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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recent pandemic
outbreak threatening human beings worldwide. This novel coronavirus disease-19
(COVID-19) infection causes severe morbidity and mortality and rapidly spreading
across the countries. Therefore, there is an urgent need for basic fundamental
research to understand the pathogenesis and druggable molecular targets of SARS-
CoV-2. Recent sequencing data of the viral genome and X-ray crystallographic data of the
viral proteins illustrate potential molecular targets that need to be investigated for structure-
based drug design. Further, the SARS-CoV-2 viral pathogen isolated from clinical samples
needs to be cultivated and titrated. All of these scenarios demand suitable laboratory
experimental models. The experimental models should mimic the viral life cycle as it
happens in the human lung epithelial cells. Recently, researchers employing primary
human lung epithelial cells, intestinal epithelial cells, experimental cell lines like Vero
cells, CaCo-2 cells, HEK-293, H1299, Calu-3 for understanding viral titer values. The
human iPSC-derived lung organoids, small intestinal organoids, and blood vessel
organoids increase interest among researchers to understand SARS-CoV-2 biology
and treatment outcome. The SARS-CoV-2 enters the human lung epithelial cells using
viral Spike (S1) protein and human angiotensin-converting enzyme 2 (ACE-2) receptor. The
laboratory mouse show poor ACE-2 expression and thereby inefficient SARS-CoV-2
infection. Therefore, there was an urgent need to develop transgenic hACE-2 mouse
models to understand antiviral agents’ therapeutic outcomes. This review highlighted the
viral pathogenesis, potential druggable molecular targets, and suitable experimental
models for basic fundamental research.
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INTRODUCTION

The coronavirus disease-19 (COVID-19) is a pandemic outbreak caused by a novel severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) (Rothan and Byrareddy, 2020). This ongoing
infectious outbreak was first noticed in Wuhan, China, in December 2019. The incidence of SARS-
CoV-2 infection has alarmingly increased worldwide. As of January 2021, about 100,869,345 new
SARS-CoV-2 infected patients and 2,174,143 deaths have been reported across 188 countries by the
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Center for Systems Science and Engineering (CSSE) of Johns
Hopkins University (John Hopkins University and Medicine,
2020). Globally, as of February 8, 2021, there have been
105,805,951 confirmed cases of COVID-19, including
2,312,278 deaths, were reported by WHO [WHO Coronavirus
Disease (COVID-19) Dashboard, 2020]. Although this infectious
disease’s recovery rate was high, it remains a significant health
issue as it causes mortality in aged and immunocompromized
patients (Bialek et al., 2020; Russell et al., 2020a; Sarkar and
Chakrabarti, 2020). Researchers demand a need for the
coordinated global development effort using a “big science”
approach to combat this deadly disease (Berkley, 2020).

The COVID-19 infection exhibits inter-individual variability.
It causes a wide range of severity, from the asymptomatic career
to patients with multiple organ failure (Pereira et al., 2021).
Studies illustrate the COVID-19 disease manifestation and
progression has been correlated with the age, race, ethnicity,
sex and the expression pattern of ACE-2, and immune regulation
of the individuals (Benetti et al., 2020; Penna et al., 2020). Thus,
understanding inter-individual variability enables a precision
medicine approach against COVID-19 infection.
Epidemiological studies and genome-wide association studies
illustrate genetic variation has been linked with individual
differences in susceptibility to COVID-19 infection (Gibson
et al., 2020). The genetic variants in the expression ACE,
ACE2, and TMPRSS2 might directly impact COVID-19
disease. Allele frequencies and single nucleotide
polymorphisms (SNPs) in different ethnic populations were
postulated to be the reason for differences in the prevalence of
COVID-19 infection among individuals (Asselta et al., 2020).
Age-adjusted hospitalization and mortality rates of COVID-19
show that males were significantly affected than females due to
the variation in the expression pattern of ACE-2 receptors (Penna
et al., 2020). Recent studies illustrate that individuals with blood
group A and blood group O show higher and lower susceptibility
to COVID-19 infection, respectively (Zhao J. et al., 2020). Several
studies were currently undergoing to identify the inter-individual
variation to COVID-19 infection to enable high-risk patients for
therapeutic intervention and vaccination.

TREATMENTS FOR COVID-19 AND
EMERGENCY USE AUTHORIZATIONS
(EUAS)
The clinicians employ numerous drugs for the treatment of
SARS-CoV-2 infection considering the emergency of the
disease. The US Food and Drug Administration (2020) have
started Coronavirus Treatment Acceleration Program (CTAP)
immediately after the COVID-19 outbreak (US Food and Drug
Administration, 2020). More than 570 drug development
programs in planning stages, 270 plus trials have been
reviewed, and two treatments were currently authorized for
emergency (Krause and Gruber, 2020). However, several
therapies currently employed against SARS-CoV-2 infection
were mainly supportive and used to treat infection symptoms.
Antiviral drugs are proposed for the treatment of COVID-19

infection (Phadke and Saunik, 2020). Several antiviral drugs were
repurposed to manage SARS-CoV-2 infection (Andrade et al.,
2020; Serafin et al., 2020). WHO has supported remdesivir and
lopinavir to treat COVID-19 infection (Won and Lee, 2020).
Further, the FDA has authorized remdesivir, an inhibitor of viral
RNA polymerases, to use during emergency conditions (EUA) in
hospitalized patients (Eastman et al., 2020). Currently, remdesivir
is the only medication approved by the FDA to treat coronavirus
disease 2019 (COVID-19) (Al-Tannak et al., 2020; Saha et al.,
2020a). Therefore, the remdesivir has been considered a
“molecule of hope” for treating this disease. The approval was
based on findings that hospitalized patients who got remdesivir
recovered faster. Several pharmaceutical companies are currently
conducting clinical trials to prove the efficiency of remdesivir for
SARS-CoV-2 treatment (Goldman et al., 2020).

Several drugs were repurposed to prevent and treat SARS-
CoV-2 infection (Akhtar et al., 2020; Rocha et al., 2020). Non-
steroidal anti-inflammatory drugs (NSAIDs) such as
cyclooxygenase (COX) inhibitors were most commonly
employed for the management of SARS-CoV-2 infection
(Kakodkar et al., 2020). The Indian Council of Medical
Research has recommended hydroxychloroquine as a
chemoprophylaxis drug for asymptomatic confirmed patients
(Rathi et al., 2020). The National Health Commission of the
People’s Republic of China has advocated the inclusion of
chloroquine phosphate to treat COVID-19 patients (Gao
J. et al., 2020). However, severe concerns were raised over
NSAID usage as they were associated with severe adverse
effects (FitzGerald, 2020). Acute organ failure, opportunistic
infections, and acute respiratory distress syndrome (ARDS) are
the major adverse events associated with NSAIDs (Russell et al.,
2020b). Ivermectin, an anthelmintic drug, has also been
considered a potential drug candidate for COVID-19
treatment (Sharun et al., 2020a). Rapamycin, an inhibitor of
rapamycin, has been repurposed for attenuating
proinflammatory cytokines attach during COVID-19 disease
(Husain and Byrareddy, 2020). A drug repurposing study
illustrates that the antioxidants like polyhydroxy-1,3,4-
oxadiazole compounds such as CoViTris2020 and
ChloViD2020 behave as protein blockers of SARS-CoV-2
molecular targets with significant higher potencies (Rabie, 2021).

Both innate and adaptive immune responses were activated
during SARS-CoV-2 infection (Sami et al., 2021). It could be
possible to prevent COVID-19 infection by modulating natural
innate immunity (Schijns and Lavelle, 2020). SARS-CoV-2
infection significantly increased the antibody production in the
affected individuals (Mathew et al., 2020). The SARS-CoV-2
viruses were sensed by immune cells such as macrophages,
monocytes, and dendritic cells, which resulted in the
production of proinflammatory cytokines, which subsequently
damages the respiratory epithelial cells of the lungs. The anti-
inflammatory corticosteroids have widely been used to treat
SARS-CoV-2 infection. Corticosteroids such as dexamethasone
were used to manage the inflammatory responses during SARS-
CoV-2 infection (Singh et al., 2020). Dexamethasone treatment
has been reported to reduce IL-8 and IP-10 concentrations
immediately after administration (Zha et al., 2020).
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Dexamethasone has been used to combat cytokinemia induced by
COVID-19 infection (Sharun et al., 2020b). The dexamethasone
treatment (6 mg once daily for 10 days) even reduced the
mortality rate in COVID-19 patients (Rizk et al., 2020).
Several non-specific immunomodulators include interferons,
angiotensin modulators, statins, azithromycin, clarithromycin,
and ramatroban (prostaglandin D2 modulators), were also found
to be effective against SARS-CoV-2 infection (Gasparyan et al.,
2020). A low-molecular-weight heparin molecule was useful in
dealing with COVID-19-related coagulopathy (Bartoli et al.,
2021).

Immunotherapy strategies for SARS-CoV-2 are current
developments against SARS-CoV-2 infection (Ura et al.,
2021). Currently, researchers are involved in developing
antibody-based immunotherapeutics using convalescent
plasma to counteract SARS-CoV-2 infection (Sharun and
Dhama, 2020). The convalescent serum with neutralizing
antibodies from the recently recovered patients has been
successfully employed to treat SARS-CoV-2 infection
(Robbiani et al., 2020). The antibodies present in the
convalescent sera can bind to the SARS-CoV-2 virus and
enhance phagocytosis of the viral particle through
complement activation and antibody-dependent cellular
cytotoxicity (Rojas et al., 2020).

Tocilizumab targets inflammatory IL-6 has already been used
in the context of severe Covid-19 infection (Roumier et al., 2020).
Similar immunomodulatory drugs such as sarilumab are under
investigation for the treatment against SARS-CV-2 mediated
inflammatory responses (Ku et al., 2021; Roumier et al., 2020).
There were several registered clinical trials on tocilizumab,
sarilumab, and eculizumab against COVID-19 infection
(Dhama et al., 2020). The results illustrate that tocilizumab
was relatively effective and safe compared to the other
immunomodulators (Tang et al., 2020). The FDA has recently
issued a EUA for an antibody cocktail of basiliximab and
imdevimab to adult patients infected with the SARS-CoV-2
virus (Weinreich et al., 2021). A phase 3 randomized clinical
trial with the mRNA-1273 vaccine showed greater (94.1%)
efficacy against Covid-19 illness (Baden et al., 2020; Ura et al.,
2021).

The SARS-CoV-2 infection mainly involves the respiratory
system within 14 days of incubation (WHO, 2020). Severe
pneumonia resulted in SARS-CoV-2 infection leading to
respiratory failure, which resulted in mortality (Tay et al.,
2020). There is an evident lack of scientific evidence to
understand the pathogenesis and molecular signaling
associated with SARS-CoV-2 infection (Wu Y.-C. et al., 2020).
Understanding the molecular pathogenesis of SARS-CoV-2
infection might lead to specific inhibitors against this deadly
viral pathogen. Identification of preclinical drug targets using
genomic, proteomic, and chemoinformatic studies might provide
deep insights into the development of effective and specific
antiviral therapeutics against SARS-CoV-2 infection (Li X.
et al., 2020). After the pandemic outbreak, the Chinese
researchers quickly sequenced the viral genome and publicly
available (Chan et al., 2020; Lu R. et al., 2020). This genomic
sequence helped the researchers develop useful diagnostic kits

and conduct clinical trials to repurpose the existing antiviral
agents against SARS-CoV-2 infection.

Furthermore, identifying the novel molecular targets by
understanding the viral-human protein interaction might lead
to therapeutics against SARS-CoV-2 infection (Aziz et al., 2020).
Gordon et al. (2020) identified 69 existing FDA-approved drugs
by mapping the protein-protein interaction network of SARS-
CoV-2 with human protein factors. Figure 1 shows the list of
promising therapeutic candidates that were discussed in this
review for SARS-CoV-2 infection.

THE VIRAL GENOME AND ITS PROTEINS

The genome of SARS-CoV-2 was homologous to the genome of
SARS-CoV that was responsible for the cause of severe acute
respiratory syndrome (SARS) arisen during 2003 (Lu R. et al.,
2020). The SARS-CoV-2 possesses a positive-sense single-
stranded RNA as genetic material. The SARS-CoV-2 genome
possesses 29,891 bp, which contains about 38% of GC content.
This genome has 14 open reading frames (ORF) with a set of nine
subgenomic mRNAs that possess a conserved leader sequence,
nine regulatory sequences, and two terminal untranslated regions
(UTR) that encode viral proteins necessary for the viral life cycle
in the human lungs (Table 1).

The 5′ end of the viral genome contains a single ORF that
codes for a polyprotein complex that automatically cleaved
into 16 nonstructural proteins 1–16 (nsp 1–16). All these
16 nsp proteins are mainly replicase and transcriptase
complex, including RNA-dependent RNA polymerase
(NSP12), endonucleases, and exonucleases (Angeletti et al.,
2020). The nsp also includes two viral cysteine proteases,
namely, NSP3 (papain-like protease) and NSP5 (main
protease), NSP13 (helicase), and other NSPs, which are
likely involved in the transcription and replication of the
virus. All the proteins formed from the 3′ end of the
genome are involved in the viral genome replication. The 3′
end of the genome contains 13 ORFs, which code mainly
structural proteins such as Spike (S), Envelope (E),
Membrane (M), and Nucleocapsid (N). Structural proteins
primarily perform two essential functions, such as the 1)
formation of the viral capsid that encapsulates the viral
genome and 2) facilitates the entry of the virus to the
human cells through host receptors (Figure 2).

MECHANISM OF SARS-COV-2
PATHOGENESIS

The mechanism of pathology and the pathogenesis of SARS-
CoV-2 infection has now been clearly illustrated by several
studies (Figure 3). Protein-protein structural studies
demonstrate that spike protein is the main driving force for
host cell recognition (Ibrahim et al., 2020). A recent report
demonstrated that spike protein had been O-glycosylated on
the amino acid threonine (T678) adjacent to the furin cleavage
site. Liquid chromatography-mass spectrometry analysis showed
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FIGURE 1 | List of promising therapeutic candidates for SARS-CoV-2 infection. Remdesivir, ritonavir, and lopinavir were employed under emergency use of
authorization. Anti-inflammatory drugs such as dexamethasone, hydroxychloroquine, rofecoxib were used to manage inflammatory responses during SARS-CoV-2
infection. Humanized monoclonal antibodies such as tocilizumab, sarilumab, eculizumab, casirivimab, and imdevimab were found to be effective against SARS-CoV-2
induced pneumonia.
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that the spike protein’s LacdiNAc structural motifs and
polyLacNAc structures (Sanda et al., 2021). The spike
glycoprotein (S1) interacts with host cell epithelial
angiotensin-converting enzyme 2 (ACE-2) receptors (ACE2).
The nano-luciferase-based assay shows that the virus’s 1
protein has a strong binding affinity with the ACE-2 receptors
(Lima et al., 2021). The ACE-2 is a transmembrane
metallocarboxypeptidase, and it plays a significant role in the
entry of the SARS-CoV-2 particle to the human lung epithelial
cells. The ACE-2 degrades its substrate angiotensin II to
angiotensin 1-7 and regulates RAS negatively, thereby protects
the internal organs (Kuba et al., 2010). Reports illustrate the
S-protein antigenic epitope of SARS-CoV-2 binds with the TLR4/
MD-2 complex by strong molecular bonding interactions
(Bhattacharya et al., 2020).

The human transmembrane protease serine 2
(TMPRSS2) processes the viral spike protein and exposes

fusion peptide present in the S2 subunit to the host receptor
ACE-2 (Qi et al., 2020). This S protein processing and priming by
the TMPRSS2 is an essential step in the SARS-CoV-2 infection
(Bestle et al., 2020). Then, the SARS-CoV-2 uses cysteine proteases
like cathepsin B and L (CatB/L) and promotes virus-plasma
membrane fusion (Zang et al., 2020). The pool of miRNA-
based studies shows that TMPRSS2 acts as promising regulators
for the SARS-CoV-2 entry checkpoint (Kaur et al., 2021). Further,
it postulated that the SARS-CoV-2 downregulates the expression of
ACE-2 resulted in the upregulated expression pattern of Ang II.
Ang II is formed by the degradation of Ang I by the enzymeACE-2
(D’ardes et al., 2020). This overexpressed Ang II binds with its
plasma membrane receptor AT1R. This membrane-bound ATIR
transduces the signals to the inflammatory transcription factors
like NF-ƙB, which mediates several inflammatory cytokines’
activation and overexpression (Mehta et al., 2020; Ye et al.,
2020). Further, it has been recently reported that the AT1R

TABLE 1 | SARS-CoV-2 viral genome structure, types of viral proteins, and their function.

Genome Number of
ORFs

Type of protein
encoded by the genome

Examples of enzymes/proteins
encoded by the genome

The function of
the enzymes/proteins

5′ end of the
genome

Single ORF Polyprotein that has been cleaved into
16 nonstructural proteins (NSP 1–6)

Replicase-transcriptase complex Viral genome replication, RNA-dependent RNA
polymerase, endonucleases, exonucelases

3′ end of the
genome

13 ORFs Structural proteins Spike (S) protein, envelope (E) protein,
membrane (M), and nucleocapsid (N)
protein

Forms viral capsid; encapsulates viral genome;
facilitates entry to human cells

FIGURE 2 | 3D Crystal structure of prominent molecular targets of SARS-CoV-2. The structures were obtained from the Protein Data Bank (PDB).
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phosphorylates JAK2 in the lung cells, which activates STAT-3
transduction to the nucleus (Seif et al., 2020). The STAT-3 is a
signal transducer and activator of transcription, which initiates the
active transcription of inflammatory cytokines. The release of
extreme levels of proinflammatory cytokines like IL-1, IL-2, IL-
6, IL-7, IL-10, and TNF-α during SARS-Co-2 infection has been
named as “cytokine storm” (Merad and Martin, 2020).
Additionally, the Ang II/AT1R interaction activates
macrophages to produce excessive inflammatory cytokines and
further contribute to “cytokine storm” and the development of
Acute Respiratory Distress Syndrome (ARDS) (Sriram and Insel,
2020; Vellingiri et al., 2020). The cytokine storm led to multiple

organ failure and subsequent mortality in severe COVID-19
infected patients (Henderson et al., 2020).

COVID-19 AND RENAL DISEASES

SARS-Co-V2 infection induces lung damage and respiratory
failure and induces acute kidney failure and renal injury (Patel
et al., 2020). Recent investigations confirmed that acute kidney
injury has significantly caused mortality in the hospitalized
COVID-19 patients (Zahid et al., 2020). The signal
transduction pathway involved in acute kidney injury during

FIGURE 3 |Mechanism of the pathogenesis of SARS-CoV-2 infection. (A) The TMPRSS2 process spike proteins for the binding with ACE-2 receptors present in
the human epithelial cell membrane. (B) SARS-CoV-2 downregulates the expression of ACE-2 resulted in the upregulated expression pattern of Ang II. This Ang II binds
with plasma membrane receptor AT1R and transduces signals to activate inflammatory transcription factors like NF-kB, STAT-3. These activated transcription factors
are involved in the overexpression of several inflammatory. (C) The Ang II/AT1R interaction activates macrophages to produce excessive inflammatory cytokines
that resulted in a “cytokine storm.”
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COVID-19 has been linked with several factors (Benedetti et al.,
2020). Cytokine storm and direct kidney cell infection through
ACE-2 were proposed for acute kidney injury during COVID-19
infection (Ahmadian et al., 2020). The ACE-2 was expressed in
proximal tubule epithelial cells, podocytes, glomerular
endothelial cells, and kidney vasculature (Gheblawi et al.,
2020; Magrone et al., 2020a). Reports illustrate that the renin/
Ang/aldosterone system inhibitors during COVID-19 infection
alter ACE2 expression and induced an increased mortality rate
(Sriram et al., 2020; Vaduganathan et al., 2020). It has also been
reported that the cytokine storm during COVID-19 infection
accelerated the expression of a member of a family of
apolipoproteins (APOL1), which resulted in podocyte damage,
as severe acute tubular necrosis, as well as infiltration of
macrophage and lymphocyte (Gupta et al., 2020; Kissling
et al., 2020). Further, patients with functional defects in
immunity were at an increased risk of chronic kidney disease
during the SARS-CoV-2 infection (Cheng et al., 2020; Nadim
et al., 2020).

THE NEUROVIRULENCE OF SARS-COV-2

Reports also illustrate that SARS-CoV-2 infection has also
affected the central nervous system (CNS). Several
neurological manifestations are associated with SARS-CoV-2
infection (Ellul et al., 2020). Acute encephalitis may be caused
by the direct infection of brain tissue with the SARS-CoV-2 virus.
COVID-19 infected patients showed the symptoms of olfactory
and gustatory disturbances, headaches, dizziness, hallucinations,
confusion, dysexecutive disorders, vigilance reduction, neuralgia,
epileptic seizures, ataxia, sudden neurological deficits, and
pyramidal tract sign (Lu Y. et al., 2020; Tsivgoulis et al., 2020;
Lemprière, 2021). Immediately after infection, the COVID-19
affects the brain stem and cortex region through cerebrospinal
fluid (CSF) (Sharifian-Dorche et al., 2020). Neurons and
endothelial cells overexpress ACE-2 receptors (Verdecchia
et al., 2020). The S1 proteins of SARS-CoV-2 bind with this
receptor and induce neurological symptoms (Rhea et al., 2020; Xu
and Lazartigues, 2020). It is thought that both direct respiratory
failure and neurological damages are linked to the brain stem and
cortex region damages (Fodoulian et al., 2020). Neuroinvasion of
SARS-CoV-2 in the mouse brain has been reported (Song et al.,
2021). Further, suitable experimental models are needed to reveal
the potential complications of SARS-CoV-2 in
neuroinflammatory disorders.

COVID-19 infection in the central nervous system (CNS) has
attracted neurologists due to its neurological manifestations
(Zhou and Kang, 2020). The COVID-19 viral particles have
been found in the brain and cerebrospinal fluid (CSF) of the
infected patients (Wu Y. et al., 2020). About 36% of COVID-19
patients develop neurological symptoms indicates that the virus
acts as a neurotropic under certain pathological conditions.
Reports show that COVID-19 infection causes encephalitis,
encephalopathy, cerebrovascular pathologies, acute myelitis,
and Guillain-Barré syndrome (Yachou et al., 2020). The K18-
hACE2 mice infected with COVID-19 show anosmia with brain

thrombosis (Zheng et al., 2021). The ACE-2 receptors were also
found to be present in neurons which were responsible for
neurotropism. Incubation of the BrainSpheres model with
COVID-19 shows a higher fraction of viral particles infected
neural cells (Bullen et al., 2020).

POTENTIAL MOLECULAR TARGETS OF
SARS-COV-2 FOR ANTIVIRAL
THERAPEUTICS
Targeting the molecular pathways involved in the pathogenesis
might provide a new avenue toward managing SARS-CoV-2
infection (Liu et al., 2021). Several molecular targets were
explored to design and develop specific antiviral drugs for
SARS-CoV-2 infection (Krishna et al., 2020). Computational
and molecular docking studies explore spike S1 protein as a
potential molecular target for developing effective therapeutic
inhibitors (Wu C. et al., 2020). The S1 facilitates ACE2 mediated
virus attachment, whereas the S2 subunit of spike protein
facilitates membrane fusion (Shang et al., 2020). Wang Q.
et al. (2020) illustrated the crystal structure of the C-terminal
domain of spike (S) protein-bound with human ACE-2 (Wang Q.
et al., 2020). Lan et al. (2020) also illustrated the receptor-binding
domain’s crystal structure (RBD) of the spike protein complex
with ACE-2. In silico docking experiments demonstrate the
binding interaction of nelfinavir, an anti-HIV drug, with the
spike proteins and illustrate S-n- and S-o-mediated membrane
fusion (Musarrat et al., 2020). Molecular modeling and virtual

FIGURE 4 | Humanized monoclonal antibodies neutralize the SARS-
CoV-2 virus, specifically targeting by attaching to the RBD domain of spike
protein on the surface of the virus. (A) The SARS-CoV-2 binds through RBD of
the S protein and ACE-2 receptor of the host cells. (B) Humanized
monoclonal antibodies bind with the virus spike proteins and neutralize them.
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screening analysis revealed that 14 natural compounds and
10 FDA-approved drugs with the highest binding energy
(−8.1 kcal/mol) to the S-protein of SARS-CoV-2 (de Oliveira
et al., 2020). Pandey et al. (2020) proposed dietary therapy and
herbal medicine for COVID-19 prevention. Traditional
medicines with antiviral and anti-inflammatory properties
were also screened against spike proteins and ACE2 targets.
Molecular dynamics simulation and docking studies revealed
resveratrol and other stilbenoids as promising drug candidates
against the viral protein-ACE2 receptor complex (Wahedi et al.,
2020). Yu et al. (2020) screened 253 active Mangolian
components using SARS CoV homology models. A
pharmacoinformatics study illustrates the bioactive compounds
from medicinal plants as a potential inhibitor of SARS-CoV-2
spike glycoprotein (Sinha et al., 2020). Chemical modification of
phytochemicals has been reported to increase the potency and
selectivity against SARS-CoV-2 infection. Experimental studies
show that natural compounds like quercetin, caffeic acid, and
myricetin act as inhibitors of SARS-CoV-2 infection (Mani et al.,
2020; Mouffouk et al., 2021).

The SARS-CoV-2 binds through the RBD of the S protein and
ACE-2 receptor of the host cells (Figure 4). Attempts have also
been made to develop novel therapeutic recombinant ACE-2
antibodies, ACE inhibitors, AT1R blockers (Krishna et al., 2020).
The role of recombinant human ACE-2 in ARDS therapy has
already been proved (Zhang and Baker, 2017). Potent human IgG
neutralization antibodies as clinical therapeutics candidates
against SARS-CoV-2 Infection were developed (Wan et al.,
2020). The applications of recombinant ACE-2-Ig in the
treatment of SARS-CoV-2 infection have recently been
demonstrated (Lei et al., 2020). Furthermore, several natural
medicinal compounds act as inhibitors of ACE-2 (Junior et al.,
2021). The natural luteoxanthin, violaxanthin, and rutin showed
stronger binding efficiency with the ACE-2 receptor of SARS-
CoV-2 (Upreti et al., 2021). Sulawesi propolis compounds have
also been reported as ACE-2 inhibitors (Khayrani et al., 2021).

The transmembrane serine protease TMPRSS2 is essential for
S protein priming to enter the SARS-CoV-2 virus into host cells.
Therefore, inhibiting TMPRSS2 holds promise as an approach
toward the treatment of SARS-CoV-2 infection. FDA-approved
camostat mesylate (serine protease inhibitor) and bromhexine
hydrochloride (BHH) serves as an inhibitor of TMPRSS2
proteolytic function (University of Aarhus, 2020). Another
FDA-approved anti-inflammatory protein named alpha 1
antitrypsin (A1AT) has also effectively inhibited TMPRSS2
(Azouz et al., 2020). The bromhexine, a mucolytic drug used
in treating respiratory disorders, has been found to inhibit
TMPRSS2 selectively and prevent viral entry into the host cell
(Depfenhart et al., 2020).

Besides, the crystal structure of SARS-CoV-2 main protease
(Mpro) has recently been resolved (Jin and Du, 2020). The crystal
structure of Mpro provides a basis for the design of potential
inhibitors (Zhang L. et al., 2020). This molecular target was
computationally screened with several FDA-approved
antivirals (Hall and Ji, 2020). The Mpro of the SARS-CoV-2
plays a role in SARS-CoV-2 viral genome replication. Therefore,
the Mpro protein serves as an attractive target for developing

drug candidates against COVID-19. Jin and Zhao (2020) showed
the structural basis of certain antineoplastic drugs to inhibit the
Mpro enzyme. Durdagi et al. (2020) screened clinically approved
drugs of NIH Chemical Genomics Center (NCGC)
Pharmaceutical Collection (NPC) as potential inhibitors of
Mpro and identified six promising drug candidates (Durdagi
et al., 2020). Dai et al. (2020) illustrated the X-ray crystal
structures of Mpro in complex with the structure-based
designed compounds 11a or 11b (1.5 Å). In animal models,
both the compounds exhibited good PK properties with low
toxicity (Dai et al., 2020). Jin and Zhao (2020) showed the
X-ray crystal structure of Mpro in complex with carmofur
with very low EC50 values. The combinatorial design of
peptide-based inhibitors was developed by targeting the
dimerization of Mpro (Goyal and Goyal, 2020). FDA-
approved antiplatelet cilostazol also effectively inhibits Mpro
of SARS-CoV-2 (Abosheasha and El-Gowily, 2020). Enmozhi
et al. (2020) showed andrographolide, a plant terpenoid, as an
inhibitor of Mpro through silico studies. Gentile et al. (2020)
screened marine natural products as inhibitors of SARS-CoV-2
main protease.

The RNA-dependent RNA polymerase [(RdRp), also named
nsp12] of SARS-CoV-2 is the central component of viral
replication. It is considered to be a primary target for the
development of antiviral therapeutics. Recently, Gao Y. et al.
(2020) reported full-length nsp12 in complex with cofactors nsp7
and nsp8 by electron microscopy (2.9 Å). Researchers repurposed
anti-HCV nucleotide inhibitors against SARS-CoV-2 RdRp
(Elfiky, 2020a). The cryo-EM structure of RdRp (2.8 Å) with
replicating RNA and remdesivir was recently revealed. This study
indicates that remdesivir mimics like an RNA nucleotide and
covalently linked elongating RNA, thereby inhibits further
replication of viral RNA molecule (Yin et al., 2020). The
effectiveness of FDA-approved antiviral drugs like ribavirin,
remdesivir, sofosbuvir, galidesivir, and tenofovir were tightly
linked with RdRp. The other agents like guanosine derivative
(IDX-184), YAK, and setrobuvir were top antiviral drugs with
very high specificity to SARS-CoV-2 RdRp (Elfiky, 2020b; Elfiky,
2020c). Du and Chen (2020) showed the pharmacokinetics of
favipiravir, a potent RdRp inhibitor approved for use in influenza,
and demanded to design clinical trials for favipiravir against
COVID-19 (Thomas et al., 2020). Lung et al. (2020) showed
theaflavin could be a potential SARS-CoV-2 RdRp inhibitor.

Reports illustrate that respiratory failure during COVID-19
pathogenesis has generally been associated with the activation of
inflammatory transcription factors (Yarmohammadi et al., 2021).
In response to the activation of transcription factors the
inflammatory markers like interleukin 6, interleukin 8, VEGF,
MCP-1, and E-cadherin have been overexpressed (Abers et al.,
2021). Researchers also target the transcription factors involved
in SARS-CoV-2 pathogenesis. Telmisartan effectively
downregulates AT1R by acting as an agonist of Peroxisome
Proliferator-Activated Receptor-gamma (PPAR-gamma). JAK-
STAT-2 signaling inhibition has also been proposed as a new
treatment strategy for patients with SARS-CoV-2 infection (Seif
et al., 2020). Cannabis sativa extracts can down-regulate the
expression of the two critical receptors for SARS-CoV-2 in
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several human epithelial models via PPAR-gamma modulation
(Esposito et al., 2020). It is proposed that treatment with
glucocorticoids, AT1R inhibitor, and retinoic acids might
modulate NF-κB signaling, reducing the “cytokine storm”
(Banu et al., 2020; Li Z. et al., 2020; Magrone et al., 2020b).
Tocilizumab has also interacted with mIL-6R and sIL-6R and
subsequently inhibits JAK-STAT and MAPK/NF-κB-IL-6
signaling pathways (Saha et al., 2020b). Horowitz and
Freeman (2020) hypothesized and recommended a
randomized controlled trial by modulating NF-κB and
subsequent cytokine formation to manage SARS-Cov-2
complications. An integrative pathway network analysis study
illustrates that SARS-CoV-2 miRNAs target NF-KB, JAK/STAT3,
TGF beta signaling transduction pathways, and cellular
epigenetic regulation pathways (Aydemir et al., 2021).

EXPERIMENTALMODELS FOR THE STUDY
OF SARS-COV-2 PATHOGENESIS

Cellular Models
Increasing experimental evidence illustrate several potential
molecular targets for the treatment of SARS-CoV-2 infection.
As the SARS-CoV-2 pandemic is alarmingly progressing, there is
an urgent need to develop reliable cellular and animal models to
understand the mechanism of pathogenesis and to apply this
knowledge to develop therapeutic countermeasures. The
development of clinically relevant experimental models is
essential to examine the pathogenesis of COVID-19 in
different organs (Chugh et al., 2021). Researchers started using
several experimental models to study the pathogenesis of SARS-
CoV-2 infection and study drug candidates’ pharmacological

action (Figure 5). Further, the cellular models were used to
analyze viral titer values of infectious samples isolated from
the patients. Moreover, the cellular models were used to
overexpress specific SARS-CoV-2 proteins to analyze 3 D
crystal structure of proteins (Table 2).

Human lung epithelial cellular models are the most
prominent platform for SARS-CoV-2 infectious studies
(Sungnak et al., 2020). Lung-specific extracellular matrix 3D
cell cultures have been introduced by scientific companies that
enable them to generate more relevant scientific data (Li Y. et al.,
2020). Apart from the alveolar cellular models, the ACE-2
expression has been reported in other organs such as kidney
and gut-derived cellular models. Hoffmann et al. showed that
treating Vero-E6 cells, a monkey kidney cell line, with an Anti-
ACE-2 Antibody, blocked VSV pseudotypes’ entry expressing
the S protein (Hoffmann et al., 2020). The cytokine storm
occurring during SARS-CoV-2 infection can effectively be
analyzed using human PBMC cellular models (Thomas et al.,
2020).

Indeed, the experiments with SARS-CoV-2 should be
conducted at biosafety level 3. There is a clear challenge in the
laboratory diagnosis and cultivation of this deadly SARS-CoV-2
viral particle. Scientific methods and guidelines have to be
followed to enable safety while handling RNA, DNA, and
proteins from the SARS-CoV-2 infected cells (Jureka et al.,
2020) illustrated methods to culture SARS-CoV-2 in multiple
cell lines like Vero E6, Calu-3, CaCo-2, Huh7, A549, and
293T cell lines and measured virus infectivity by agarose
SARS-CoV-2 plaque assay. Recent investigations revealed that
viral infectivity depends on the presence of ACE-2 and TMPRSS2
(Hoffmann et al., 2020). Therefore, the researchers overexpress
the SARS-CoV-2 entry receptor ACE-2 or the Spike processing

FIGURE 5 | Experimental models to study the pathogenesis of SARS-CoV-2 infection and study drug candidates’ pharmacological action.
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TABLE 2 | List of cell lines and organoids used for SARS-CoV-2 culture, treatment, and prevention strategies.

Experimental model Pharmacological studies References

Eukaryotic cellular models

Human primary airway epithelial cells An orally bioavailable β-D-N4-hydroxycytidine (NHC; EIDD-1931) and its
derivatives were tested to inhibit SARS-CoV-2 infection using human primary
airway epithelial cells

Sheahan et al. (2020)

Single-cell RNA sequencing was conducted to understand transmembrane
receptors’ expression pattern to bind the SARS-CoV-2 virus

Lukassen et al. (2020)

The entry of SARS-cov-2 in polarized Calu-3 lung epithelial cells was illustrated Tseng et al. (2005)
Compared to the expression pattern of ACE-2 and TMPRSS2 in primary lung
epithelial cell controls

Abo et al. (2020)

Studied the expression levels of the ACE2 receptor to understand the binding
interaction of SARS-CoV-2 in the human airway epithelium

Zhang H. et al. (2020)

Studied the potential of remdesivir to inhibit SARS-CoV-2 in human primary lung
cells

Pruijssers et al. (2020)

The human reconstituted airway epithelial model was tested for remdesivir
therapeutic efficacy

Pizzorno et al. (2020)

Vero cells Studied the potential of ivermectin as an inhibitor of SARS-cov-2 in Vero-hSLAM
cells

Caly et al. (2020)

Studied the efficacy of IFN-α or IFN-β against SARS-cov-2 viral titers in vero cells Mantlo et al. (2020)
Observed anti-ACE2 against viral replication in vero E6 cells Hospital Universitario Ramón y

Cajal (2003)
Identified the SARS-cov-2 virus replication in Vero-CCL81 and vero E6 cells (Harcourt et al., 2020)
Observed the localization of CD147 in SARS-cov-2 affected vero E6 cells Wang K. et al. (2020)
Studied the potential of nelfinavir as an active therapeutic agent against COVID-19
in vero E6 cells

Xu et al. (2020)

Employed VeroE6 cells for virus isolation and culture Hui et al. (2020)
The potential of lianhuaqingwen against SARS-cov-2 infection was observed using
the cytopathic effect (CPE) and plaque reduction assay in vero E6 cells

Runfeng et al. (2020)

Vero-6 cells were infected for the titration of infectious SARS-cov-2 particles by
plaque-forming assays

Mendoza et al. (2020)

The inhibitory effect of liu shen capsule against SARS-cov-2 replication was
evaluated by CPE and plaque reduction assay in vero E6 cells

Ma et al. (2020)

CaCo-2 cells Employed CaCo-2 cells for culturing COVID-19 obtained from air and
environmental samples

Zhou and Otter (2020)

CaCo-2 cells were used for SARS-cov-2 isolation from clinical specimens Kim et al. (2020)
SARS-CoV-2 viral RNA present in the infected cardiomyocytes induced productive
infections in CaCo-2 cell lines

Bojkova et al. (2020)

Assessed viral replication and proinflammatory responses to human macrophages
and Caco-2 cells

Hui et al. (2020)

CaCo-2 cells Analyzed gene expression pattern of SARS-cov-2 infections using single-cell
transcriptomics in H1299, Caco-2, and Calu-3 cells

Emanuel et al. (2020)
H1299
Calu-3
Calu-3 A clinically proven protease inhibitor, camostat mesylate, inhibits Calu-3 infection

caused by SARS-cov-2
Huang et al. (2020)

HEK 293 cells The flow cytometric approach employed to assess spike-specific IgG and IgM
antibody responses

Lapuente et al. (2020)

Mapped the expression pattern of N-glycosylation on hACE2 on human HEK 293
cells

Shajahan et al. (2020)

Full-length human ACE2 was expressed HEK 293 F cells, purified and used for the
structural determination of ACE2

Yan et al. (2020)

Human intestinal epithelial cells Human intestinal epithelial cells used for the production of SARS-CoV-2 virus
particles

Stanifer et al. (2020)

Organoids

Human derived blood vessel organoids Tested the efficacy of hrsACE2 on SARS-CoV-2 infected organoids Monteil et al. (2020)
Human kidney organoids
Human iPSC-3D organoids Used as a potential ex vivo infection model for novel treatment and prevention

strategies
Zhou and Liu (2020)

hPSC-derived lung organoids Analyzed transcriptome analysis after SARS-CoV-2 infection Han et al. (2020)
Performed a high throughput and identified FDA-approved as inhibitors of SARS-
cov-2 entry

Human hPSC derived colonic organoids
(hPSC-COs)

Conducted single-cell RNA-seq and immunostaining to show entry of viral particles
through ACE-2; hPSC-COs organoids were employed as a high-throughput
screening system for FDA-approved drugs

Duan et al. (2020)

Human induced pluripotent stem cell (iPSC)-
derived BrainSphere model

Allow both COVID-19 infection and serves as an experimental model for
nerotropism of COVID-19

Bullen et al. (2020)
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cellular protease TMPRSS2 in the experimental cell lines
(Matsuyama et al., 2020).

Human Pluripotent Stem Cell-Based
Platform
There is an urgent need for the development of relevant
organoid type physiological models to study SARS-CoV-2
infection. The hPSC-derived cells/organoids provide valuable
models for understanding human tissues’ cellular responses to
SARS-CoV-2 infection and disease modeling of COVID-19
(Han et al., 2021). Recent clinical studies show a strong
association between COVID-19 and diabetes (Muniyappa
and Gubbi, 2020). The ACE-2 protein was expressed in the
islet and exocrine tissue microvasculature and a subset of
pancreatic ducts. Results show that human pancreatic beta
cells and liver organoids were permissive to COVID-19
infection (Coate et al., 2020). Adult primary human islets,
hepatocyte, and cholangiocyte organoids have also served as
COVID-19 experiment models (Zhou et al., 2020; Lamers et al.,
2021).

The hPSC-derived cells and organoids serve as a platform for
SARS-CoV-2 tissue tropism. Further, human pancreatic alpha
and beta cells were also used to study SARS-CoV-2 infection
(Yang et al., 2020). It has also been found that human hepatocyte
and cholangiocyte organoids show permissive conditions for the
culture of SARS-CoV-2 (Chandar et al., 2020). It has been found
that hPSC-derived cells/organoids show similar chemokine
responses as occurs in COVID-19 tissues (Zhou et al., 2020);
(Salahudeen et al., 2020).

The COVID-19 infects human neuronal progenitor cells and
experimental 3D brain organoids (Zhang B. Z. et al., 2020).
Thus, human-induced pluripotent stem cell (iPSC)- derived
BrainSphere serves as a reliable state-of-the-art 3D organotypic
cell culture model for COVID-19 infection. Incubation of the
BrainSpheres model with COVID-19 shows a higher fraction of
viral particles infected neural cells (Bullen et al., 2020). This lab-
grown BrainSphere model has been used for neurotoxicity
studies of COVID-19 in a simple BSL-3 environment.
Further, researchers illustrated COVID-19 infects two
different iPSC-derived (IMR90 and Crx-iPS) human 3D
cerebral organoids and causes Tau abnormalities and
neuronal cell death (Ramani et al., 2020). Further, COVID-
19 infects choroid plexus of brain and alters the CSF-blood
brain barrier in experimental human organoids (Pellegrini
et al., 2020). Additionally, the neuroinvasive and
neurodegeneration potential of SARS-CoV-2 has also been
revealed in 3D human brain organoid models (Song et al.,
2020).

Liver organoids were also to be infected by COVID-19. The
COVID-19 infection induces tissue damage in human liver ductal
organoids ex vivo, and the liver organoids serve as a model for the
studies of tropism and pathogenesis of SARS-CoV-2 (Zhao B.
et al., 2020). The intrahepatic bile duct cells grown using a human
liver organoid platform have effectively been infected by COVID-
19 and illustrate the mechanism for SARS-CoV-2 liver injury
(Chandar et al., 2020).

Biomaterials Based Models
The organomimetic 3D bioprinting technology mimics the
physiological environment for the study of SARS-CoV-2
infection. The 3D bioprinted lung-like structures act as an
air–tissue interface with open architecture and multiple cell
types. These 3D lungs, bronchiolar, or alveolar models have
been prepared for the studies of SARS-CoV-2 infection
(Chakraborty et al., 2020). Recently, the pathological behavior
of SARS-CoV-2 and the efficacy of therapeutic agents were
analyzed by using hydrogel-based high-precision 3D bioinks
(Choi et al., 2021). Several biomaterials display distinct
structural characteristics for COVID-19 related research (Jarai
et al., 2021).

Transgenic Mice Models
Animal studies are essential to understand the mode of action,
absorption, mode of administration, pharmacokinetics, and
pharmacodynamics of the drugs that inhibit SARS-CoV-2
molecular targets (Pandey et al., 2020). Animal models are
well suited for the invention of potential vaccines or antivirals.
Currently, there is no specific reported animal model to study the
pathogenesis of SARS-CoV-2 and the treatment outcome of
therapeutic agents (Rockx et al., 2020). However, several
investigations are currently undergoing animal models such as
macaques, cats, ferrets, hamsters, and transgenic mice ACE-2
(hACE-2) (Cleary et al., 2020). The Jackson Laboratory,
United States of America is currently producing different
transgenic mouse models suitable for SARS-CoV-2 infection
(Callaway, 2020). A vector carrying a human ACE-2 sequence
has been introduced to the genome of wild-type mice regulated by
the human cytokeratin 18 (K18) promoter in mouse epithelial
cells. The SARS-CoV-2 causes fatal infection in transgenic K18-
hACE2 mice via hACE2 receptors (Cleary et al., 2020; Lutz et al.,
2020). The experimental mice transduced with Ad5-hACE2
develop viral pneumonia with a widespread infection of the
lungs (Borges et al., 2020).

The laboratory wild-type mice will not be a suitable model for
antiviral therapeutics development. The SARS-CoV-2 viral
particle induces interstitial pneumonia and macrophages
infiltration in the human lung tissue. The bronchial and
alveolar epithelial cells are the primary targets of SARS-CoV-2
infection. However, it has been found that low interactions
between the viral S protein and the mouse ortholog of the
human ACE-2 receptor (Dinnon et al., 2020). Therefore, the
researchers generate a transgenic mouse that overexpresses
human ACE-2 by “knocked-in” methods and sensitizes the
laboratory mouse for SARS-CoV-2 infection. Jiang et al.
recently developed SARS-CoV-2 hACE-2 transgenic C3B6
mice. This infected mice model shows typical interstitial
pneumonia and pathology similar to SARS-CoV-2 infected
patients (Jiang et al., 2020). Recent experimental evidence
indicates that the SARS-CoV-2 pathogenicity was higher in
transgenic hACE-2 mice than the wild-type laboratory mice
(Bao et al., 2020). The pathogenicity of SARS-CoV-2 in
hACE-2 mice fulfilled Koch’s postulates and the transgenic
mouse model may facilitate the development of therapeutics
and vaccines against SARS-CoV-2 (Bao et al., 2020).
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Transgenic mice that express hACE2 in the epithelial cells can
develop a lethal SARS-CoV-2 infection after intranasal
inoculation (Lutz et al., 2020). Dinnon et al. (2020) produced
a mouse model that supports the study of IFN lambda-1a
treatment as similar to human COVID-19 infection. Israelow
et al. (2020) reported developing a mouse model of SARS-CoV-2
based on adeno-associated virus (AAV)-mediated expression of
hACE-2. These mice support viral replication and exhibit
pathologic findings found in COVID-19 patients, and these
mice were also used for antibody production. Another animal
study illustrated the inhibitory role of angiotensin receptor
blockers (ARBs) against SARS-CoV2 mediated pneumonia
(Kai and Kai, 2020). The laboratory mice transduced with
human ACE2 developed pneumonia after COVID-19 infection
and neutralized by mAbs with an attenuated lung infection and
inflammation (Hassan et al., 2020). A recent study shows the fatal
neuroinvasion of SARS-CoV-2 in transgenic K-18-hACE2 mice
(Carossino et al., 2021). Another study also illustrates infection of
CNS cells and encephalitis by SARS-CoV-2 with the
inflammatory response in K18-hACE2 mice (Kumari et al.,
2021). K18-hACE2 transgenic mice pre-treated with
convalescent plasma prevented most signs of severe
pneumonia. Thus, K18-hACE2 mice showed molecular
pathogenesis of COPVID-19 infection and suitable for
therapeutic intervention studies (Zheng et al., 2021). The
adeno-associated virus that expresses human ACE2, either
Ad5-hACE2 or AAV-hACE2, develops an infection in the
mouse lungs like viral pneumonia. Therefore, mice sensitized
with Ad5-hACE2 or AAV-hACE2 might be helpful in the studies
of testing vaccines and antiviral therapeutics (Muñoz-Fontela
et al., 2020).

Non-Human-Primate Models
Nonhuman primate models were suitable for the development of
therapeutics and vaccines for COVID-19 to clinical trials.
Pathology and pathogenesis of SARS-CoV-2 infection were
compared in the lungs of different nonhuman primates like
rhesus macaques, baboons, and marmosets (Singh et al., 2021).
Effective treatment of SARS-CoV-2-infected rhesus macaques by
attenuating inflammation (Lu et al., 2021). Researchers illustrate
that the intranasal vaccination of ChAdOx1 nCoV-19/AZD1222
reduces COVID-19 infection and prevents the shedding of SARS-
CoV-2 D614G compared to intramuscular vaccination using
rhesus macaques as an experimental model (van Doremalen
et al., 2021). The immunogenicity and protective efficacy of
vaccine candidates (mRNA-1273, followed by Ad26.CoV2.S,
NVX-CoV2373, BNT162b2, RBD, and BBV152) were tested in
preclinical nonhuman primate models, and the results were
correlated with the clinical trial data (Mukhopadhyay et al.,
2020). Preclinical trials of COVID-19 vaccine candidates in
NHPs yielded promising results, with some candidates faring
better than others. The immunogenicity and protective efficacy of
a single dose of adenovirus serotype 26 (Ad26) vector-based
vaccines are expressing the SARS-CoV-2 spike (S) protein in
nonhuman primates (Mercado et al., 2020). Baricitinib is a

clinically approved JAK inhibitor that exhibits a therapeutic
effect against SARS-CoV-2 infection in the rhesus macaque
model. Baricitinib-treated animals showed suppression of
cytokines and chemokines production in nonhuman primates
(Hoang et al., 2021). However, standardized protocols are still
needed to compare vaccine efficacy in nonhuman primates.

CONCLUSION

The pandemic outbreak of SARS-CoV-2 infection has created a
severe health problem worldwide as it causes severe ARDS.
Conversely, no vaccine and specific drugs are available for the
treatment of SARS-CoV-2 infection. Present clinical treatment
regimes are inadequate to overcome the viral replication in the
human host cells and prevent organ failure. Therefore, there was a
growing research interest among the researchers to understand the
biology of SARS-CoV-2. Understanding the viral druggable
molecular targets helps us design structure-based inhibitors for
effective antiviral therapy and develop vaccination strategies.
Besides cellular and animal models, the human and animal
organoids currently play a significant role as an experimental
SARS-CoV-2 platform. The present review illustrates fundamental
research and clinical trials using in vitro cell lines, human organoids,
and transgenic ACE-2 mice as experimental models.

Further, this review explored the potential druggable
molecular targets to study the therapeutic agents for their
efficacy. We believe that the present review may guide the
basic researchers to select suitable experimental models for
their pharmacological and clinical studies. This will meet the
clinicians to design better treatment strategies for the ongoing
SARS-CoV-2 pandemic.
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