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Background and Aims: Tacrolimus(TAC)-induced nephrotoxicity, which has a large
individual variation, may lead to treatment failure or even the end-stage renal disease.
However, there is still a lack of effective models for the early prediction of TAC-induced
nephrotoxicity, especially in nephrotic syndrome(NS). We aimed to develop and validate a
predictive model of TAC-induced tubular toxicity in children with NS using machine
learning based on comprehensive clinical and genetic variables.

Materials andMethods: A retrospective cohort of 218 childrenwith NS admitted between
June 2013 and December 2018 was used to establish the models, and 11 children were
prospectively enrolled for external validation. We screened 47 clinical features and 244
genetic variables. The changes in urine N- acetyl- β-D- glucosaminidase(NAG) levels before
and after administration was used as an indicator of renal tubular toxicity.

Results: Five machine learning algorithms, including extreme gradient boosting (XGBoost),
gradient boosting decision tree (GBDT), extremely random trees (ET), random forest (RF), and
logistic regression (LR) were used for model generation and validation. Four genetic variables,
including TRPC6 rs3824934_GG, HSD11B1 rs846910_AG, MAP2K6 rs17823202_GG, and
SCARB2 rs6823680_CCwere incorporated into the final model. The XGBoost model has the
best performance: sensitivity 75%, specificity 77.8%, accuracy 77.3%, and AUC 78.9%.

Conclusion: A pre-administration model with good performance for predicting TAC-
induced nephrotoxicity in NS was developed and validated using machine learning based
on genetic factors. Physicians can estimate the possibility of nephrotoxicity in NS patients
using this simple and accurate model to optimize treatment regimen before administration
or to intervene in time after administration to avoid kidney damage.
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INTRODUCTION

Tacrolimus (TAC) is the preferred medication for children with
refractory nephrotic syndrome (NS). However, the clinical use of
TAC is limited by its adverse effects, especially nephrotoxicity.
Renal interstitial fibrosis and tubular atrophy are the main
manifestations of nephrotoxicity, and the incidence of
nephrotoxicity has a large individual difference (about
4.7∼20.0%) (Choudhry et al., 2009; Roberti and Vyas, 2010;
Gulati et al., 2012; Jahan et al., 2015). If nephrotoxicity occurs
during TAC treatment, the reduction or withdrawal of TAC is
needed, which may result in treatment failure. Furthermore,
damage of kidney function can lead to end-stage kidney
disease even disability and death. Therefore, the early
prediction of TAC-induced nephrotoxicity is conducive to the
selection of appropriate regimens and interventions to ensure
efficacy and avoid side effects. Thus, it is very necessary to
establish a pre-administration prediction model of TAC-
induced tubular toxicity and to excavate the relevant factors
that can accurately predict tubular toxicity.

Tacrolimus, an important calcineurin inhibitor (CNI), is
widely used in kidney transplantation and NS. However, there
are only few reports focused on the risk factors of TAC-induced
nephrotoxicity in NS (Morgan et al., 2011; Sinha et al., 2013; Gao
et al., 2020). The risk factors excavated by these models include
TAC trough concentration, diarrhea, proteinuria duration, high
blood pressure, etc. However, these studies have certain
limitations: First, these risk-factor models were generated
using traditional logistic regression (LR), which may not be
the optimal method because of its low prediction performance;
Second, Gao et al. (2020) used serum creatinine as the indicator of
nephrotoxicity , which may not sensitively reflect kidney damage.
Studies have shown that a significant increase in serum creatinine
can only be seen when kidney function drops to 50% of normal
levels (Price, 1992). Therefore, the model based on this insensitive
indicator may not be able to identify patients with mild to
moderate nephrotoxicity. In addition, serum creatinine reflects
glomerular damage instead of renal tubular damage. Therefore, it
could not be used as an accurate marker of tubular toxicity of
TAC. Third, the existing studies only investigated clinical
variables such as gender, age, and the pathological
classification of NS. Although factors such as age and weight
have been shown to affect the pharmacokinetics of TAC in organ
transplantation and NS, they could not fully explain the
individual variations in TAC-induced nephrotoxicity.

Studies have shown that 20–95% of individual differences in drug
pharmacokinetics-pharmacodynamics (PK-PD) are caused by
genetic factors especially single nucleotide polymorphisms (SNPs)
(Evans and Mcleod, 2003). For example, from the PK perspective,
TAC is a substrate of CYP3A4/5 and P-gp. Current studies in organ
transplantation and NS have consistently shown that CYP3A5*3
significantly affects the pharmacokinetics of TAC, the TAC
concentration of *3 carriers is higher than that of non-carriers
(Zhang et al., 2005; Renders et al., 2007; Wang D. et al., 2019;
Wang X. et al., 2019). Additionally, some transcriptional regulators
such as NF-κB (encoded by NFKB1 and RELA), inflammatory
cytokines such as IL2 (encoded by IL2) and IL10 (encoded by IL10)

can regulate the expression and activity of CYP3A and P-gp (Abdel-
Razzak et al., 1993; Stein et al., 1996; Tinel et al., 1999; Gu et al.,
2006). Therefore, the corresponding gene polymorphismsmay affect
the pharmacokinetic of TAC. Prednisone, which is often combined
with TAC for treating NS, can induce CYP3A (Pichard et al., 1992).
While prednisolone is a weak inhibitor of CYP3A4 (Lam et al.,
2008). Hormone convertase 11β-HSD1 (encoded by HSD11D1) is a
metabolic enzyme that converts prednisone to prednisolone, which
gene polymorphism may also affect the TAC pharmacokinetic. As
for PD, cytokines such as IL2, IL2-Rα, and IL-13, and proteins such
as MAPK and TGFβ constitute the PD pathway of TAC. Therefore,
the mutations of the above relevant genes may cause large individual
differences in TAC PK and PD (Hoyos et al., 1989; Cardenas et al.,
1994; Macián et al., 2000; Jeffrey et al., 2007). For example, the CNI-
induced nephrotoxicity (tubular interstitial fibrosis) is correlated
with the overexpression of TGFβ protein (Border and Noble, 1994;
Khanna et al., 2002; Wolf, 2006). Besides, the leakage of blood
protein from the urine is an important characteristic of NS.
Therefore, TAC will leak into the urine with binding protein
because of its high protein binding rate. Some studies found that
the gene polymorphisms of podocyte proteins related to renal
filtration can significantly affect the concentration and efficacy of
TAC inNS children (Mishra et al., 2014;Mo et al., 2020). whichmay
also affect the nephrotoxicity. Thus, the gene polymorphisms of
proteins related to TAC PK-PD pathways, kidney podocytes,
transcriptional regulators, inflammatory cytokines, and hormone
convertases may be the important reasons for the individual
differences in TAC-induced nephrotoxicity. These genetic factors
may fully explain the nephrotoxicity together with clinical variables.

Therefore, an early and accurate model with comprehensive
clinical and genetic variables is needed to predict TAC-induced
nephrotoxicity in NS children. In recent years, thanks to the
powerful data mining and computing capacity, machine learning
has gradually played an important role in the biomedical field,
especially in the classification and regression of disease diagnosis,
treatment, and prognosis. Tang et al. (2017) established a steady-
state dose prediction model of TAC in the kidney transplant
population using multiple machine learning algorithms, with a
prediction accuracy over 70%. Lin et al. (2015) used machine
learning to develop an automatic recognition system for
methotrexate hepatotoxicity. These models might provide
convenient, scientific, and accurate clinical decision-making in
diagnosis, treatment, and toxicity in the future. Nonetheless, there
have not been any TAC-induced nephrotoxicity prediction
models in NS generated by machine learning so far.

Therefore, this study aims to develop an early, sensitive, and
accurate TAC-induced nephrotoxicity prediction model based on
clinical and TAC-related genetic variables, which is conducive to
the doctors’ treatment decisions.

METHODS

Study Design and Population
We performed two observational cohort studies at the
Guangzhou Women and Children’s Medical Center. The
derivation cohort, which consisting of retrospectively collected
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data from records of children who visited the department of
nephrology and were treated with TAC between June 2013 and
December 2018, was used to generate the prediction model. The
validation cohort, which consisting of prospectively collected data
from records of children who were treated with TAC between
January 2019 and October 2019, was used for the external
validation of the model. The inclusion criteria are: 1) Met the
diagnosis criteria of refractory NS, including steroid-dependent
NS, steroid-resistant NS, and frequently relapsing NS (Lombel
et al., 2013). 2) Age ≤16 years old. 3) Patients regularly received
TAC and low-dose corticosteroids for more than 1 month, and
the trough concentration ≤12 ng/ ml during follow-up. The
exclusion criteria are: 1) Steroid-sensitive NS, secondary NS,
hereditary NS, etc. 2) Co-treatment with drugs that may cause
nephrotoxicity within 2 months prior to the onset of
nephrotoxicity, such as mycophenolate mofetil, high-dose
methylprednisolone, cyclophosphamide, diuretics, contrast
agents, biological agents, first or second generation of
cephalosporin, vancomycin, etc. 3) Patients with impaired
liver/kidney function or other malignant diseases (such as
cancer). 4) Patients had elevated NAG levels at baseline before
they were given TAC. 5) Patients with poor compliance. A total of
274 NS children treated with TAC were screened out, but 218
patients were eventually included for modeling and validating.
Furthermore, we continued to collect and follow up 35 NS
patients from January 2019 to October 2019 for external
validation. Because of loss of follow-up, abnormal baseline
NAG levels before administration, undetected key genes, and
the combination of contrast agents and other interfering agents,
24 patients were excluded during the follow-up, 11 patients were
eventually included in the validation.

This study was approved by the Ethics Committee of our
hospital (No. 201509), and also registered on Clinical Trial
(NCT02602873). All patients’ guardians signed the informed
consent before the trial. Besides, the data used in this study
were anonymous.

Assessment of Tubular Toxicity
All patients received a double immunosuppressive regimen
consisting of tacrolimus (Prograft™, Astellas, Killorglin,
Ireland) and low-dose prednisone or methylprednisolone
(Guangdong Huanan Pharmacy Ltd., Dongguan, China; Pfizer
Italia S. r.l., Italy). The initial dose of tacrolimus (0.10–0.15 mg/
kg twice daily) was given to patients, and doses were subsequently
adjusted to achieve a target trough concentration (C0) of
5–10 ng/ ml.

Renal biopsy, the gold standard for nephrotoxicity assessment,
can evaluate the kidney pathological changes. However, most
patients do not accept it since it is an invasive test. Thus, ethical
issues limited the number of participants. Moreover, renal biopsy
is a post-nephrotoxicity test, which is difficult to predict the TAC-
induced nephrotoxicity early and sensitively because of its
hysteresis. Besides, serum creatinine level, which has low
sensitivity and accuracy, is also not a good indicator of tubular
toxicity. Therefore, we used urine N- acetyl- β-D-
glucosaminidase (NAG) as a tubular toxicity indicator. Within
48 months after the initiation of continuous TAC treatment, if

NAG level increases above the upper limit of the normal range
after excluding other factors (such as combined use of contrast
agents, heavy proteinuria, abnormal baseline NAG level, etc.),
early TAC-induced tubular toxicity is defined according to the
criteria of drug side effects (Naranjo et al., 1981). NAG is a
lysosomal enzyme derived from proximal tubular epithelial cells.
This enzyme is usually not filtered through the glomerulus, thus
the excretion of this enzyme in the urine is not affected by the
same enzyme in the blood, which can specifically reflect the
trauma of renal parenchyma.8 In addition, the renal tubule is
mainly damaged in the acute or chronic CNI-induced
nephrotoxicity, which may cause the rapid induction of
lysosomal enzyme release (Naesens et al., 2009), and the NAG
activity often increases earliest in the urine (Marchewka et al.,
2009). Plus NAG is stable in urine, it is often used as an important
and reliable indicator of early CNI-induced nephrotoxicity (Price,
1992; Marchewka et al., 2009).

Clinical Features, Genetic Variables and
Genotyping
Various clinical variables before administration and within 48
consecutive months after administration were collected,
including hematological characteristics, urine characteristics,
drug information, disease diagnosis, pathological examination,
etc. When the NAG level becomes abnormal in urine, we should
particularly pay attention right away to the time, age, weight, etc.
All the complications and the drugs used in the same period
should be recorded in detail, which is the basis for the
identification of side effects. All clinical variables used in
feature selection and their abbreviations are shown in
Supplementary Table S1.

The genetic variables (SNPs) were comprehensively detected,
including genes related to TAC PK-PD pathways, hormone
convertase, kidney podocytes, transcriptional regulators,
inflammatory cytokines, etc. These SNPs may have a
significant effect on the concentration and the efficacy of TAC
(Hoyos et al., 1989; Pichard et al., 1992; Abdel-Razzak et al., 1993;
Border and Noble, 1994; Cardenas et al., 1994; Stein et al., 1996;
Tinel et al., 1999; Macián et al., 2000; Khanna et al., 2002; Zhang
et al., 2005; Gu et al., 2006;Wolf, 2006; Jeffrey et al., 2007; Renders
et al., 2007; Lam et al., 2008; Mishra et al., 2014; Wang D. et al.,
2019; Wang X. et al., 2019; Mo et al., 2020). Therefore, they may
also affect the TAC-induced nephrotoxicity. The inclusion
criteria based on these SNPs are: 1) potentially functional
mutant located at exon, 5’-UTR, 3’-UTR, and some intron; 2)
affecting the microRNA binding sites activity; 3) the minor allele
frequency (MAF) reported in HapMap was ≥5% for Chinese
subjects. 2 ml of peripheral blood was collected to extract DNA
using Genome TIANGEN Blood DNA Extraction Kit (DP348,
Beijing, China). The published PCR-RFLP method Li et al.
(2011), Zhang et al. (2013) and MALDI-TOF MS method
(Agena Bioscience MassARRAY® system, Agena Bioscience,
San Diego, CA, United States) were used for all detection of
SNPs. The specific information of all SNPs is shown in
Supplementary Table S2. The Hardy-Weinberg equilibrium
test was performed using χ2 test or Fisher’s exact test
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(two-sided). The sample size was calculated by using the PASS
software (version 11.0.7; PASS, NCSS, LLC).

Machine Learning
A single-sample Kolmogorov-Smirnov test of normality was
performed for all variables. Data were expressed as the median
and range or mean ± SD, depending on the data type.

Based on the clinical and genetic variables, we used machine
learning algorithms to generate a TAC-induced nephrotoxicity
prediction model in NS children. Machine learning can be
divided into 3 steps: 1) Data pre-processing 2) Feature
selection 3) Model generation and validation. Besides, five-fold
cross-validation was used to evaluate the performance and
prediction error of feature selection and model generation.
The flowchart of machine learning is shown in Figure 1.
Machine learning techniques were implemented in Python
3.6.5 using Scikit-learn 0.19.1. GraphPad Prism 5 and
CorelDRAW X7 were used for graphing. p values of <0.05
were considered significant statistically.

Data Preprocessing
Variables with missing rate >10% were removed. The missing
values of continuous and categorical variables were filled with the
mean and mode values, respectively. The continuous variables
were normalized by z-score normalization. While the categorical
variables were transformed into dummy variables.

Feature Selection
Univariate analysis was used to explore the correlation between
each variable and TAC-induced nephrotoxicity (NAG). The
negative variables (p > 0.05) were excluded. Then, data
transformation was carried out on the original continuous
variables to form the other two kinds of data: min-max
normalization and L2 normalization. Four machine learning
algorithms, extreme gradient boosting (XGBoost), gradient
boosting decision tree (GBDT), extremely random trees (ET),
and random forest (RF) combined with SMOTE were used to
analyze the above four forms (z-score normalization, min-max
normalization, L2 normalization, and original) of data and
generate models. The important contribution of each variable
in the four models was evaluated by the median important
ranking. Then starting from the variable with the highest
contribution, XGBoost algorithm combined with the five-fold
cross-validation method iteratively generated a new model by
adding one variable at a time. Then the Accuracy, Sensitivity, and
AUC results of the model were evaluated until the last variable is
added. The optimal variables which constitute the final feature set
were determined by the above three indicators.

Model Generation and Validation
The LR, ET, GBDT, RF, and XGBoost algorithms were used to
analyze the above final feature set and generate nephrotoxicity
prediction models. During model generation, 218 NS patients

FIGURE 1 | The flowchart of model generation and validation. The left side of the dotted line is the process of model generation, while the right side is the external
validation of the model. ET, Extremely Randomized Trees; GBDT, Gradient Boosting Decision Tree; LR, Logistic Regression; RF, Random Forest; XGBoost, eXtreme
Gradient Boosting.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 6387244

Mo et al. Predicting Nephrotoxicity Using Machine Learning

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


were randomly divided into a training set and a test set according
to the ratio of 7:3. Moreover, the five-fold cross-validation
method was used to generate models based on the training set.

We also additionally collected 35 patients for further external
validation and 11 patients were finally included.

RESULTS

Patients Characteristics
A total of 218 children with refractory NS were collected in this
study, including 159 males and 59 females. The average age of the
children was 5.6 ± 3.4 years old, and the average pre-
administration weight was 19.9 ± 7.9 kg. According to the
evaluation criterion of drug adverse effects, 38 patients have
TAC-induced nephrotoxicity, while 180 patients did not. The
incidence of nephrotoxicity was 17.4 %. Besides, we collected a
total of 47 pre-administration clinical variables and 244 genetic
variables. Table 1 describes the baseline characteristics of our
study population. The genotypes eventually included in this study
all meet the Hardy-Weinberg equilibrium.

Feature Selection
In the univariate analysis, variables that significantly influenced
TAC-induced nephrotoxicity (NAG) including pre-
administration urinary erythrocytes (URBC0) (p � 0.010),
TRPC6 rs3824934_GG (p � 0.030), HSD11B1 rs846910_AG
(p � 0.045), MAP2K6 rs17823202_GG (p � 0.044), SCARB2
rs6823680_CC (p � 0.022), etc.

Based on four forms of transformed data, we used ET, GBDT,
RF, and XGBoost algorithms to generate models and ranked the
median important contribution of variables. The smaller the
median value, the more important the variable. Figure 2A
shows the median important ranking of each variable. The
following genotypes have much more important contributions:
TRPC6 rs3824934_GG, HSD11B1 rs846910_AG, SCARB2
rs6823680_CC, and so on. Figure 2B shows the process of
stepwise forward modeling for the best features set. The model
containing TRPC6 rs3824934_GG, HSD11B1 rs846910_AG,
MAP2K6 rs17823202_GG, and SCARB2 rs6823680_CC
genotypes has the relatively best accuracy, sensitivity, and
AUC results. Therefore, these four variables are the best
feature set, which was used to generate and validate the final
NAG toxicity prediction model. The correlation between these

four genetic variables and the occurrence of nephrotoxicity
(NAG) is shown in Figure 3. Patients with TRPC6
rs3824934_GG genotype have less nephrotoxicity than those
carried CG + CC (p � 0.030); carriers of the AG genotype of
HSD11B1 rs846910 have less nephrotoxicity than patients carried
AA + GG (p � 0.045); the nephrotoxicity in carriers of MAP2K6
rs17823202_GG is less than the patients with AG + AA genotype
(p � 0.044); patients with SCARB2 rs6823680_CC genotype have
more nephrotoxicity than patients carried CT + TT (p � 0.022).

Model Performance and Comparison
The performance of the five predictionmodels based on the above
four variables in the test set were as follows: sensitivity 75.0%,
specificity 63.0∼77.8%, accuracy 65.2∼77.3%, AUC 74.9∼78.9%
(Table 2). The models generated by the LR and the XGBoost
algorithm have the best specificity and accuracy results. From the
mixed matrix results of the five prediction models, the XGBoost
and LR models also show the best accuracy. True non-toxic
patients were accurately predicted by 77.8% (42/54), while true
toxic patients were accurately predicted by 75.0% (9/12)
(Figure 4). However, the XGBoost algorithm has the best
AUC result (0.789). Therefore, the XGBoost model has the
best prediction performance compared to the other four
algorithms. Supplementary Table S3 shows the contribution
of each variable to the outcome in the five models. For
example, the MAP2K6 rs17823202_GG genotype has the
greatest contribution to the XGBoost model.

External Verification and Clinical
Application
We also additionally collected 35 patients for external validation
of the XGBoost model, 11 patients were finally enrolled. The
result shows that 9 of 11 patients could be correctly predicted,
with an accuracy of 81.8 %. In clinical practice, we input their
genetic variables (TRPC6 rs3824934_GG, HSD11B1
rs846910_AG, MAP2K6 rs17823202_GG, and SCARB2
rs6823680_CC) into the XGBoost model and predicted
whether they had nephrotoxicity after TAC treatment (Table 3).

DISCUSSION

In this study, we used machine learning algorithms to generate a
series of nephrotoxicity prediction models of TAC in NS based on
clinical and genetic variables. Four genetic variables, including
TRPC6 rs3824934_GG, HSD11B1 rs846910_AG, MAP2K6
rs17823202_GG, and SCARB2 rs6823680_CC were excavated
that can significantly affect the nephrotoxicity of TAC. The
model with the above four genetic variables generated by the
XGBoost algorithm has the best predictive performance which
could accurately identify 78.9% of patients.

To our knowledge, this is the first study using machine
learning to generate a TAC-induced nephrotoxicity prediction
model in NS, which was based on comprehensive clinical and
genetic variables. To date, only few studies focused on the risk
factors of TAC-induced nephrotoxicity in NS (Morgan et al.,

TABLE 1 | Demographics and main clinical characteristics of all pediatric patients
with refractory nephrotic syndrome.

Characteristics Values (n = 218)

Male/Female 159/59
Age (years) 5.6 ± 3.4
Weight (kg) 19.9 ± 7.9
Alanine transaminase (ALT, U/L) 19.157 ± 13.631
Aspartate transaminase (AST, U/L) 26.609 ± 10.758
Serum creatinine (SCr, µmol/L) 32.329 ± 34.011
Blood TAC concentration (ng/ml) 6.110(1.980∼20.800)

Data are presented as median with range, mean ± standard deviation or amount.
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2011; Sinha et al., 2013; Gao et al., 2020). For example, Gao et al.
(2020). established a model using LR to evaluate the risk factors of
TAC-induced acute nephrotoxicity. TAC trough concentration
and diarrhea were excavated as the risk factors of acute
nephrotoxicity, while co-treated with Huaiqihuang granules
was the protective factor. But, they used serum creatinine as
the indicator of kidney damage, which is less sensitive than our
indicator (NAG). Similarly, the other studies also used traditional
LR methods to evaluate the effect of clinical variables such as
gender, age, and histopathological features on TAC-induced
nephrotoxicity (Morgan et al., 2011; Sinha et al., 2013). From
the above studies, the variables investigated are not
comprehensive enough, and all of them applied the traditional
LR method, which leads to the low predictive performance of
models.

On the contrary, machine learning often yields models with
high predictive performance. Compared with traditional
methods, machine learning can handle more complex, high-
dimensional, and interactive variables. And the models built
by machine learning have higher accuracy and stronger
generalization ability (Kruppa et al., 2012; Lee et al., 2018).
Among the machine learning algorithms, XGBoost Chen and
Guestrin (2016) and GBDT (Tabrizchi et al., 2020) are both
boosting ensemble learning algorithms. By continuously
adjusting the weight of each sample, multiple different weak
classifiers are established, and then combined into a strong
classifier to improve algorithm prediction and generalization
capabilities. Besides, the XGBoost algorithm introduces a
regular term, which can prevent overfitting better than GBDT.
RF Shi and Horvath, 2006; Pal (2005) and ET (Geurts et al., 2006)
are bagging ensemble learning algorithms. Multiple weak

classifiers are established through repeated sampling training
data sets with replacement, and then combined into strong
classifiers to improve algorithm prediction and generalization
capabilities. Profiting from these advantages, machine learning
technology has been widely applied in the classification and
regression of disease diagnosis, treatment, and prognosis (Lin
et al., 2015; Tang et al., 2017; Athreya et al., 2019). For example,
we previously used machine learning algorithms to develop an
artificial intelligence diagnosis model for pediatric respiratory
diseases (Liang et al., 2019). Also, we established a model to
predict the efficacy of methotrexate in juvenile idiopathic arthritis
using machine learning (Mo et al., 2019). Similarly, besides the
traditional LR method, we also used four advanced machine
learning algorithms (ET, GBDT, RF, and XGBoost) to generate
nephrotoxicity prediction models. From Table 2, we can find that
the XGBoost model can accurately predict 78.9% of patients,
which is better than the traditional LR model. Like other relevant
studies (Lee et al., 2018; Mo et al., 2019), our study also suggested
that machine learning methods had better predictive
performance than traditional statistical methods.

An accurate prediction model requires not only the advanced
modeling method but also mining as comprehensive features as
possible. Recent studies have found that genetic polymorphisms
related to TAC PK-PD pathways, kidney podocytes,
transcriptional regulators, inflammatory cytokines, hormone
convertases, etc. can affect the PK or the PD process of TAC
(Hoyos et al., 1989; Abdel-Razzak et al., 1993; Border and Noble,
1994; Cardenas et al., 1994; Stein et al., 1996; Tinel et al., 1999;
Macián et al., 2000; Zhang et al., 2005; Gu et al., 2006; Jeffrey et al.,
2007; Renders et al., 2007; Wang D. et al., 2019; Wang X. et al.,
2019). But to our knowledge, there have not been any studies

FIGURE 2 | The procedure of feature selection. (A) The median values of feature importance ranking (each variable has 16 ranking values). The smaller the median
value, the more important the variable (B) The overall variation of accuracy, sensitivity, and AUC of themodels used for excavating the optimal feature combination. These
models were generated by the XGBoost algorithm and five-fold cross-validation. Each variable was added to the models in turn (Starting from the variable with the
highest median values until all variables were added to the models). It can be seen that the model built by the first four variables has the best AUC and relatively high
accuracy and sensitivity values. Therefore, these four variables (TRPC6 rs3824934_GG, HSD11B1 rs846910_AG, MAP2K6 rs17823202_GG, and SCARB2
rs6823680_CC genotypes) are the optimal feature set.
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exploring the correlation between gene polymorphisms and
TAC-induced nephrotoxicity in NS patients. Here, we first
comprehensively examined the effect of the above gene
polymorphisms and clinical features on TAC-induced
nephrotoxicity in the NS population. Unlike other studies
(Morgan et al., 2011; Sinha et al., 2013; Gao et al., 2020), no
clinical variables were excavated to have a significant effect on
TAC-induced renal tubular toxicity (NAG) in our study.
Although the URBC0 significantly affected NAG in the
univariate analysis, it was not included in our final model after
screening by machine learning algorithms. In addition, other
studies used serum creatinine level as a representative for
nephrotoxicity, but we used a more sensitive NAG to indicate

renal tubular toxicity (Price, 1992; Marchewka et al., 2009).
Moreover, these studies have not explored other features such
as genetic variables, which may contribute significantly beyond
clinical characteristics to nephrotoxicity.

Our results supported this view. The variables included in the
final model are all genetic variables, including TRPC6
rs3824934_GG, HSD11B1 rs846910_AG, MAP2K6
rs17823202_GG, and SCARB2 rs6823680_CC genotypes. From
Figure 3 we can find that patients with TRPC6 rs3824934_GG,
HSD11B1 rs846910_AG, and MAP2K6 rs17823202_GG
genotypes are less likely to have TAC-induced nephrotoxicity
(NAG) than non-carriers, while carriers of SCARB2
rs6823680_CC has a higher incidence of nephrotoxicity than
non-carriers. TRPC6 is an ion channel protein located on the
kidney podocyte membrane. The overexpression of TRPC6 may
cause glomerular diseases such as focal segmental glomerular
sclerosis (FSGS) andminimal change disease (MCD) (Winn et al.,
2005). TAC could downregulate the expression of TPRC by
inhibiting the calcineurin, which can alleviate the damage of
podocyte (Nijenhuis et al., 2011; Ma et al., 2015). A study has
shown that TRPC6 rs3824934 C > G mutation may increase the
transcription and expression of TRPC6, which may be implicated
in the development of steroid-resistant nephropathy (Kuang

FIGURE 3 | The correlation between the optimal variables and NAG nephrotoxicity. (A–D) illustrate TRPC6 rs3824934, SCARB2 rs6823680, HSD11B1 rs846910,
andMAP2K6 rs17823202, respectively. Patients with TRPC6 rs3824934_GG, HSD11B1 rs846910_AG, andMAP2K6 rs17823202_GG genotypes have a lower rate of
NAG nephrotoxicity, while carriers of SCARB2 rs6823680_CC genotype have higher nephrotoxicity rate. *p < 0.05.

TABLE 2 | The performances comparison of five models.

Model Sensitivity Specificity Accuracy AUC

LR 0.750 0.778 0.773 0.771
XGBoost 0.750 0.778 0.773 0.789
ET 0.750 0.630 0.652 0.749
RF 0.750 0.741 0.742 0.783
GBDT 0.750 0.741 0.742 0.755
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et al., 2013). However, we excavated the GG genotype as a
protective factor of nephrotoxicity. Our result differs from the
above study, perhaps because the two study outcomes are
inherently different and difficult to compare directly.
Moreover, from our results, it is difficult to fully explain the
occurrence of TAC-induced nephrotoxicity with single-site
mutation, which should be the result of multiple gene

mutations. 11β-hydroxysteroid dehydrogenase, which
metabolizes prednisone to active prednisolone, was encoded by
HSD11B1. Prednisone can induce CYP3A4 and P-gp, while
prednisolone is a weak inhibitor of CYP3A4 (Pichard et al.,
1992; Lam et al., 2008). Therefore, the polymorphism of
HSD11B1 may affect the PK and PD of TAC. The HSD11B1
rs846910_AG genotype was found to be a protective factor of

FIGURE 4 | The mixed matrix results of five prediction models in the test set (A–E). For example, in the XGBoost model (shown in B), 42 of the 54 true non-toxic
patients (pink grids in the upper left corner) were accurately predicted, while 9 of the 12 true toxic patients (pink grids in the lower right corner) were accurately predicted.
Other models (B–E) are in the same analogy. All results were at the threshold of 0.5.

TABLE 3 | The result of nephrotoxicity after treating with TAC of clinical patient predicted by XGBoost model.

XGBoost model Patient name Input variables Output

TRPC6rs3824934_GG HSD11B1rs846910_AG SCARB2rs6823680_CC MAP2K6rs17823202_GG

XXX 1 0 0 1 Non-toxicity

The patient named XXX in this table was treated with TAC in clinic practice.
We input his genetic variables into the XGBoost model.
After calculating the data by the model, the output result is no toxicity.
The “output” represents the prediction result of the occurrence of nephrotoxicity.
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nephrotoxicity in our study. Furthermore, Liu et al. (2015) found
that carriers of HSD11B1 rs846910_AA had a lower TAC
concentration . We speculated that patients with the A allele
may have a relatively low TAC concentration, which could
protect against nephrotoxicity. However, more clinical
verification is needed. MAP2K6 encodes an upstream protein
kinase of the TAC PD pathway (P38 pathway) (Matsuda et al.,
2000). The activation of the p38 pathway by MAP2K6 can cause
kidney damage (Ma et al., 2007). Renal vasoconstriction is an
important manifestation of CNI-induced nephrotoxicity, which
might be caused by the inhibition of COX-2 expression (Hocherl
et al., 2002; Hocherl et al., 2004). Studies have found that the
MAPK kinase in the p38 pathway regulates the stability of COX-2
mRNA (Lasa et al., 2000), which may indirectly influence TAC-
induced nephrotoxicity. In our study, carriers of MAP2K6
rs17823202_GG are associated with less nephrotoxicity. We
speculated that the mutation of the G allele may inhibit the
activation of the renal P38 pathway and protect the kidney
function. SCARB2 encodes a type III transmembrane
glycoprotein (LIMP-2) which is primarily located in lysosomes
and late endosomes. Studies have shown that the lack of SCARB2,
whichmay be related to glomerulosclerosis (Berkovic et al., 2008),
can also lead to proteolysis failure resulting in tubular proteinuria
(Desmond et al., 2011). Additionally, acute arteriopathy is one of
the manifestations of acute CNI-induced nephrotoxicity
(Naesens et al., 2009), which may be caused by the activation
of the RAS system (Hocherl et al., 2004; Ruster and Wolf, 2006;
Lee et al., 2012). The deficiency of LIMP-2 may indirectly activate
the RAS system by increasing the level of renin which is an
important upstream substance in the RAS system (Lee et al.,
2012). Therefore, the LIMP-2 may be correlated to the TAC-
induced nephrotoxicity. We found that SCARB2 rs6823680_CC
is a risk factor of nephrotoxicity, which may be due to the
decreased expression of SCARB2 in patients with CC genotype
and thus lead to kidney damage. These polymorphisms discussed
above were first excavated that related to TAC-induced
nephrotoxicity, but the mechanisms require further validation.

In addition, we also prospectively recruited 11 children with
refractory NS for external validation. The above four genetic
polymorphisms were detected and input into the XGBoost model
to predict TAC-induced nephrotoxicity (Table 3). The outcome
of 9 patients was correctly predicted, with an accuracy of 81.8%.
Thus, this model has a good ability of extrapolation, which can
effectively assist doctors in making treatment decisions before
administration. When the predicted outcome is non-toxic, a TAC
treatment regimen may be used; on the contrary, alternatives may
be chosen; where TAC is necessary in the absence of alternatives,
it should be carefully applied under frequently monitoring and
timely intervention. This study was limited by the number of NS
patients and single center. Besides, we used the NAG level as the
indicator of nephrotoxicity, while renal biopsy may be a better
choice. Therefore, we hope to enroll more NS patients and
perform multi-center research to verify our model.

In summary, we first used advanced machine learning to
establish and validate a TAC-induced tubular toxicity
prediction model based on comprehensive clinical and genetic
variables. Besides, genes encoding kidney podocytes, hormone

convertases, and proteins of TAC PD pathways were first
screened out. These SNPs are closely related to the TAC PK-
PD process. This reminds us these SNPs are essential for fully
predicting TAC-induced nephrotoxicity. With this pre-
administration model, clinicians can estimate the possibility of
TAC-induced nephrotoxicity in NS patients, which is beneficial
to the TAC prescription and the timely intervention after
administration, to avoid kidney damage.
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