famotidine and
cetirizine at standard OTC doses (Hogan et al., 2020) and HD
famotidine with celecoxib (Tomera and Kittah, 2020a; Tomera
and Kittah, 2020b).

Herein we aim to investigate how famotidine may act to relieve
early phase COVID-19 clinical symptoms. The most likely
mechanisms of actions include: via antiviral activity, via novel
human targets, or via the on-target mechanism described in the
current FDA market authorization—famotidine is a histamine
receptor H2 antagonist (and inverse agonist).

METHODS

Experimental Analysis of the Mechanism of
Action of Famotidine
Famotidine was originally selected by the authors for
advancement as a potential repurposed drug candidate
therapeutic for COVID-19 based on molecular docking data to
the SARS-CoV-2 papain-like protease (PLpro). Based on this
analysis the US Food and Drug Administration (FDA) granted an
IND waiver for the subsequent double blinded randomized
clinical trial currently in progress (ClinicalTrials.gov Identifier:
NCT04370262). Briefly, a ranked list of licensed compounds with
predicted binding activity in the PLpro catalytic site was
computationally generated, and the PLpro catalytic site
binding pose of each of the top compounds was examined and
ranked by a team of pharmaceutical chemists. Package inserts or
product monographs for the licensed compounds which
generated high computational binding scores and passed
inspection were then reviewed and used to rank compounds
based on adverse events, FDA warnings, drug interactions on-
target mechanisms, pharmacokinetic and absorption,
metabolism, excretion and toxicity (ADMET), protein binding
and available therapeutic window considerations. Famotidine
(“PEPCID®”), a histamine H2 antagonist (inverse agonist)
widely available in tablet form over-the-counter, as well as in
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solution form for intravenous administration, was repeatedly
computationally ranked as among the most promising of the
compounds tested and was associated with the most favorable
pharmacokinetic and safety profile.

Recognizing that computational docking predictions are
typically associated with about a 20% success rate, we applied
the method of multiple working hypotheses (1890) to assess the
mechanism of action of famotidine as a potential treatment for
COVID-19. Relevant hypotheses tested included;

• Direct binding and action as an inhibitor of SARS-CoV-2 PLpro.
• Action as a direct acting inhibitor of SARS-CoV-2 infection

or replication.
• Off-target binding and inhibition of either sigma receptors

or a non-histamine H2 G-coupled protein receptor.
• Histamine H2 receptor inhibition.

Initial lay press journalistic reports based on unverified
hearsay from the People’s Republic of China (PRC) (Borrell,
2020) suggested that famotidine provided clinical benefit for
treatment of COVID-19, but other H2 receptor antagonists
(cimetidine) did not. This resulted in an inference that
famotidine did not act via its known mechanism of action as
an H2 receptor inhibitor. Pharmacokinetic analyses were
performed to model systemic circulating levels of famotidine
and cimetidine at various doses.

If famotidine relieves clinical symptoms of COVID-19, and
acts via known inhibitory and inverse agonist interactions with
H2 receptors, then there must be a histopathological source of
histamine release in damaged tissues including peripheral lung.
One of the most common cellular sources of histamine are mast
cells, so SARS-CoV-2 was used to experimentally infect African
green monkeys (AGM). At necropsy, AGM lung sections from
diseased and control lung parenchyma were sampled and stained
for presence and density of mast cells.

Does Famotidine Directly Bind and Act as an
Inhibitor of SARS-CoV-2 PLpro?
Production of Recombinant SARS-CoV-2 Plpro
An expression plasmid containing the sequence for (His)6-
TEVsite-SARS-CoV-2 PLpro (nsp3 from Wuhan-Hu-1 isolate,
polyprotein 1ab 1564-1878) was obtained commercially from
ATUM. The plasmid was transformed into E. coli BL21 (DE3)
pLysS. The expression and purification protocols were adapted
from prior work (Lindner et al., 2005).

Production of Recombinant ISG15
The expression plasmid for proISG15 (2-165) was a gift from David
Komander (Addgene plasmid #110762; http://n2t.net/addgene:
110762 ; RRID:Addgene_110762) (Swatek et al., 2018). Expression
and purification protocols were adapted from (Swatek et al., 2018). A
size exclusion chromatography step on a Superdex 75 column (GE
Healthcare) was added as a final step.

PLpro Activity Assays
Cleavage of ISG15 by SARS-CoV-2 PLpro was tested by
incubating 4 nM of PLpro in 50 mM Tris-HCl (pH 7.3),
150 mM NaCl, 2 mM DTT, 0.1 mg ml−1 BSA, with 10 µM of
ISG15 in a final volume of 20 µL for 1 h at room temperature.
Control was incubated without enzyme. Samples were subjected
to SDS-PAGE.

Does Famotidine Directly Inhibit
SARS-CoV-2 Infection or Replication in
Vero Cells?
Viral Growth and Cytotoxicity Assays in the Presence
of Inhibitors
2,000 Vero E6 cells were seeded into 96-well plates in
Dulbecco’s Modified Eagles Medium (DMEM, 10% FBS)
and incubated for 24 h at 37°C, 5% CO2. Two hours
before infection, the medium was replaced with 100°ul of
DMEM (2% FBS) containing the compound of interest at
concentrations 50% greater than those indicated, including a
DMSO control. Plates were then transferred into the
Biosafety Level 3 (BSL3) facility and 100 PFU (MOI 0.025)
was added in 50°ul of DMEM (2% FBS), bringing the final
compound concentration to those indicated. Plates were
then incubated for 48 h at 37°C. After infection,
supernatants were removed and cells were fixed with 4%
formaldehyde for 24 h prior to being removed from the BSL3
facility. The cells were then immunostained for the viral NP
protein with a DAPI counterstain. Infected cells (488 nM)
and total cells (DAPI) were quantified using the Celigo
(Nexcelcom) imaging cytometer. Percent infection was
quantified as ((Infected cells/Total cells) − Background)
*100 and the DMSO control was then set to 100%
infection for analysis. The IC50 and IC90 for each
experiment were determined using the Prism (GraphPad
Software) software. For select inhibitors, infected
supernatants were assayed for infectious viral titer using
the TCID50 method. Cytotoxicity was also performed using
the MTT assay (Roche), according to the manufacturer’s
instructions. Cytotoxicity was performed in uninfected Vero
E6 cells with same compound dilutions and concurrent with
viral replication assay.

TCID50 Assay
Infectious supernatants were collected at 48 h post infection
and frozen at −80°C until later use. Infectious titers were
quantified by limiting dilution titration on Vero E6 cells.
Briefly, Vero E6 cells were seeded in 96-well plates at 20,000
cells/well. The next day, SARS-CoV2-containing
supernatant was applied at serial 10-fold dilutions ranging
from 10−1 to 10−6 and, after 5 days, viral CPE was detected by
staining cell monolayers with crystal violet. Median tissue
culture infectious doses (TCID50)/ml were calculated using
the method of Reed and Muench.
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Does Famotidine Bind and Interact with the
Sigma 1 or 2 Receptors?
Sigma-1 and Sigma-2 Competition Binding Assays
Sigma-1 receptor [3H](+)-pentazocine competition curves testing the
binding of Famotidine, Cimetidine, and PB-28 (as positive control),
were performed with Expi293 cells (Thermo Fisher) overexpressing
the human sigma-1 receptor. Membranes were incubated in a 100 μL
reaction buffered with 50mM Tris (pH 8.0), with 10 nM [3H](+)-
pentazocine, 0.1% BSA, and seven concentrations (ranging from
10 μM to 0.1 nM) of the competing cold ligand. Reactions were
incubated for 2 h at 37°C and then were terminated by filtration
through a glass fiber filter using a Brandel cell harvester. Glass fiber
filters were soaked in 0.3% polyethylenimine for at least 30min at
room temperature before harvesting. All reactions were performed in
triplicate using a 96-well block. After themembraneswere transferred
to the filters and washed, the filters were soaked in 5ml Cytoscint
scintillation fluid overnight, and radioactivity was measured using a
Beckman Coulter LS 6500 scintillation counter. Data were analyzed
using GraphPad Prism software. Ki values were computed by directly
fitting the data and using the experimentally determined probe Kd to
calculate a Ki value, using the GraphPad Prism software. This process
implicitly uses a Cheng–Prusoff correction, so no secondary
correction was applied.

Sigma-2 competition curves were performed in a similar
manner, using Expi293 cells overexpressing the human sigma-
2 (TMEM97) and using [3H] DTG as the radioactive probe.

Does Famotidine Act via an Off-Target
Activity Involving a G-Coupled Protein
Receptor (GPCR) Other than the Histamine
H2 GPCR?
Human G-coupled Protein Receptor genome (GPCRome) screening
was carried out according to published procedure (Kroeze et al., 2015)
withminor modifications. In brief, HTLA cells were subcultured into
poly-L-lysine coated clear bottom 384-well white plates at a density of
6,000 cells/well in 40 ul of DMEM supplemented with 1% dialyzed
FBS for overnight, transfected with 20 ng/well Tango constructs for
24 h, received drug stimulation (10 uM final) for another 24 h.
Medium and drug solutions were removed and Bright-Glo
Reagents (Promega) were added for luminescence counting. For
concentration response assays, HTLA cells were transfected with
Tango constructs for 24 h, plated in poly-L-Lysine coated clear
bottom 384-well white plates at a density of 10,000 cells/well in
40 ul of DMEM supplemented with 1% dialyzed FBS for 6 h before
receiving drugs for overnight stimulation. Plates were then counted
as above.

Does Famotidine Act by Blocking Histamine
H2 receptor(s)?
The known on-target activity of famotidine considered the
known primary mechanism of action is as an antagonist of the
histamine H2 receptor. This hypothesis was originally rejected
due to unverified reports that clinical researchers in PRC
(Wuhan) had observed that famotidine use was associated

with protection from COVID-19 mortality, while the
histamine H2 receptor antagonist cimetidine was not. Positing
that this difference in clinical effectiveness for the two different
H2 receptor antagonists may reflect absorption, pharmacokinetic
and pharmacodistribution differences between famotidine and
cimetidine, steady state concentrations were calculated for both
drugs when administered at standard oral doses as well as the
elevated doses of famotidine which are being prescribed off-label
for outpatient clinical use to treat COVID-19 or are being used in
the ongoing inpatient clinical trial (NCT04370262), and these
were compared to the published H2 receptor IC50 for each drug.

GloSensor cAMP Assays
cAMP production was determined in transiently transfected
HEK293T cells (Stauch et al., 2019) with minor modifications.
In brief, HEK293 T cells were co-transfected with H2 and
GloSensor cAMP reporter DNA (Promega) overnight and
plated in poly-l-lysine coated clear bottom 384-well white
plate at a density of 15,000 cells/well in 40 ul of DMEM
supplemented with 1% dialyzed FBS for 6 h. Medium was
removed and cells were loaded with 3 mM luciferin in drug
buffer (20 ul/well, 1x HBSS, 20 mM HEPES, pH 7.40) for
30 min. Test compounds were prepared in the same drug
buffer supplemented with 1 mg/ml BSA and added (20 ul/well
at 2x) to cells. Luminescence was counted after 20 min and results
were analyzed in Prism 8.4.

Radioligand binding assays with human histamine receptors.
Radioligand binding assays with human H1, H2, H3, and H4

receptors were conducted according to the NIMH PDSP assay
protocol (https://pdsp.unc.edu/pdspweb/?site�assays) and
published procedures (Besnard et al., 2012).

Famotidine and Cimetidine Pharmacokinetic Analyses
Steady-state values of famotidine and cimetidine at various doses
were calculated as follows using standard pharmacokinetic
calculations. Bioavailability, and clearance values were
obtained from data reported by Lin (1991) for tablet and
capsule dosing of famotidine and cimetidine; for 60 mg
famotidine bid, kinetic data were obtained from a report by
Yeh et al. (1987). For intravenous administration of
famotidine (IV 120 mg q8 hours), kinetic values were obtained
from the famotidine New Drug Applications (NDAs 19-510/S-
029, 20-249/S-012).

Calculations: Area under the curve (AUC) determinations were
made as follows: AUC (mg h/L) � (F x Dose)/Cl; where F �
bioavailability, Cl � clearance. Steady (Css) state values were
calculated as follows: Css (μg/L) � AUC/T; where T � dosing
interval (h). Css levels were converted to μM using the molecular
weights of famotidine (337.45) and cimetidine (252.34), respectively.

Are Increased Numbers Mast Cells Present
in Lung Parenchyma of SARS-CoV-2
Infected AGM?
African green monkeys were exposed by aerosol to SARS-CoV-2
and euthanized after progression of clinical signs or at the end of
the study period (four weeks post-infection) (Blair et al., 2020).
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Sections of lung were stained with toluidine blue and digitally
scanned with a Zeiss Axio Scan.Z1 slide scanner (Carl Zeiss
Microscopy, White Plains, NY). Whole slide images were
analyzed using the digital image analysis software, HALO
Multiplex IHC v2.1.1 (Indica Labs, Albuquerque, NM). Mast
cells were quantified by the detection of metachromasia within
the cytoplasm. The positive threshold for the detection of
metachromasia was set by a veterinary pathologist using a
slide of a mast cell tumor as a positive control. Annotation
regions were drawn around the entire lung section and the
analysis was run on the annotation region. The proportion of
mast cells over the total number of cells detected were reported.

RESULTS

Analysis of the Mechanism of Action of
Famotidine
Famotidine Does Not Bind to SARS-CoV-2 Proteases
Initial testing of famotidine as a medical countermeasure for
COVID-19 emerged from a computational molecular docking
effort aimed at identifying inhibitors of the papain-like protease
(PLpro) of SARS-CoV-2 (Baez-Santos et al., 2015; Daczkowski
et al., 2017). In addition to processing the viral polyprotein, the
papain-like protease from coronaviruses (PLpro) is known to
remove the cellular substrates ubiquitin and the interferon
stimulated gene 15 (ISG15) from host cell proteins by cleaving
the C-terminal end of the consensus sequence LXGG, a process
termed deISGylation (Han et al., 2005; Mielech et al., 2014). Here,
we used the enzymatic reaction of SARS-CoV-2 PLpro on ISG15
to assess the potential inhibition of PLpro by famotidine. The
cleavage of the 8 C-terminal amino acids of ISG15 by PLpro is
clearly detected by SDS-PAGE (Figure 1, lanes 2 and 3).
However, the addition of 1–100 µM famotidine to the reaction
does not significantly reduce the amount of ISG15 cleaved during
the assay (Figure 1, lanes 4–6), thus suggesting that famotidine

does not inhibit SARS-CoV-2 PLpro. A previous virtual screening
report (Wu C. et al., 2020) suggested that famotidine might bind
to the 3 chymotrypsin-like protease (3CLpro), more commonly
referred to as the main protease (Mpro), however this mechanism
was recently discounted (Anson et al., 2020).

Famotidine Does Not Directly Inhibit SARS-CoV-2
Infection
To assess the possibility that famotidine may inhibit SARS-CoV-2
infection by other routes, a Vero E6 cell-based assaywas performed to
compare median tissue culture infectious doses (TCID50/mL) of
famotidine, remdesivir, and hydroxychloroquine (Figure 2). While
both remdesivir and hydroxychloroquine demonstrated antiviral
activity, no inhibition of SARS-CoV-2 infection was observed with
famotidine.

Human Receptors
Famotidine Does Not Act via Sigma-1 or -2 Receptor
Binding
A wide-ranging study recently presented a map of interactions
between viral and host proteins (Gordon et al., 2020). It was
shown that regulation of the sigma-1 and sigma-2 receptors had
antiviral effects. Sigma and histamine receptors share several
ligands in common, like the antipsychotic haloperidol, the
antihistamines astemizole and clemastine, the antidepressive
clomipramine, and many more. As such, we tested for possible
interaction between famotidine and sigma-1 or sigma-2 receptors
(Figure 3). We performed radioligand competition binding
experiments using cloned sigma receptors, following
established procedures (Schmidt et al., 2016;Alon et al., 2017).
In these assays, famotidine showed no detectable displacement of
radioligand probes for either sigma-1 or sigma-2 receptors at
famotidine concentrations up to 10 μM. Hence, famotidine’s
binding to sigma-1 and sigma-2 receptors is likely negligible at
physiologically relevant concentrations.

Famotidine is Selective for Receptor H2

As is well-known (Bertaccini et al., 1986), famotidine is a selective
blocker of the histamine H2 receptor with a measured affinity of
approximately 14 nM, substantially more active than the affinity
(590 nM) of cimetidine for histamine H2 receptors (Figure 4A).
As shown below, data generated demonstrate that famotidine has
highly efficacious inverse agonist activity (reducing basal activity
by 75%) with a potency of 33 nM (Figure 4C). Intriguingly, and
unlike cimetidine, while famotidine acts to block Gs protein
signaling, it actually acts as a partial agonist of arrestin
recruitment, with an efficacy of about 15% that of histamine,
and an EC50 of 105 nM (Figure 4D), suggesting that the
molecule promotes arrestin-scaffolded signaling--such as
through the ERK pathway (Alonso et al., 2015), and promotes
internalization of the receptor and further non-canonical
signaling once internalized (Irannejad and von Zastrow, 2014;
Jean-Charles et al., 2017) through an arrestin-biased mechanism.
These features distinguish famotidine certainly from cimetidine,
and potentially from other H2 blockers, as such biased activation
of arrestin recruitment for GPCR antagonists, while not
unprecedented, is not common.

FIGURE 1 |Cleavage of ISG15 C-terminal 8 amino acids by SARS-CoV-
2 PLpro purified from E. coli. ISG15 was incubated with SARS-CoV-2 PLpro
(lanes 3–6). SARS-CoV-2 PLpro was present at 4 nM, ISG15 was present at
10 µM. For lane 4 to 6, famotidine was present at 100 µM, 10 µM and
1 µM respectively. Control was without enzyme (lane 2). Proteins were
resolved by 15% SDS-PAGE and revealed by Coomassie blue staining. The
molecular weights of the marker proteins are indicated on the left of the gel.
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Famotidine May Activate Other GPCRs
A screen for famotidine activation of 318 receptors of the GPCR-ome
was performed and revealed only seven receptors with an average fold
of basal increase above 3.0, including H2 (Figure 5). In all cases, the
quadruplicate replicates were not in agreement. Excluding H2, none
of the activations were reproducible in follow-up studies.

Famotidine Reaches Functionally Relevant
Systemic Concentrations, Whereas
Cimetidine Does Not
We calculated predicted steady state concentrations of famotidine
and cimetidine at different doses based on published

pharmacokinetic and biodistribution data (Lin et al., 1987; Yeh
et al., 1987; Lin, 1991). This modeling demonstrated that the
different clinical outcomes exhibited by COVID-19 patients
taking famotidine vs. cimetidine could be readily explained by
the distinctive pharmacokinetic and pharmacodistribution
properties of the two agents.

Therapeutic efficacy of a pharmacological antagonist requires
that it achieves a steady-state concentration that substantially
exceeds the half maximal inhibitory concentration (IC50) for its
target. Thus, to evaluate the relative systemic effects of famotidine
and cimetidine, the IC50 values of each agent for the H2 receptor
were compared to the steady-state plasma concentrations (Css)
predicted at standard clinical doses. As demonstrated above,

FIGURE 2 | Famotidine does not directly inhibit SARS-CoV-2 infection. To assess the possibility that famotidine may inhibit SARS-CoV-2 infection by other routes,
a Vero E6 cell-based assay was performed to compare median tissue culture infectious doses (TCID50/mL) of famotidine, remdesivir, and hydroxychloroquine. Vero E6
cells were cultured and infected as described in methods and scored for presence or absence of infection using the surrogate of an immunohistochemical stain for cell-
associated SARS-CoV-2 NP protein as scored by imaging cytometer. Non-specific cytotoxicity (inverse of viability) was assessed using an MTT assay. As
appropriate, infected supernatants were assayed for infectious viral titer using the TCID50method. Results are displayed as% inhibition of the viral infection Vero E6 cells
as a function of tested pharmaceutical, % infected cell viability, pharmaceutical agent concentration necessary to achieve 50% or 90% replication inhibition (IC50, IC90
respectively), and pharmaceutical agent concentration required to yield 10% or 50% reduction in cell viability (CC10, CC50).

FIGURE 3 |Competition binding curves of Famotidine (blue circles), Cimetidine (red squares), andPB-28 (green triangle), a potent sigma receptor ligand as positive control. (A)
[3H](+)-pentazocine competition curves in Expi293 membranes expressing sigma-1. (B) [3H]DTG competition curves in Expi293 membranes expressing sigma-2 (TMEM97).
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FIGURE 4 | Famotidine and cimetidine activity on histamine receptors. Experiments performed in duplicate. (A) Competitive binding dose-response curves for
famotidine and cimetidine on four histamine receptors with reference compounds. (B) The partial agonist, famotidine, shows antagonist activity of H2 in the presence of
potent endogenous agonist, histamine. (C) Inverse agonism of famotidine and cimetidine on H2, whereas histamine stimulated cAMP production by 20-fold of basal
(N � 2). (D) Arrestin recruitment by famotidine (left) and cimetidine (right) upon interaction with histamine receptors.
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famotidine binds to H2 with a concentration of inhibitor at which
(under saturating substrate conditions) the reaction rate is half of
the maximum reaction rate Vmax (ergo Ki) of 14 nM, whereas
cimetidine binds to H2 with Ki 586 nM. Previous reports suggest
functional IC50s are approximately 3x higher, and these data were
used for the current analyses (Lin et al., 1987; Lin, 1991). In these
reports, the total concentration of inhibitor required to reach 50%
inhibition (IC50) for the H2 receptor were reported as 13 μg/L
(0.039 μM) for famotidine and 400–780 μg/L (1.59–3.09 μM) for
cimetidine. Steady state concentration (Css) values were
calculated using pharmacokinetic data for dosing, clearance,
bioavailability, and volume of distribution as summarized
previously (Lin, 1991). Table 1 lists the Css values for both
famotidine and cimetidine.

In primary human neutrophils and eosinophils, H2 activation
by histamine inhibits neutrophil effector functions including O2-
release (Gespach and Abita, 1982; Burde et al., 1989), platelet-
activating-factor induced chemotaxis (Rabier et al., 1989) and
leukotriene biosynthesis (Flamand et al., 2004). Eosinophil
functions are also inhibited by H2 activation; histamine
binding diminishes eosinophil peroxidase release (Ezeamuzie
and Philips, 2000) and, at high concentrations, inhibits
eosinophil chemotaxis (Clark et al., 1975; Wadee et al., 1980).
Famotidine is one of the most effective antagonists of these H2-
mediated histamine effects on neutrophils and eosinophils (Reher
et al., 2012). IC50 for two measures that relate to these phenotypes
are also listed in Table 1. Mast cells express histamine H2 and H4

receptors, and histamine-induced increase of cAMP in mast cells
is inhibited by famotidine (Lippert et al., 2004). 10 μM famotidine
pre-incubation blocks histamine-induced cAMP increase in
human skin mast cells, however, the IC50 for this effect has
not been determined (Lippert et al., 2004).

At all dosing regimens, the Css for famotidine exceeds the
general IC50 value for the H2 receptor, and at the twice daily
(b.i.d.) and thrice daily (t.i.d.) dosing of 20 and 40 mg, the Css for
unbound famotidine is 2-5 fold greater than the H2 IC50. Also
calculated and summarized is the Css for the intravenous dosage
currently being administered in clinical trial NCT04370262 and
that dose exceeds famotidine IC50 by greater than 20-fold. In
contrast, unbound cimetidine levels at standard doses of 200 or
300 mg daily (q.d.), achieve a Css that is a fraction of the reported
IC50 range of 400–780 μg/l.

Comparative Analysis of Mast Cell Density
in Lung Parenchyma of SARS-CoV-2
Infected African Green Macaques
Images and data summarizing studies of infiltration of mast cells
into the pulmonary parenchyma of SARS-CoV-2 African Green
monkeys (AGMs) are summarized in Figure 6. As shown in
Panel A (20x magnification), in naïve AGM lung parenchyma,
mast cells (arrow) are rarely observed within alveolar
interstitium. Panels B and C (20x), increased numbers of mast
cells (arrows) are seen within the interstitium of SARS-CoV-2
infected AGMs that both developed mild (B) and severe
pneumonia (C). Panel D summarizes the proportion of total
cells that are mast cells is elevated in all lobes of SARS-CoV-2
infected AGMs in comparison to naïve control tissue.

Case History, Severe COVID-19 Outpatient
Treatment With Famotidine
Patient JM is a 47 year old male who received PCR diagnosis of
COVID-19 after 8 days of complaints of diarrhea, abdominal
cramping, eructation, low energy, dry cough, arthralgia, myalgia,
anosmia and ageusia. The patient has a history of hypertension
(10 years), Type II diabetes (4 years), hypercholesterolemia
(3 years) and gout (10 years). Current medications included
Metformin, Allopurinol, Lisinopril, and Atorvastatin. He is
employed as a hospital maintenance worker in the hospital to
which he presented.

Contact tracing revealed that his son (same household) had
developed COVID-19 symptoms 12 days prior. Receipt on day 8
of positive PCR diagnosis (from a prior outpatient intranasal
swab sample) coincided with onset of fever (102oF), night sweats,
shortness of breath and a feeling of chest pressure. Famotidine
(“PEPCID AC ®” 60 mg p.o. t.i.d. � 2.24 mg/ft2 t.i.d) was initiated
upon receiving the PCR diagnosis due to symptoms meeting FDA
criteria for severe COVID-19, combined with high-risk pre-
existing conditions. The famotidine drug regime was
continued for 30 days. After initiating famotidine in the
evening, the patient was able to sleep through the night and
reported complete relief from the chest pressure sensation,
reduction in cough, but continued to be febrile (101.6°F).

On day 10, he presented to the emergency room (ER) with
continuing complaints of diarrhea, abdominal cramping,
eructation, low energy, dry cough, arthralgia, myalgia, anosmia
and ageusia and shortness of breath on exertion. Day 10ER physical
examination, including the chest, was unremarkable and vital signs

FIGURE 5 | Screen for activation of 318 receptors of the GPCR-ome. To
test whether famotidine may act via other G-coupled protein receptors (GPCRs)
in addition to its activity as an inverse agonist for the histamine H2 receptor, a
screening assay method was applied to detect potential agonist activity of
famotidine (10microM final) when interacting with each of the 318 known human
GPCRs. Prior surveys with other pharmaceuticals have defined the baseline for
non-specific signal in this assay at 3x greater than the corresponding basal
signal. GPCRs meeting the screening criteria of >3x baseline are listed. None of
these screening signals were verified in follow up studies, yielding the conclusion
that famotidine has no agonist activity for other human GPCRs.
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were normal. The patient body mass index (BMI) was 36 (Du Bois
BSA 26.78 ft2). SpO2 was 93%, rising to 97 and 99% on 3 L/min by
nasal cannula over the next 30 min. An intranasal sample was
obtained for SARS-CoV-2 rtPCR diagnostic analysis.
Comprehensive metabolic panel showed a mild decrease in
serum sodium and chloride with hyperglycemia (260mg/dl).
Complete blood count (CBC) was normal, specifically including
the lymphocyte count. Urinalysis showed a specific gravity of 1.025
but was otherwise normal. A portable chest X-ray had poor
inspiration but was interpreted as showing “bibasilar areas of
airspace disease” consistent with COVID-19 (Figure 7, chest
x-ray [CXR] day 10). The patient was diagnosed as dehydrated,
given ondansetron IV, 1 L IV of normal saline and discharged home
with a hospital pulse oximeter. At the time of departure, he had an
SpO2 of 94% on room air that did not drop with ambulation.

The patient again presented to the emergency room on day 15
after experiencing near-syncope during showering. Physical
examination was unremarkable. Vital signs were normal. SpO2
showed values of 98, 93, and 97% on room air over the 2 h period.
Basic metabolic panel showed only hyperglycemia (266 mg/dl).
CBC was normal except for a mild lymphopenia (0.96; reference
range 1.00–3.00 × 103/μL) and mild monocytosis (0.87; 0.20–0.80
× 103/μL). Chest X-ray was interpreted as showing “Faint patchy
consolidation of lung bases bilaterally, similar to perhaps
minimally improved at the lower left lung base compared to

prior” (Figure 6 CXR day 15). The patient was placed on
azithromycin and discharged to home.

On days 27 and 28 after initial symptoms, he tested negative
(2x, successive days) for SARS-CoV-2 nucleic acid by PCR
(intranasal swab) and returned to his work at the local
hospital 31 days after initial symptoms. 47 days after first
developing COVID-19 symptoms he continues to note a lack
of ability to taste or smell, but otherwise considers himself largely
recovered from COVID-19 (Figure 7 timeline).

Use of famotidine in this patient was recommended due to
meeting FDA criteria for severe COVID-19 and his COVID-19
risk factors: male, 47yo, hypertension, obesity (Divoux et al.,
2012) and diabetes mellitus Type 2. Although this is an anecdotal
example, the patient experienced relief of symptoms overnight
upon initiating use of famotidine. While not sufficient to
demonstrate proof of cause and effect, this case does provide
context for typical COVID-19 presentation and symptoms, as
well as support for additional well-controlled famotidine
therapeutic clinical trials in an outpatient setting.

DISCUSSION

Famotidine is an off-patent drug available as either branded
(“PEPCID®”) or generic medicines in tablet, capsule or

TABLE 1 | Steady-state concentrations (Css) of Famotidine and Cimetidine at standard doses compared to the half maximal inhibitory concentration (IC50) value of
Famotidine or Cimetidine for histamine H2 receptor antagonism.

IC50 or Css Concentration (mass/volume) Concentration (molarity)

Famotidine
IC50 Histamine H2 13 μg/l 0.039 μM
IC50 Neutrophil H2 O2- assay 67 μg/l 0.201 μM
IC50 Neutrophil H2 cAMP assay 8 μg/l 0.024 μM
IC50 Eosinophil H2 cAMP assay 53.6 μg/l 0.158 μM

IC50 Mast Cell H2 cAMP
increase

Not determined

Total Concentration (mass/
volume)

Total Concentration (mass/
volume)

Free drug Concentrationc

(mass/volume)
Free drug Concentrationc

(molarity)

Css (20 mg tablet p.o. q.d.) 17.7 μg/ 0.053 μM 14.2 μg/l 0.042 μM
Css (20 mg capsule
p.o. q.d.)

18.4 μg/l 0.055 μM 14.7 μg/l 0.044 μM

Css (20 mg tablet p.o. b.i.d.) 35.4 μg/l 0.105 μM 28.3 μg/l 0.084 μM
Css (20 mg capsule
p.o. b.i.d.)

36.8 μg/l 0.109 μM 29.4 μg/l 0.087 μM

Css (20 mg tablet p.o. t.i.d.) 53.1 μg/l 0.157 μM 42.5 μg/l 0.126 μM
Css (20 mg capsule
p.o. t.i.d.)

55.3 μg/l 0.164 μM 44.2 μg/l 0.131 μM

Css (40 mg tablet p.o. t.i.d.)a 55.4 μg/l 0.164 μM 44.3 μg/l 0.131 μM
Css (40 mg tablet p.o.
t.i.d.)b

80.8 μg/l 0.239 μM 64.6 μg/l 0.192 μM

Css (60 mg tablet p.o. t.i.d.) 144.3 μg/l 0.425 μM 115.4 μg/l 0.340 μM
Css (120 mg IV every 8 h) 1,290 μg/l 1.092 μM 1,032 μg/l 0.874 μM
Cimetidine
IC50 Histamine H2 400–780 μg/l 1.59–3.09 μM
Css (200 mg tablet p.o. q.d.) 175 μg/l 0.69 μM 140 μg/l 0.055 μM
Css (300 mg tablet p.o. q.d.) 226 μg/l 0.90 μM 180.1 μg/l 0.720 μM
aCalculated using pK data reported by Lin et al. (1987).
bCalculated using pK data reported by Yeh et al. (1987).
cBoth famotidine and cimetidine are approximately 20% protein bound in systemic circulation (Somogyi and Gugler, 1983; Echizen and Ishizaki, 1991).
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intravenous forms. The general pharmacology of famotidine is well-
characterized, with an excellent absorption, distribution,
metabolism, excretion and toxicology profile (FDA, 1986).
Famotidine is unique among the drugs currently being tested for
treatment of COVID-19, in that it is an H2 receptor antagonist (and
inverse agonist). Famotidine is currently being tested for treating
COVID-19 in a double blind randomized clinical trial at high
intravenous doses in combination with either hydroxychloroquine
or remdesivir (ClinicalTrials.gov Identifier: NCT04370262). A
retrospective cohort study of 1,620 hospitalized COVID-19
patients indicates that 84 propensity score matched patients
receiving famotidine during hospitalization (oral or IV, 20 mg or
40mg daily) had a statistically significant reduced risk for death or
intubation (adjusted hazard ratio (aHR) 0.42, 95%CI 0.21–0.85) and
also a reduced risk for death alone (aHR 0.30, 95% CI 0.11–0.80)
(Freedberg et al., 2020). Subsequent famotidine/COVID-19
retrospective data analysis reports have been less clear, ranging
from reporting no effect (Cheung et al., 2020; Shoaibi et al., 2020;
Yeramaneni et al., 2020) to various levels of protective effect (Mather
et al., 2020). To the extent that these retrospective studies report

famotidine dosage levels, in all cases the dosages are either
unreported (Cheung et al., 2020) or predominantly standard
dosing for relief of gastro-esophageal reflux disease (GERD). No
retrospective studies involving high dose famotidine (60–80mg oral
3–4 times per day) have been reported to date. Anecdotal reports
and undisclosed data indicating that famotidine provided protection
from COVID-19 mortality while neither cimetidine nor proton
pump inhibitors were similarly protective lead to an initial
inference that the beneficial effects of famotidine were not related
to the known on-target activity of the drug (Borrell, 2020). Studies
detailed in this report and others, however, indicate that famotidine
does not act by directly inhibiting either of the principal SARS-CoV-
2 proteases (PLpro orMpro) (Anson et al., 2020). Vero E6-based cell
assays also indicate that famotidine has no direct antiviral activity in
this cell line, although antiviral activity in cells that express H2 has
not been tested. Additional hypotheses that famotidine may act via
binding either the sigma-1 or -2 receptors have not been supported
by the studies summarized herein.

The most straightforward explanation of the apparent
famotidine activity as a COVID-19 therapy is that the drug

FIGURE 6 | Infiltration of mast cells into the pulmonary parenchyma of SARS-CoV-2 infected African Green monkeys (AGMs). 20× magnification. Toluidine blue
stain. RA: right anterior; RM: right middle; RI: right intermediate; RL: right lower; LL: left lower.
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acts via its antagonism or inverse-agonism of histamine signaling
and via its arrestin biased activation—all a result of famotidine
binding to histamine receptor H2. If true, then it is reasonable to
infer that a SARS-CoV-2 infection that results in COVID-19 is at
least partially mediated by pathologic histamine release. The
anecdotal lack of protection provided by oral administration of
the H2 antagonist cimetidine can be accounted for by insufficient
systemic drug levels after oral administration and does not
contradict potential benefit provided by famotidine H2 binding.
Intravenous cimetidine at sufficient doses may achieve levels high
enough for clinical benefit and would further support this
hypothesis. Failure to achieve clinical COVID-19 responses
with cimetidine may indicate that inverse agonism or other
GPCR-mediated effects of famotidine may play an important
role in the (preliminary) observed clinical benefits. Analysis of
famotidine activity in histamine receptor competition assays
indicate that, over the range of clinical steady state famotidine
drug levels being tested, famotidine is specific for H2. Therefore,
off-target antagonism of histamineH1 receptor, H3 receptor, or H4

receptor is unlikely to contribute to famotidine-mediated effects.

Steady state famotidine concentrations sufficient to elicit H2

antagonism (and inverse agonism) are readily achieved using
inexpensive oral tablets and safe dosage levels. As summarized
above, the famotidine dosage employed in the retrospective
hospital studies currently available which examine famotidine
effects on COVID-19 outcomes appears to be levels (20–40 mg
daily) which are unlikely to fully inhibit histamine-mediated
systemic effects at the H2 receptor (Freedberg et al., 2020). In
contrast, study NCT04370262 administers intravascular
famotidine doses that are more than 20-fold greater than the
IC50 for antagonism of H2. Other prospective randomized clinical
studies involving high dose famotidine for treating COVID-19
are in progress [Samimagham et al. (2020), NCT NCT04504240].
The data presented herein provides a rationale for famotidine
dose selection to maintain a steady state concentration at a
reasonable multiple of the IC50 for systemic antagonism of H2

and indicate that oral tablet dosages of between 40 mg every 8 h to
80 mg every 8 h should be sufficient to insure maximal H2 target
effects. As famotidine is primarily cleared by the kidney, adequate
renal function is required for higher dosages (FDA, 1986).

FIGURE 7 | ase Study JM: CXR and Timeline. Famotidine (60 mg PO tid) was started on Day 8 from start of symptoms. It was continued for 30 days. The anosmia
and ageusia are still present at Day 50.
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In addition to H2 antagonism, famotidine may also act as an
inverse agonist thereby lowering the concentration of cyclic-
Adenosine Monophosphate (c-AMP) (Alonso et al., 2015).
Endothelial cell permeability has been attributed to histamine
H2 activation and is blunted by famotidine pretreatment (Luo
et al., 2013). Histamine, bradykinin and des-arg-bradykinin
receptor engagements can lead to increased endothelial
permeability through a common pathway that results in AKT-
1 activation (Di Lorenzo et al., 2009). The H2 receptor also signals
through Gq/11 proteins, resulting in inositol phosphate
formation and increases in cytosolic Ca2+ concentrations
which may account for the increased endothelial cell fluid
permeability (Panula et al., 2015).

One alternative hypothesis is that famotidine may not only
inhibit signaling through the H2 receptor but may also engage in
cross talk with the kinin B1 receptor, which moderates the
response of endothelial cells to DABK and DAKD ligands.
Data provided here in are not consistent with this hypothesis;
no activation of bradykinin receptor B1 or B2 were observed in
quadruplicate replicate TANGO assay.

Another alternative hypothesis is that famotidine is active in
mitigating the effects of neutrophil sensitivity to activation
yielding extracellular traps (Radermecker et al., 2020). At
autopsy, the microvascular thrombi of COVID-19 demonstrate
large number of neutrophils, and it has now been shown that
overshooting, global neutrophil activation is present in severe and
critical.

COVID-19 (Nicolai et al., 2020; Radermecker et al., 2020).
Hyperactivated neutrophils and enhanced neutrophil
extracellular traps (NETS) function in the NET-like structures
subsequently identified in pulmonary, kidney, and heart
specimens. Reactive Oxygen species are important for
NETosis, and these effects are at least partially mitigated by
histamine H2 blockers including famotidine and cimetidine
(Mikawa et al., 1999). Previous pharmacological studies of
famotidine have shown a dose dependent attenuation of
intracellular calcium concentrations in neutrophils and at high
doses that reactive oxygen species are attenuated [see Tomera and
Kittah (2020b) for further details]. This would explain the clinical
observations that elevated D-dimers and pulmonary emboli
become responsive to standard anticoagulation therapy when
given HD famotidine (Tomera and Kittah, 2020a; Radermecker
et al., 2020).

While COVID-19 symptoms affect multiple organ systems,
respiratory failure due to acute respiratory distress syndrome
(ARDS) is the most common cause of death. Examination of
RNA expression profiles of the cells which contribute to lung
anatomy and function demonstrate the presence of multiple
ACE2/TMPRSS2 positive cell types susceptible to SARS-CoV-2
infection in the lung. In addition, these and other associated lung
cells that are positive for histamine receptors H1 and H2 could
respond to local histamine release following mast cell
degranulation (Krystel-Whittemore et al., 2015), and therefore
those cells positive for H2may be responsive to famotidine effects.

To understand how famotidine may act to reduce pulmonary
COVID-19 symptoms requires an understanding of COVID-19
lung pathophysiology, which appears to have two principal

disease phases. In turn, this requires an appreciation of
pulmonary tissue and cell types. Pulmonary edema results
from loss of a regulation of fluid transfer that occurs at several
levels in the alveolus, as diagrammed in Figure 8. In the capillary
wall, there are the glycocalyx, the endothelial cell with associated
tight junctions, and the basement membrane. In the epithelium
there is a surfactant layer on the alveolar lining fluid,
manufactured and secreted by the Type II pneumocyte, and
the Type I pneumocyte itself with its tight junctions and
negatively charged basement membrane which restricts
albumin. The pulmonary pericytes located in the terminal
conducting airway region play a critical role in synthesizing
the endothelial basement membrane and regulating blood flow
in the precapillary arteriole, the capillary and the postcapillary
venule. Disruption of any of these cells or layers can lead to
edema. This edema fluid may be a transudate in milder
dysfunctions or an exudate when inflammation or necrosis
develop. Two possible pathologies that could result in edema
of the alveolar wall and space include infection of cells by SARS-
CoV-2 and mast cell degranulation with release of hundreds of
compounds that can impact on cellular and basement membrane
functions, glycocalyx and tight junction integrity. These
compounds include histamine, bradykinin, heparin, tryptase
and cytokines.

Gene expression patterns of these pulmonary cells provide
insight into which cells are likely to be infected, and which express
the H2 receptor that could be directly impacted by famotidine
treatment and resulting H2 antagonism or inverse agonism
(Figure 9). These patterns suggest that epithelial cells and
endothelial cells are more likely to be infected based on ACE2
and TMPRSS2 expression patterns in those cell types. The cells
most likely to show a famotidine effect include Type 2
pneumocytes, smooth muscle cells, pericytes, and myeloid
granulocytes (which includes mast cells, neutrophils and
eosinophils).

The limited tissue pathology available from early COVID-19
cases seems to support both viral infection as well as histamine
effects in the lung. In a singular study of early COVID-19, Sufang
Tian et al. (2020b) describe the viral lung pathology of early
COVID-19 in tissue resected for cancer. Their photomicrographs
show two different patterns of disease. As shown in Figure 9
panel B, some samples of this lung tissue demonstrate the usual
mononuclear inflammatory pattern of interstitial pneumonitis
and fibrinous exudate that one would associate with a viral
infection. It is striking that no neutrophils or eosinophils are
observed in the inflammatory infiltrate. One explanation is that
H2 activation of neutrophils inhibits neutrophil effector
functions including O2- release (Gespach and Abita, 1982;
Burde et al., 1989), platelet-activating-factor induced
chemotaxis (Rabier et al., 1989) and leukotriene biosynthesis
(Flamand et al., 2004). Eosinophil functions are also inhibited by
H2 activation; histamine binding diminishes eosinophil
peroxidase release (Ezeamuzie and Philips, 2000) and, at high
concentrations, inhibits eosinophil chemotaxis (Clark et al., 1975;
Wadee et al., 1980).

The reports of Tian et al. (2020b) and Zeng et al. (2020) also
include images in which there is interstitial and alveolar edema
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while the alveolar septae retain normal architecture (Figure 10
panel A). This is not a pattern typically observed in viral infection,
as there is no inflammation, and the fluid appears to be a
transudate. It is consistent with dysregulation of the fluid
barrier due to the effect of histamine or other mast cell
products on endothelial cells, pericytes or Type II
pneumocytes. Increased endothelial permeability due to
histamine is driven by H1 receptor activation, and so if any
potential famotidine treatment effect on these cells occurs it
would most likely be indirect by inhibition of mast cell
degranulation. Forskolin activates the enzyme adenylyl cyclase
and increases intracellular levels of cAMP, and can be used to
inhibit the release of histamine from human basophils and mast
cells (Marone et al., 1986). Histamine may act as an autocrine
regulator of mast cell cytokine and TNF-a release in a PGE2-
dependent fashion. Based on in vitro studies, this autocrine
feedback appears to be mediated by H2 and H3. Endothelial

cells are also susceptible to infection by SARS-CoV-2. Mast cell
degranulation-related pulmonary edema could correlate with the
early phase silent hypoxia and the high compliance non-ARDS
ventilation pattern associated with shortness of breath (Couzin-
Frankel, 2020). The image in Figure 10 panel B does not permit
evaluation for microvascular thrombi.

Eighty four year old female undergoing right middle lobe (RML)
resection for adenocarcinoma. On Day 6 of hospitalization a CT
scan showed a ground glass opacity (GGO) in the RML in addition
to the tumor mass. Lobectomy was performed on Day 12. On Day
13 (Day 1 post-operation), CT scan showed bilateral bibasilar GGO.
On Day 16, she developed typical COVID-19 symptoms with
cough, dyspnea and chest tightness. Capillary O2 saturation
ranged from 77–88%. Death ensued on Day 29. SARS-CoV-2
was confirmed by nasal swab (Tian et al., 2020b)

Panel A (RML): There is extensive pulmonary edema
consistent with a transudate (open black stars). Alveolar septae

FIGURE 8 | Lung alveolus cell interactions and gas exchange. Schematic diagram illustrating relevant cellular and tissue microanatomy of the pulmonary alveolus.
Pulmonary edema results from loss of a regulation of fluid transfer that occurs at several levels in the alveolus, including disrupted capillary wall components, surfactant,
Type I and II pneumocytes, as well as the pulmonary pericytes which are a histamine-responsive contractile cell which both synthesize the endothelial basement
membrane and regulate blood flow in the precapillary arteriole, the capillary and the postcapillary venule via contraction and relaxation response to histamine and
other signaling molecules.

FIGURE 9 | Human single cell lung gene expression normalized to transcripts per million (TPM) from LunGENS web portal (Du et al., 2015). Single cell lung gene
expression patterns from the Dropseq PND1 experiment for angiotensin-converting enzyme 2 (ACE2: black), transmembrane protease, serine 2 (TMPRSS2; orange),
and histamine receptors H1 (blue), H2 (green), and H4 (yellow).

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 63368013

Malone et al. Famotidine Mechanism in COVID-19

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


appear normal and there is no inflammation (open blue arrows).
Features are not suggestive of an infection.

Panel B (RML): There is fibrinous exudate in the alveolar
spaces (open red stars). Alveolar septae show edema and a
mononuclear infiltrate (solid black arrows). No neutrophils are
identified. There is no significant diffuse alveolar damage of
ARDS. Features are typical of an interstitial viral pneumonia.

These findings are supported in a separate autopsy case report
of a patient dying 5 days after onset of COVID-19 symptoms. In
this case, photomicrographs also show a non-inflammatory
transudative-type edema (Schweitzer et al., 2020). In both of
these studies, the observed non-inflammatory edema in early
stage COVID-19 pulmonary disease is consistent with histamine
release by mast cells.

Mast cell degranulation correlates with the COVID-19 natural
history that progresses through functionally and clinically
different early and later phases. Most SARS-CoV-2 infections
follow the typical early phase pattern of any lower respiratory
virus, in which a majority of patients have asymptomatic or
minimal disease, while a minority go on to later phase acute
respiratory distress syndrome (ARDS). Within this spectrum
typical of any severe viral disease, COVID-19 has a number of
distinctive features. In the out-patient setting, early COVID-19 is
usually indistinguishable from other “influenza-like illnesses”,
presenting with various non-specific symptoms ranging from
sore throat, headache and diarrhea to fever, cough, and myalgias.
In these first few days however, COVID-2 may also be associated
with anosmia, a unique feature (Eliezer et al., 2020). It is toward
the end of the first week of symptoms that COVID-19 patients
develop shortness of breath (SOB). This follows cough and fever
by several days, a feature not typical of other viruses (Cohen et al.,
2020). On physical examination of COVID-19 patients with SOB,
the oxygen saturation drops dramatically on exertion. CT scan
will usually show bilateral bibasilar ground glass opacifications
consistent with pulmonary edema. Nasopharyngeal swabs test
positive for SARS-CoV-19. This SOB correlates with a distinctive
clinical phenotype of hypoxia with near normal compliance
(i.e., >50 mLcmH2O). Some authors attribute this to a loss of
pulmonary vasoconstriction, one cause of which could be
histamine effect on the H2 receptors of pericytes and/or
vascular smooth muscle. H1-related edema and
microthrombosis of lung vessels could also be causes. These

are the patients that PEEP ventilation will not help, as there
are no recruitable alveoli. These patients are helped by lying
prone (Gattinoni et al., 2020). It is at this stage that the patient is
at greatest risk to progress onto the serious complications of later
disease, especially ARDS with its 60–80% mortality if ventilation
is required. Patients may also present with additional
neurological symptoms and complications including ischemic
stroke (Filatov et al., 2020; Mao et al., 2020; Qureshi et al., 2020).
Cardiac complications of later COVID-19 include myocarditis,
acute myocardial infarction, heart failure, dysrhythmias, and
venous thromboembolic events (Long et al., 2020; Mahmud
et al., 2020).

Multiple studies have demonstrated a hypercoagulable state in
COVID-19 patients requiring hospitalization. Results from a
recent large autopsy study suggests that there is also a novel
lung-centric coagulopathy that manifests as a small vessel
microthrombosis. Based on this study, there are indications
that over 50% of patients dying of COVID-19 have pulmonary
microthrombosis (Carsana et al., 2020). This thrombosis is not
only in arterial vessels, but also can be found in alveolar capillaries
in the absence of inflammation and ARDS, as seen in Figure 11
(Magro et al., 2020).

Capillary wall disruption accompanied by fibrin deposition
and red cell extravasation, with neutrophils in the septa and
within the alveolar spaces (Hematoxylin and eosin, 1000×). For
further discussion of microvascular coagulation associated with
COVID-19, see (Magro et al., 2020).

Because small microthrombi are difficult to identify on CT scan
even with iodinated contrast (Oudkerk et al., 2020), pre-mortem
diagnosis is difficult. Laboratory coagulation tests have typically
shown normal or mildly prolonged Prothrombin time (PT) and
activated partial thromboplastin time (aPTT), normal to increased
or slightly decreased platelet counts, elevated fibrinogen levels and
very elevated D-dimers (Panigada et al., 2020). Although referred
to by some authors as a DIC-like state, this pulmonary
microthrombosis does not appear as a typical coagulation
factor consumptive bleeding condition typical of overt DIC, but
instead more closely resembles hypercoagulable thrombosis. This
coagulopathy appears to be a core pathophysiology of COVID-19
as rising D-dimer levels, correlate with a poor prognosis, as do
rising levels of IL-6 and CRP. IL-6 levels have been correlated to
fibrinogen levels in one study, possibly through the acute phase

FIGURE 10 | Lung pathology of early COVID-19. Early COVID-19 pulmonary histopathology, illustrating an atypical viral pathology pattern of interstitial and alveolar
edema together with alveolar septae which retain normal architecture. Atypical for viral pneumonia, this resection from early in the course of COVID-19 disease lacks
inflammation, and the accumulated fluid appears to be a transudate.
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reactant response (Ranucci et al., 2020). The pathogenesis of
microthrombosis of the lung in COVID-19 is not known.
There are multiple working hypotheses concerning this finding
currently being assessed (Ackermann et al., 2020). Damage to the
vascular endothelial glycocalyx can be caused by TNF-α, ischemia

and bacterial lipopolysaccharide. As well, activated mast cells
release cytokines, proteases, histamine, and heparinase, which
degrade the glycocalyx (Alphonsus and Rodseth, 2014) and
may thereby contribute to microthrombosis. Disruption of the
glycocalyx exposes endothelial cell adhesion molecules, triggering
further inflammation, rolling and adhesion of white blood cells
and platelets (Becker et al., 2010). Glycocalyx components
measured in serum positively correlate with increased mortality
in septic patients (Nelson et al., 2008). Other causes of
hypercoagulability include direct damage to ACE2 positive
endothelial cells by viral invasion or secondary damage from
the inflammatory response to the infection. Mast cells release
heparin which activates the contact system, producing plasmin
and bradykinin. Plasmin activation could account for the singular
rise in D-dimer levels. Activation of platelets also seems likely as
part of the thrombo-inflammatory response but their precise role
in thrombus formation remains to be elucidated (Jackson et al.,
2019). A more complete understanding awaits further study.

In addition to the usual features of a viral infection, early
COVID-19 often presents with anosmia, ageusia, skin rashes
including pruritis and urticaria, neuropsychiatric symptoms
(including altered dream states), and silent hypoxia. These
symptoms are all consistent with histamine signaling.
Anosmia, ageusia, and other symptoms relating to cachexia
are often reported in both COVID-19 and mast cell
degranulation syndrome, and the potential role of histamine
signaling in driving the pathophysiology of cachexia has been

FIGURE 11 | Micro-thrombosis in the pulmonary microvasculature in
COVID-19 at autopsy (Magro et al., 2020). There is widening of the alveolar
septae by extensive fibrinous occlusion of capillaries (open black arrows).
There is alveolar space edema with red blood cell extravasation. Septae
show a mild mononuclear infiltrate. Alveolar edema shows neutrophils in
proportion to the blood.

FIGURE 12 | The Natural History of COVID-19. Modified from Oudkerk et al. (2020).
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reviewed (Becker et al., 2012; Zwickl et al., 2019). As summarized
in Figure 12, the distinctive later findings of abnormal
coagulation, involvement of other organ systems and ARDS
occur in the second week after the appearance of symptoms.
This is coincidental with a rising immunoglobulin response to
SARS-CoV-2 antigens. For a subset of patients, disease progress
may suddenly worsen at days 7–10, and this correlates with the
onset of SARS-CoV-2 spike protein neutralizing antibody titers
(Suthar et al., 2020). In this study, it was shown that IgG starts to
rise within 4 days post-symptoms, inconsistent with a first
antigenic exposure (Suthar et al., 2020). Rapid onset of specific
neutralizing antibody responses beginning less than seven days
after exposure to SARS-CoV-2 implies a recall rather than
primary B cell response, and therefore the response is being
driven by a pre-existing memory cell population. SARS-CoV-2-
reactive CD4+ T cells have been detected in ∼40–60% of
unexposed individuals, suggesting cross-reactive T cell
recognition between circulating ‘common cold’ coronaviruses
and SARS-CoV-2 (Grifoni et al., 2020). These memory cells
may have been educated by prior exposure to another
coronavirus (e.g. circulating alphanumeric coronaviruses),
raising concerns that this second phase of COVID-19 disease
progression could share an immunologic basis with Dengue
hemorrhagic fever (Mongkolsapaya et al., 2003). If pre-existing
cross-reactive IgE “common cold” antibodies and/or associated
memory B cell populations are also present, this may help
account for or otherwise exacerbate dysfunctional mast cell
degranulation. Antibodies produced from this early rapid
humoral response may also drive further mast cell
degranulation. During this phase rising D-dimer levels
correlate with poor prognosis, as do measured levels of CRP
and IL-6.

Current reviews seek to explain COVID-19 clinical and
pathologic findings based on standard models of antiviral
innate and adaptive immune responses which do not consider
the potential role of mast cell activation and degranulation.
Reviews emphasize the inflammatory cell response cascade
associated with monocytes, macrophages (Merad and Martin,
2020), and adaptive T and B cell helper and effector responses
(Vabret et al., 2020). These types of immune responses are also
invoked to explain the novel microvascular pulmonary
intravascular coagulopathy associated with COVID-19
(McGonagle et al., 2020).

We propose an alternative paradigm; SARS-CoV-2 infection-
induced mast cell activation could account for some of the core
pathologic cascade and much of the unusual symptomatology
associated with COVID-19 (Kritas et al., 2019). Many of the
unique clinical symptoms observed during the early phase of
COVID-19 are consistent with known effects of histamine release
(Conti et al., 2020). Histamine may act as an autocrine regulator
of mast cell cytokine and TNF-a release in a PGE2-dependent
fashion and based on in vitro studies the autocrine feedback
appears to be mediated by H2 and H3 (Bissonnette, 1996). This
model is consistent with the histopathologic findings seen at
surgery, autopsies, and is supported by clinical pharmacologic
findings suggesting potential benefits of histamine H2 receptor
blockade using famotidine. This model is also supported by the
significant overlap in the clinical signs and symptoms of the initial
phase of COVID-19 disease and those of mast cell activation
syndrome (MCAS) (Afrin et al., 2020; Butterfield, 2020; Weiler,
2020; Weinstock et al., 2020) as well similarities to Dengue
hemorrhagic fever and shock syndrome (including T cell
depletion) during the later phase of COVID-19
(Mongkolsapaya et al., 2003; Guzman and Harris, 2015;

TABLE 2 | Summary of multiple working hypotheses tested

Hypothesis Testing approach Outcome

Does Famotidine act by binding or otherwise inhibiting SARS-CoV-
2 Pl-Pro?

Direct PL-pro binding assay Reject hypothesis

Does Famotidine act by binding or otherwise inhibiting SARS-CoV-
2 M-Pro?

Literature review, prior studies Reject hypothesis

Does Famotidine directly inhibit SARS-CoV-2 infection or
replication in Vero cells?

TCID-50 viral inhibition assay Reject hypothesis

Does Famotidine act via binding to Sigma 1 or 2 receptors Sigma-1 and sigma-2
competition binding assays

Reject hypothesis

Is Famotidine selective for histamine H2 GPCR? Does Famotidine
act via an off-target activity involving a G-coupled protein receptor
(GPCR) other than the histamine H2 GPCR?

GPCRome screening Reject hypothesis

Is Famotidine selective for histamine H2 GPCR? Does Famotidine
act by blocking (antagonist or inverse agonist) histamine H1, H2,
H3 or H4 GPCR receptor(s)?

GloSensor cAMP assays Reject hypothesis for histamine H1 GPCR
Accept hypothesis for histamine H2 GPCR
Reject hypothesis for histamine H3 GPCR
Reject hypothesis for histamine H4 GPCR

Does reported lack of beneficial clinical COVID-19 activity of
histamine H2 blocking agent Cimetidine at standard GERD doses
refute histamine H2 receptor MOA for Famotidine?

Comparative pharmacokinetic
analysis

Reject hypothesis. GERD dose of Cimetidine does not provide
sufficient systemic blood and tissue levels to block known tissue H2
receptor targets

Does standard GERD dose famotidine achieve sufficient systemic
drug levels for beneficial clinical COVID-19 activity?

Pharmacokinetic analysis and
literature review

Reject hypothesis. Concentrations required to mitigate effects on
leucocyte targets exceed systemic tissue levels achieved via
recommended GERD oral dosage

Does high dose famotidine administration affect the clinical course
of COVID-19 disease?

Case study Limited support for hypothesis, requiring further testing
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Redoni et al., 2020). The cardiac events, stroke, and related
outcomes associated with COVID-19 also appear consistent
with the Kounis syndrome (Gonzalez-de-Olano et al., 2011;
Kounis, 2016; Kounis et al., 2020). This hypothesis is
supported by the findings herein of increased numbers of mast
cells in the alveolar septal walls and pulmonary parenchyma of
SARS-CoV-2 infected AGM, as well as in the alveolar septa of
COVID-19 patients (Motta Junior et al., 2020).

If COVID-19 is partially driven by dysfunctional mast cell
degranulation, then a variety of medical interventions employing
marketed drugs useful for treating mast cell-related disorders may
help to reduce death and disease associated with SARS-CoV-2
infection. Examples include drugs with mast cell stabilizing
activity such as beta-2 adrenoceptor antagonists (Scola et al.,
2004) or cromolyn sodium (Zhang et al., 2016; Han et al., 2016),
other histamine antagonists (for example H1 and H4 types)
(Okayama et al., 1994; Marone et al., 2003; Hogan et al.,
2020), leukotriene antagonists and leukotriene receptor
antagonists (Fidan and Aydogdu, 2020), anti-inflammatory
agents such as those developed for inflammatory bowel
diseases, and mast cell activation inhibitors (Castells and
Butterfield, 2019; Theoharides et al., 2019). If such repurposed
drugs are used in combination with pharmaceuticals that directly
inhibit SARS-CoV-2 infection or replication, it may be possible to
rapidly develop potent, safe and effective outpatient treatments
for preventing or treating COVID-19 until such time as a safe and
effective SARS-CoV-2 vaccine becomes available.
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