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Hypoxia is an important feature of most solid tumors, conferring resistance to radiation and
many forms of chemotherapy. However, it is possible to exploit the presence of tumor
hypoxia with hypoxia-activated prodrugs (HAPs), agents that in low oxygen conditions
undergo bioreduction to yield cytotoxic metabolites. Although many such agents have
been developed, we will focus here on TH-302. TH-302 has been extensively studied, and
we discuss its mechanism of action, as well as its efficacy in preclinical and clinical studies,
with the aim of identifying future research directions.
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INTRODUCTION

Hypoxia is an important characteristic of tumors, and generally results in a poor response to
radiation and chemotherapy. However, it also presents a therapeutic opportunity, as normal tissue is
generally well oxygenated. There have been numerous candidate molecules with enhanced toxicity to
hypoxic cells, and they all share a general mechanism: an inert compound is enzymatically reduced to
a reactive species, which is easily re-oxidized in the presence of oxygen. Such agents are referred to as
hypoxia-activated prodrugs, or HAPs.

The first studies on HAPs were conducted by Alan Sartorelli’s group at Yale, who showed that
mitomycin C was preferentially activated under hypoxic conditions, and was thus able to selectively
kill hypoxic cells (Lin et al., 1972; Rockwell et al., 1982; Fracasso and Sartorelli, 1986; Pritsos and
Sartorelli, 1986). Further HAPs included RSU-1069 and tirapazamine (SR4233) (Laderoute and
Rauth, 1986; Whitmore and Gulyas, 1986; Zeman et al., 1986), though neither agent achieved clinical
recognition. Recently, a second generation HAP, TH-302 (evofosfamide) has been the subject of
extensive preclinical research, much of it supporting the belief that the agent would have a valuable
future. However, these hopes were significantly undermined by the failure of phase III clinical trials.
Nonetheless, research on TH-302 is still ongoing, and here we will summarize the state of the field.

PHARMACOLOGICAL MECHANISMS

TH-302 was first described in 2008 (Duan et al., 2008). The prodrug consists of a 2-nitroimidazole
moiety linked to bromo-iso-phosphoramide mustard (Br -IPM), a DNA cross-linking agent. TH-302
is a substrate for certain cellular reductases that generate a radical anion through 1-electron
reduction. Under normoxic conditions, the free radical anions are quickly oxidized back to
either the original prodrug or superoxides, and no cytotoxic product is released. However, in the
absence of oxygen, the free radical anions are further reduced, leading to the release of Br-IPM or its
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stable downstream product, isophosphoramide mustard (IPM)
(Figure 1). The reductase involved in this selective activation
under hypoxia is not yet fully understood. However, Hunter et al.
investigated potential modifiers of TH-302 metabolism by RNA
sequencing, whole-genome CRISPR knockout, and reductase-
focused short hairpin RNA screens, and found that the activation
of TH-302 is related to genes involved in mitochondrial electron
transfer, DNA damage-response factors and mitochondrial
function regulators, such as SLX4IP, C10orf90 (FATS),
SLFN11, YME1L1 (Hunter et al., 2019).

TH-302 shows obvious biliary excretion and/or gut secretion
(Jung et al., 2012), with a short half-life of 12.3 min, a high
clearance rate of 2.29 L/h/kg, and its volume of distribution is
0.627 L/kg.

PRECLINICAL STUDIES

In vitro Cytotoxicity
In a panel of 32 human cancer lines, Meng et al. found that all cells
displayed enhanced sensitivity to TH-302 under severely hypoxic
conditions (∼0.1% O2). Consistent with enhanced cell killing, TH-
302/hypoxia also induced γH2AX phosphorylation, DNA cross-
linking and cell cycle arrest. Additional studies with repair deficient
CHO cells found that loss of homologous repair increased drug
sensitivity; non-homologous end-joining, base and nucleotide
excision played no role in processing the DNA/IPM lesions
(Meng et al., 2012). Also consistent with a DNA damage
response, TH-302/hypoxia can down-regulate levels of the three
D cyclins, as well as CDK4/6, p21 (cip-1) p27 (kip-1), and
phosphorylated Rb, and up-regulate the expression of caspases-
3,8 and 9, and poly ADP-ribose polymerase to induce both G0/1 cell
cycle arrest and trigger apoptosis in multiple myeloma (Hu et al.,
2010). TH-302 decreased proliferation and HIF-1α expression in

acute myeloid leukemia (AML) and nasopharyngeal carcinoma
(NPC) cells and induced cell-cycle arrest, and enhanced double-
stranded DNA breaks (Portwood et al., 2013; Huang et al., 2018).
TH-302 was selectively toxic to hypoxic (1% O2) osteosarcoma cells
while normal osteoblasts were protected (Liapis et al., 2015). The
combination of TH-302 with cisplatin (DDP) had a synergistic effect
on cytotoxicity in nasopharyngeal cancer cell lines (Huang et al.,
2018). Under hypoxic conditions (1% O2), TH-302 significantly
inhibited the survival of melanoma cells in two/three-dimensional
(2D/3D) culture, and the combination with sunitinib further
enhanced the effect (Liu et al., 2017).

In 3D tumor spheroids and multi-cellular layer models, TH-
302 was more effective in tumor spheroids compared with
monolayer cells, indicating that TH-302 had a significant
“bystander effect” (Meng et al., 2012; Voissiere et al., 2017).
Ham et al. showed that in a 3D breast cancer cell (MDA-MB-157)
model, the combination treatment with doxorubicin and TH-302
could significantly reduce drug resistance (Ham et al., 2016).

Response of Experimental Tumors
Monotherapy
Single agent TH-302 has shown efficacy against multiple human
xenografts, including hepatoma, multiple myeloma (MM),
neuroblastoma, rhabdomyosarcoma, osteolytic breast cancer,
non-small cell lung cancer (NSCLC), head and neck squamous
cell carcinoma (HNSCC), and acute myeloid leukemia (Hu et al.,
2010; Li et al., 2010; Portwood et al., 2013; Liapis et al., 2016; Sun
et al., 2016; Zhang et al., 2016a; Harms et al., 2019). Using two
high-grade glioma models (C6 glioblastoma and 9 L glioma) with
different levels of hypoxia, Stokes et al. showed that the more
hypoxic, less perfused C6 tumor model was more sensitive to TH-
302 (Stokes et al., 2016).

A study by Sun et al. further supported the “bystander effect”
of TH-302 in animal models. They found that the DNA damage

FIGURE 1 | Metabolism of TH-302.
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induced by TH-302 initially only appeared in hypoxic regions,
but subsequently spread to the entire tumor (Sun et al., 2012).
However, the bystander hypothesis was questioned by Hong et al.
who found that the toxic metabolites Br-IPM and IPM were
unable to pass across cell membranes. They proposed that any
effect on oxygenated tumor cells was due to high concentrations
of pro-drug leading to some residual Br-IPM formation even in
the presence of oxygen. (Hong et al., 2018; Hong et al., 2019).

Nytko et al. demonstrated that the efficacy of TH-302 is highly
dependent on tumor type, largely due to levels of cytochrome
P450 oxidoreductase activity (POR) (Nytko et al., 2017). Through
the study of 22 cases of papillomavirus-negative head and neck
squamous cell carcinoma (HPV-negative HNSCC), Jamieson
et al. confirmed that for hypoxic HPV-negative HNSCC cells,
TH-302 exhibited stronger potency and selectivity than the
previous generation HAP (PR- 104 A or SN30000), and the
responsiveness was dependent on the sensitivity to DNA
cross-linking and the activation rate of the prodrug. They also
revealed the correlation between TH-302 sensitivity and
proliferative rate/proliferation metagene (Jamieson et al.,
2018). Recent evidence suggests that TH-302 can not only kill
hypoxic pancreatic cancer cells, but also has the ability to improve
the oxygenation status of residual tumor cells, so it can be used to
enhance the effect of radiotherapy and chemotherapy (Kishimoto
et al., 2020) (Table 1).

Combination of TH-302 With Conventional
Chemotherapy
TH-302 has been shown to enhance the anti-tumor effect of many
conventional chemotherapy drugs, such as docetaxel, cisplatin,
pemetrexed, irinotecan, doxorubicin, gemcitabine,
temozolomide, and topotecan (Liu et al., 2012; Saggar and
Tannock, 2014; Liapis et al., 2015; Sun et al., 2015b; Zhang
et al., 2016b; Liapis et al., 2016; Huang et al., 2018). Saggar
and Tannock demonstrated that TH-302 could inhibit tumor
reoxygenation and as well as the proliferation of hypoxic tumor
cells that survived chemotherapy (Saggar and Tannock, 2015).

For the treatment of osteosarcoma, TH-302 combined with
proapoptotic receptor agonists (dulanermin or drozitumab) or
doxorubicin could effectively reduce the tumor burden of bone as
well as pulmonary metastases and could prevent bone destruction
caused by osteosarcoma (Liapis et al., 2015; Liapis et al.,2017).

As cancer-initiating cells (C-ICs) are associated with hypoxic
niches, Haynes et al. investigated and proposed that conventional
treatments such as fluorouracil with or without radiotherapy,
would enhance tumor hypoxia and thus expand the C-IC
population, which could be counteracted by TH-302 treatment
(Haynes et al., 2018). The PI3K pathway is involved in cell
adaptation to hypoxia, via Akt mitochondrial translocation
(Chae et al., 2016). However, in pancreatic ductal
adenocarcinoma (PDAC) cells, resistance to the PI3K pathway
inhibitor was associated with tumor hypoxia. Conway et al.
combined TH-302 and AZD2014 for the treatment of tumor-
bearing mice. The results showed that single use of AZD2014
improved survival and had additional anti-invasive effects, while
TH-302 as a single agent exhibited higher efficacy under hypoxic
conditions. As expected, the combination of TH-302 and

AZD2014 enhanced the potency of each drug, ultimately
leading to an overall improvement in anti-tumor effects
(Conway et al., 2018).

Combination of TH-302 With Radiotherapy
Since hypoxic cells are known to be extremely radioresistant,
there is a powerful rationale for combing radiation and TH-302.
Several investigators have demonstrated increased tumor growth
delay and decreased hypoxic fraction in a variety of tumor types
(NSCLC, rhabdomyosarcoma, squamous cell carcinoma,
colorectal adenocarcinoma, pancreatic cancer) when using this
combination (Peeters et al., 2015; Hajj et al., 2017; Nytko et al.,
2017; Takakusagi et al., 2018). Lohse et al. studied 11 pancreatic
cancer PDX models and found that the combination of TH-302
and ionizing radiation (IR) could significantly delay tumor
growth, reduce tumor volume, and reduce the frequency of
tumor initiating cells (TIC), especially in the more rapidly
growing/hypoxic models (Lohse et al., 2016). Spiegelberg et al.
confirmed that TH-302 could increase the sensitivity of
esophageal carcinoma to radiotherapy, without any additional
toxicity to the gastrointestinal tract (mucosal damage) and lung
(fibrosis) (Spiegelberg et al., 2019b).

Combination of TH-302 With Tissue Oxygen
Modulators or Anti-Angiogenic Therapy
Any treatment that increases tumor hypoxia might be expected to
enhance the response to TH-302. For example, pretreatment with
pyruvate has been shown to increase TH-302 sensitivity, through
increased mitochondrial oxygen consumption and concomitant
transient tumor hypoxia (Takakusagi et al., 2014; Wojtkowiak
et al., 2015). Hydralazine (a vasodilator) that is known to
profoundly exacerbate hypoxia in murine tumors, enhanced
the efficacy of TH-302 (Bailey et al., 2014).

However, the most obvious candidates for such an approach
are anti-angiogenics. In two renal cell carcinoma models, the
mTOR inhibitors everolimus and temsirolimus both reduced
vessel density, with resultant increase in hypoxia and TH-302
response (Sun et al., 2015a). Yoon et al. combined TH-302 with
the VEGF-A inhibitor DC101, a HIF-1α inhibitor (low-dose
doxorubicin) and radiotherapy for the treatment of mouse
models of sarcoma. The results showed that this multi-modal
therapy could effectively block sarcoma growth. The mechanism
involved the increase of DNA damage and apoptosis in
endothelial cells, the reduction of HIF-1α activity, and the
inhibition of cancer stem cell-like cells (Yoon et al., 2015;
Yoon et al., 2016). Experiments conducted by Kumar et al.
using a subcutaneous xenograft model of neuroblastoma
showed that the combined use of TH-302 and sunitinib (an
anti-angiogenic multikinase inhibitor) resulted in greater tumor
growth delay, increased apoptosis and tumor hypoxia. They also
found that the combination therapy significantly reduced the
burden of liver metastases (Kumar et al., 2018). With genetically
engineered melanoma mouse models, Liu et al. showed that while
sunitinib alone would lead to greater hypoxia without tumor
suppression, TH-302 in combination with sunitinib could
significantly reduce tumor volume and prolong survival (Liu
et al., 2017).
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TABLE 1 | Pre-clinical studies of TH-302.

Ref Tumor type
(Cell lines/tumor

models)

Combined therapy

Radioherapy Chemotherapy Anti-angiogenic
agents

Molecular
targeted
agents

Immunoherapy Other
therapy

Li et al. (2010) Hepatoma (H22) — — — — — —

Hu et al. (2010) Multiple myeloma
(5T33 MM model)

— — — — — —

Sun et al.
(2012)

11 xenograft models — — — — — —

Meng et al.
(2012)

Chinese hamster ovary
cell, H460, H116

— — — — — —

Liu et al. (2012) 11 human xenograft
models

— Docetaxel, cisplatin,
pemetrexed, irinotecan,
doxorubicin, gemcitabine,
temozolomide

— — — —

Portwood et al.
(2013)

Acute myeloid leukemia
(HEL, HL60)

— — — — — —

Saggar and
Tannock
(2014)

Breast cancer (MCF-7)/
prostate caner (PC-3)

— Docetaxel Doxorubicin — — — —

Takakusagi
et al. (2014)

Squamous cell
carcinoma (SCCVII)/
Adenocarcinoma (HT29)

— Pyruvate — — — —

Bailey et al.
(2014)

PDAC (MiaPaCa-2,
SU.86.86)

— Hydralazine — — — —

Wojtkowiak
et al. (2015)

PDAC (Hs766t,
MiaPaCa-2, SU.86.86)

— Pyruvate — — — —

Liapis et al.
(2015)

Osteosarcoma — Docetaxel — — — —

Saggar and
Tannock
(2015)

Breast cancer (MCF-7)/
prostate caner (PC-3)

docetaxel, doxorubicin — — — —

Sun et al.
(2015a)

Renal cell carcinoma
(786-O, Caki-1)

— Everolimus/Temsirolimus (mTOR
inhibitor)

— — — —

Yoon et al.
(2015)

Sarcoma RT — DC101(VEGF-A
inhibitor)

Peeters et al.
(2015)

NSCLC and
rhabdomyosarcoma

RT — — — — —

Sun et al.
(2015b)

PDAC (Hs766t, MIA
PaCa-2, PANC-1, and
BxPC-3)

— gemcitabine,nab-paclitaxel — — — —

Liapis et al.
(2016)

Osteolytic breast cancer
(MDA- B- 31- XSA)

— Paclitaxel — — — —

Sun et al.
(2016)

NSCLC (H460) — Docetaxel Sunitinib — — —

Benito et al.
(2016)

Leukemia (KBM-5,
KG-1, OCI-AML3,
MOLM-13, REH,
Nalm-6)

— — — Sorafenib — —

Lohse et al.
(2016)

Pancreatic cancer (PDX
model)

IR — — — — —

Zhang et al.
(2016a)

Neuroblastoma/
rhabdomyosarcoma

— Topotecan — — — —

Yoon et al.
(2016)

Undifferentiated
pleomorphic sarcoma
(KP mice model)

— Low dose doxorubicin (HIF-1α
inhibitor)

DC101(VEGF-A
inhibitor)

— — —

Lindsay et al.
(2016)

EGFR-mutant NSCLC — — — Erlotinib — —

Stokes et al.
(2016)

Glioma (C6 glioblastoma/
9 L gliosarcoma)

— — — — — —

Ham et al.
(2016)

Breast cancer
(MDA-mb-157)

— Doxorubicin — — — —

Duran et al.
(2017)

Hepatocellular
carcinoma (VX2)

— — — — — cTACE
(doxorubicin)

(Continued on following page)
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Combination of TH-302 With Molecular Targeted
Therapy
Benito et al. found that the combination of TH-302 and sorafenib
resulted in greater anti-leukemia efficacy than either alone
(Benito et al., 2016). Lindsay et al. established a stochastic
mathematical model, parameterized experimental and clinical
data, and concluded that the combination therapy of TH-302 and
erlotinib was better than single-agent therapy of either in EGFR-
mutant NSCLC, which was mainly reflected in delayed drug
resistance (Lindsay et al., 2016).

Combination of TH-302 With Immunotherapy
Anew and promising way to exploit TH-302may be in combination
with immunotherapy. Jayaprakash et al. demonstrated that the
hypoxic regions in the prostate cancer models lacked T cell
infiltration, potentially creating zones of immunotherapy
resistance. To overcome this, they combined TH-302 with a
maximal checkpoint blockade directed against both CTLA-4 and

PD-1, dramatically enhancing the effect of the immunotherapy
treatment (Jayaprakash et al., 2018). Likewise, Jamieson et al. also
found that the combined therapy of TH-302 and CTLA-4 blockade
can further improve the survival rate of the HNSCC model
compared with single use either alone (Jamieson et al., 2018).

Combination of Th-302 With Other Therapies
For the treatment of hepatocellular carcinoma,Duran et al. used hepatic
hypoxia activated intra-arterial therapy (HAIAT) and found that the
addition ofTH-302 to conventional TransArterialChemoEmbolization
(cTACE) achieved promising anti-cancer effects, which mainly
manifested as reduced tumor burden, decreased tumor growth rate
and increased necrotic fraction (Duran et al., 2017).

CLINICAL TRIALS

TH-302 entered clinical trials in 2007 and results were first
reported in 2011 (Table 2). Weiss et al. enrolled 57 patients

TABLE 1 | (Continued) Pre-clinical studies of TH-302.

Ref Tumor type
(Cell lines/tumor

models)

Combined therapy

Radioherapy Chemotherapy Anti-angiogenic
agents

Molecular
targeted
agents

Immunoherapy Other
therapy

Nytko et al.
(2017)

Lung adenocarcinoma
(A549)/HNSCC
(UT-scc-14)

Fractionated
IR

— — — — —

Voissiere et al.
(2017)

Chondrosarcoma
(HEMC-SS)

— — — — — —

Liapis et al.
(2017)

Osteosarcoma
(BTK-143, K-OS)

— Dulanermin/drozitumab — — — —

Hajj et al.
(2017)

Pancreatic cancer
(AsPC1)

RT — — — — —

Liu et al. (2017) Melanoma (WM35,
WM793, 1205LU)

— — Sunitinib — — —

Takakusagi
et al. (2018)

Squamous cell
carcinoma (SCCVII)/
Adenocarcinoma (HT29)

IR — — — — —

Huang et al.
(2018)

NPC (CNE-2, HONE-1,
HNE-1)

— Cisplatin (DDP) — — — —

Haynes et al.
(2018)

Colorectal cancer (PDX
model)

RT 5-Fu — — — —

Conway et al.
(2018)

PDAC (KPC primary
PDAC cells)

— AZD2014 — — — —

Jamieson et al.
(2018)

HNSCC (SCC-4, SCC-7,
SCC-9, FaDu, UT-SCC
and PDX model)

— — — — CTLA-4
blockade

—

Kumar et al.
(2018)

Neuroblastoma
(SK-N-BE (2))

— — Sunitinib — — —

Hong et al.
(2018)

Colon carcinoma
(HCT116)

— — — — — —

Jayaprakash
et al. (2018)

Prostate cancer
(TRAMP-C2)

— — — — αCTLA-4/αpd-1 —

Hong et al.
(2019)

NSCLC (H460) — — — — — —

Harms et al.
(2019)

HNSCC (PDX model) — — — — — —

Spiegelberg
et al. (2019)

Esophageal carcinomas
(OE19/OE21)

RT — — — — —

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6368925

Li et al. The Hypoxia-Activated Prodrug TH-302

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


with advanced solid tumors who were treated with TH-302
monotherapy (dose and scheme: TH-302 was administered i.
v. over 30–60 min. Arm A: 7.5–670 mg/m2, 3 times weekly dosing
followed by 1 week off; Arm B: 670–940 mg/m2, every 3 weeks
dosing). They reported skin and/or mucosal toxicity with a
maximum tolerated dose (MTD) of 670 mg/m2. They observed
two partial responses and 27 cases of stable disease. Additionally,
TH-302 helped to resolve Cullen’s sign in patients with metastatic
melanoma (Weiss et al., 2011a, Weiss et al., 2011b). Riedel et al.
conducted a phase one clinical trial on 30 patients with advanced
solid tumors. Their results revealed the potential therapeutic
value of co-targeting tumor angiogenesis and hypoxia (dose
and scheme: pazopanib, orally dosed at 800 mg daily on days
1–28; TH-302, administered i. v. on days 1, 8, and 15 of a 28 days
cycle at doses of 340 or 480 mg/m2) (Riedel et al., 2017). Conroy
et al. reported the efficacy of TH-302 as a monotherapy on two
patients with advanced ovarian serous carcinoma with BRCA1
mutations. Both individuals responded well (dosed at either
300 mg/m2 (9 cycles, 15 months) or 340 mg/m2 (6 cycles,
3 months)) showing partial response or stable disease (Conroy
et al., 2017). A phase one surgical study of TH-302 (dose range
240–670 mg/m2, every 2 weeks) combined with bevacizumab
(dose: 10 mg/kg) in the treatment of bevacizumab-refractory
glioblastoma found that the therapy was well-tolerated at
670 mg/m2, with an overall response rate of 17.4% and a
disease control rate of 60.9% (Brenner et al., 2018). The phase
1/2 study of TH-302 (NCT01522872) conducted by Laubach et al.
showed that for relapsed/refractory myeloma, TH-302 alone or in
combination with bortezomib was well tolerated and could
prolong survival (dose and scheme: Arm A: 340 mg/m2 dose
of TH-302 was administered i. v. over 30–60 min with a fixed oral
40 mg dose of dexamethasone on days 1, 4, 8 and 11 of a 21 days
cycle; Arm B: 340 mg/m2 dose of TH-302 was administered i. v.
over 30–60 min with a fixed oral 40 mg dose of dexamethasone
and a fixed i. v. or s. c. administration of 1.3 mg/m2 dose of
bortezomib on days 1, 4, 8, and 11 of a 21 days cycle) (Laubach
et al., 2019). The anti-tumor effect of TH-302 (300 mg/m2

administered i. v. on days 1 and 8 of each 21 days cycle, 6
cycles) combined with doxorubicin (75 mg/m2 administered i.
v. on day 1 of each 21 days cycle, 6 cycles) in the treatment of

advanced soft tissue sarcoma (STS) has also been tested in phase
two clinical trials, and complete and partial responses have been
observed (Chawla et al., 2014). Borad et al. evaluated the
therapeutic effect of TH-302 combined with gemcitabine on
pancreatic cancer. Prolonged progression-free survival (PFS)
and CA19–9 response were observed (dose and scheme: 240
or 340 mg/m2 TH-302 administered i. v. over 30–60 min followed
2 h later by a 30 min i. v. infusion of gemcitabine 1,000 mg/m2 on
days 1, 8, and 15 of each 28 days cycle). Skin and mucosal toxicity
and bone marrow suppression are the most common toxicities
(Borad et al., 2015). Another phase two study enrolled five
HNSCC patients receiving TH-302 monotherapy (480 mg/m2

qw × 3 each month). Two of them achieved partial response,
and the other three had stable disease (Jamieson et al., 2018).

TH-302 was successfully applied in the clinic but the outcomes
were not sufficient to receive approval from requlatory
authorities. Badar et al. revealed that TH-302 exhibited limited
activity in leukemia patients (doses ranging between 120 and
550 mg/m2) (Badar et al., 2016). In the phase three multicenter
clinical trial (TH CR-406/SARC021), 640 patients with soft tissue
sarcoma were enrolled. The results showed that the combination
of TH-302 (300 mg/m2 administered i. v. for 30–60 min on days 1
and 8 of every 21 days cycle, 6 cycles) and doxorubicin (75 mg/m2

administered on day 1 of every 21 days cycle, six cycles) failed to
improve overall survival compared with doxorubicin alone (Tap
et al., 2017). But it should be noted that the historical survival
benefit of doxorubicin monotherapy shows a trend for
improvement over time, perhaps due to superior clinical
management of associated toxicities. The initial phase two
combination study (Dox + TH-302) was a single arm study
that utilized historical doxorubicin single agent survival results
(12–13 months) as reference. Ultimately this proved to be an
invalid comparison. In addition, antagonistic effects between
drugs (Anderson et al., 2017) and changes in drug
formulations (Higgins et al., 2018) should also be considered
as potential causes. TH-302 plus gemcitabine in the treatment of
patients with pancreatic ductal adenocarcinoma (PDAC) also
missed the end point of another phase three clinical trial (dose
and scheme: TH-302 340 mg/m2 and gemcitabine 1,000 mg/m2

administered i. v. on days 1, 8, and 15 of a 28 days cycle)

TABLE 2 | Clinical trials of TH-302.

Ref Tumor type Clinical trial Number of patients Combined therapy

Weiss et al. (2011a) Solid tumors Phase 1 57 —

Ganjoo et al. (2011) Soft tissue sarcoma Phase 1 16 Doxorubicin (chemotherapy)
Weiss et al. (2011b) Melanoma Phase 1 1 —

Chawla et al. (2014) Soft tissue sarcoma Phase 2 91 Doxorubicin (chemotherapy)
Borad et al. (2015) Pancreatic cancer Phase 2 214 Gemcitabine (chemotherapy)
Van Cutsem et al. (2016) Pancreatic cancer Phase 3 660 Gemcitabine (chemotherapy)
Badar et al. (2016) Leukemia Phase 1 49 —

Riedel et al. (2017) Advanced solid tumors Phase 1 30 Pazopanib (anti-angiogenic agents)
Conroy et al. (2017) Ovarian serous carcinoma Case report 2 —

Tap et al. (2017) Soft-tissue sarcoma Phase 3 640 Doxorubicin (chemotherapy)
Brenner et al. (2018) Glioblastoma Phase 1 28 Bevacizumab (anti-angiogenic agents)
Jamieson et al. (2018) HNSCC Phase 2 5 —

Laubach et al. (2019) Multiple myeloma Phase 1/2 59 Bortezomib (chemotherapy)
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(NCT01746979) (Van Cutsem et al., 2016). In this case, lack of
patient screening based on tumor hypoxia may have been the
most important cause of the trial’s failure (Domenyuk et al., 2018;
Spiegelberg et al., 2019a). In contrast to the prevalent belief that
all PDAC are severely hypoxic, evidence showed that the levels of
hypoxia observed in PDAC were highly heterogeneous (range
from 0 to 26%) and were similar to those reported in other tumor
types (Dhani et al., 2015). Patients with a low tumor hypoxic
fraction are not expected to benefit from TH-302 treatment, and a
more efficient approach to the clinical application of TH-302 may
be to determine the tumor hypoxic status of tumor prior to
patient selection.

DISCUSSION AND DIRECTIONS FOR
FUTURE APPLICATIONS

Hypoxia is an important feature of solid tumors and may also
be an effective new target for tumor therapy. We are trying to
put forward new suggestions on the clinical application of TH-
302 or other HAPs. Hypoxia is not only a characteristic of
macroscopic tumors. In 2007, our group reported that
peritoneal disseminated micro-metastases (less than 1 mm
in diameter) are severely hypoxic and poorly proliferative
(Li et al., 2007; Li and O’Donoghue, 2008; Li et al., 2010b;
Li et al., 2010a; Huang et al., 2013). Further, our data indicated

that tumor cells in these hypoxic micro-metastases could
survive for several weeks (data to be published). In view of
this special state of early micro-metastases of tumors, TH-302
may have the potential to prevent them from developing into
macroscopic tumors, thereby reducing the recurrence and
metastasis rate of tumors. In this area, TH-302 may be
superior to traditional radiotherapy and chemotherapy. Our
group is conducting further research.
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