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Prognosis of patients with cystic fibrosis (CF) varies extensively despite recent advances in
targeted therapies that improve CF transmembrane conductance regulator (CFTR) function.
Despite being a multi-organ disease, extensive lung tissue destruction remains the major
cause of morbidity and mortality. Progress towards a curative treatment strategy that
implements a CFTR gene addition-technology to the patients’ lungs has been slow and not
yet developed beyond clinical trials. Improved delivery vectors are needed to overcome the
body’s defense system and ensure an efficient and consistent clinical response before gene
therapy is suitable for clinical care. Cell-based therapy–which relies on functionalmodification
of allogenic or autologous cells ex vivo, prior to transplantation into the patient–is now a
therapeutic reality for various diseases. For CF, pioneering research has demonstrated
proof-of-principle for allogenic transplantation of cultured human airway stem cells into
mouse airways. However, applying a cell-based therapy to the human airways has distinct
challenges. We review CF gene therapies using viral and non-viral delivery strategies and
discuss current advances towards autologous cell-based therapies. Progress towards
identification, correction, and expansion of a suitable regenerative cell, as well as
refinement of pre-cell transplant lung conditioning protocols is discussed.
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CFTR CORRECTION STRATEGIES

Cystic fibrosis (CF) is an inherited, multi-organ disease caused by mutations in the CF
transmembrane conductance regulator (CFTR) gene (Rowe et al., 2005). CF is progressive, with
its major pathology impacting the lung, liver, pancreas and intestine. Mortality in CF patients is
mostly due to respiratory failure (Elborn, 2016). The CFTR protein, an anion channel, is expressed in
a diverse range of epithelial tissues (Riordan, 2008). CFTR dysfunction disrupts ion transport
equilibrium, deregulating fluid absorption and secretion processes in epithelial tissue such as the
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airways, resulting in mucus accumulation and recurrent bacterial
infections (Ratjen et al., 2015). Symptomatic therapies such as
airway clearance by physiotherapy, mucus thinning agents,
antibiotics and anti-inflammatories remain crucial for the
management of CF airways (Flume et al., 2007).

Recently, targeted therapies have been approved for CF
treatment. These small molecule compounds modulate CFTR
protein abundance and/or function at the apical epithelial cell
membrane (Davies, 2015). A combination of three CFTR
modulating small molecules–elexacaftor/tezacaftor/ivacaftor–is
the most advanced targeted therapeutic approved for patients
with one or two Phe508del-CFTR alleles–the most common
CFTR mutation in the population. CFTR modulator therapies
result in improved lung function and better quality of life for
patients with CF (Davies et al., 2018). Yet, variable therapeutic
response, inadequate long-term efficacy data, adverse effects and
unavailability of modulators for the 10% of CF patients with
mutations that produce little or no CFTR protein has rekindled
great interest in the development of CFTRmutation-independent
corrective strategies.

In vivo transfer of a functional copy of CFTR has been
envisioned as a CF airway treatment since 1989 when the CFTR
gene was identified as the cause of this multisystemic disease (Tsui
et al., 1985; Wainwright et al., 1985). Gene therapy has received

FDA approval for treatment of monogenic disorders (U.S. Food
and Drug Administration. 2020) such as spinal muscular atrophy
(Kariyawasam et al., 2018), coagulative disorders (Batty and
Lillicrap 2019), and immunodeficiency diseases (Booth et al.,
2019), but not yet for CF. Numerous research programs and
clinical trials have been undertaken to explicate the most
effective vector (viral or non-viral) to deliver CFTR to airway
cells (Griesenbach et al., 2015). However, clinical efficacy of these
vectors in vivo in humans has been insignificant and inconsistent in
improving lung function (Alton et al., 2015a). The greatest barrier
to enabling clinical translation of gene therapy for CF remains the
lack of an effective delivery system to the lungs. A successful gene
therapy system for restoration of CFTR function needs to navigate
the complexities of the lung clearance and innate immunity defense
functions that are further complicated in the CF airways due to
increasedmucus volume and viscosity (reviewed in (Donnelley and
Parsons 2018)). Even if these obstacles are circumvented,
heterogeneous and highly regulated CFTR expression in various
cell types of the lung raises the question of the most appropriate
cellular target.

One proposed strategy to deal with the challenges associated
with in vivo delivery of CFTR to the airway cells is to correct the
airway cells ex vivo followed by transplanting the corrected cells
to repopulate the patient’s lung with CFTR-corrected cells

FIGURE 1 | Schematic representation of CFTR correction strategies for the treatment of cystic fibrosis. Genetic materials (A) are packaged into a therapeutic vector
(B). The therapeutic vector is delivered directly to the patient’s lungs (C) or introduced into cells ex vivo (D). For autologous cell-based therapy, 1) airway cells are isolated
from the patient’s respiratory tract or induced pluripotent stem cells are generated from the patient’s skin fibroblasts or blood. 2) CFTR is corrected in vitro in the collected
cells by a) addition or b) editing strategies. 3) The CFTR-corrected regenerative cells are expanded to reach a therapeutic dose, and then 4) transplanted back to
repopulate the patient lung epithelium.
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(Figure 1). This approach is the basis of the first ex vivo
hematopoietic stem cell gene therapy, Strimvelis, which was
approved for treatment of adenosine deaminase-severe
combined immunodeficiency (Stirnadel-Farrant et al., 2018).
In this review, we will first describe alternative strategies to
CFTR DNA therapy, and discuss the advances in the main
groups of viral and non-viral vectors that have shown promise
in CF therapy. The second part of this review will focus on recent
progress in cell-based therapies, including the gene editing
technologies that facilitate CFTR correction in ex vivo cells.

THERAPEUTIC GENETIC MATERIAL
OTHER THAN DNA: RNA ADDITION AND
REPAIR
The earliest efforts to deliver genetic material into diseased cells
focused on directly introducing therapeutic CFTR DNA as an
addition strategy to subsequently produce functional CFTR
protein (reviewed in (Cooney et al., 2018)). A novel alternative
to DNA therapeutics is based on addition of RNA. Since the
functional site of messenger RNA (mRNA) is the cell cytoplasm,
the challenge of nuclear translocation is eliminated (Hajj and
Whitehead 2017).

Exogenous nucleic acids are susceptible to degradation by
nucleases and can trigger an immune response upon cellular
entry (Alexopoulou et al., 2001; Kariko et al., 2004). Therefore,
current strategies utilize chemical modification of the nucleic acid
bases to reduce immunogenicity and increase stability (Sahin et al.,
2014; Pardi et al., 2015). Manufacturing and addition of
modifications to RNA is easier than DNA, extending the
usefulness of RNA therapy (Kuhn et al., 2012). Yet, repeat RNA
administration remains necessary to sustain therapeutic levels of
protein (Patel et al., 2019b). Successful delivery of chemically
modified CFTR mRNA to patient-derived bronchial epithelial
cells has demonstrated increased CFTR expression at the
plasma membrane and rescue of chloride transport (Robinson
et al., 2018). Aerosolized delivery of in vitro transcribed CFTR
mRNA complexed with lipids to the lungs (Orphan drug
MRT5005) is a therapeutic forerunner currently being tested in
a phase 1/2 trial (NCT03375047) which has highly anticipated
results for in vivo correction of CFTR.

In addition to direct RNA supplementation, an alternative
therapeutic option is to alter the defective RNA to restore proper
CFTR protein function. This can be achieved using antisense
oligonucleotides (ASOs). ASOs are short synthetic
oligonucleotides that are chemically modified to bind to target
RNA, offering a tool for direct mRNA restoration (Oren et al.,
2017). In vivo delivery of ASOs to the airway epithelium of mice
initially resulted in no significant uptake (Griesenbach et al.,
2006). It was postulated that this inefficiency was due to
physical barriers to airway epithelial cell delivery
(Griesenbach et al., 2006). Advances in RNA chemical
modifications have been key to the development of a
successful ASO-mediated therapy, with the accelerated FDA
approval of eteplirsen (Exondys 51) being granted in 2016 for
patients with Duchenne muscular dystrophy that have a

mutation in the dystrophin gene which can be treated by
exon 51 skipping (reviewed in (Bennett et al., 2017)). An
ASO candidate for ASO-directed mRNA restoration,
Eluforsen, binds to and restores the mRNA region encoding
the Phe508 deletion (Beumer et al., 2019). In a phase 1 study,
repeated administration of Eluforsen improved CFTR activity
in patients homozygous for the Phe508 mutation (Sermet-
Gaudelus et al., 2019) (NCT02564354). In the following phase
1b safety study with 70 enrolled participants Eluforsen was
well-tolerated (NCT02532764), supporting the therapeutic
translation of novel mRNA-based therapies for patients
with CF. ASOs have also been tested for their ability to
correct CFTR splicing mutations, which constitute 13% of
disease-causing CFTR mutations, and result in no functional
protein being produced (Igreja et al., 2016). Single-stranded
DNA oligonucleotides designed to hybridize to pre-mRNA
and modify aberrant splicing restored splicing in immortalized
cells expressing the CFTR splicing mutation, c.2657 + 5G > A-
CFTR (Igreja et al., 2016).

Although clinical translation of DNA or RNA therapy has
been proven feasible, the efficient targeting and delivery of these
genetic materials into the lung epithelium for treatment of CF
remains exceedingly challenging.

THERAPEUTIC DELIVERY VECTORS

Nucleic acids are unable to cross the cell membrane because of
their high negative charge, and therefore require assistance for
intracellular delivery (reviewed in (Ni et al., 2019)). Numerous
viral and non-viral delivery systems have been investigated for
their ability to transfer genetic material–RNA (Therapeutic
Genetic Material Other Than DNA: RNA Addition and
Repair), DNA (this section) and gene editing system
components (Gene Editing Technologies)–to the lung. The
main groups of viral and non-viral vectors used in CF therapy
and advances toward their clinical translation will be
summarized below.

Viral Vectors for Airway Gene Therapy
Viral vector-mediated gene delivery systems take advantage of a
virus’s natural ability to evade the lung mucus barrier and
transduce the airway by inserting their DNA into epithelial
cells. The natural tropism of viral vectors enables preferential
targeting of the airway progenitor cells–the basal cells–so that
multi-lineage transgene expression can be achieved (Havenga et al.,
2002). Other advantages and disadvantages of available vectors
have been discussed in depth elsewhere (Miah et al., 2019). Here we
briefly discuss the most commonly used vectors for CF.

Adeno-Associated Virus
In the early 2000s, human CF clinical trials tested aerosolized viral
vectors, including AAV serotype 2 (AAV2). Based on delivery of
CFTR complementary DNA (cDNA) to the human nasal cavity
and lung, AAV was determined safe, but failed to demonstrate
significant clinical benefit in restoration of lung function (Wagner
et al., 2002; Flotte et al., 2003; Moss et al., 2004; Moss et al., 2007).
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These findings have been attributed to issues regarding the
packaging capacity of the AAV2 genome to encompass a
CFTR expression cassette (Wu et al., 2010) and also low
transduction efficiency of the airway epithelial cells (AECs)
due to the limited binding of AAV2 to the apical surface of
human airway epithelia (Zabner et al., 2000).

To overcome the packaging capacity limitation of AAV, a split
AAV gene delivery approach can be implemented, wherein a large
transgene is split across multiple separate AAV vectors (Patel et al.,
2019a). As a means of screening for AAV serotypes that display
airway tropism and permit efficient gene delivery to the human
lung parenchyma, lung bud organoids–a model of lung
parenchyma derived from human embryonic stem cells–have
been utilized (Meyer-Berg et al., 2020). A 2020 study identified
AAV2 and AAV serotype 6 (AAV6) as having the highly efficient
transduction of the human lung parenchyma. Additionally, it was
recently discovered that unlike other AAV serotypes, AAV6 is
capable of efficiently diffusing through mucus in primary
differentiated CF airway cultures (Duncan et al., 2018). Inhaled
administration of AAV6 provided high-level transgene expression
(mediating roughly 30% airway coverage) in a mouse model with
airway mucus obstruction (Duncan et al., 2018). Yet, the high
immunogenicity of AAV draws concern to the potential for
participants of viral-based gene therapy clinical trials to acquire
AAV immunity, and for potential preexisting immunity in some
patients (reviewed in (Ronzitti et al., 2020). These are major
concerns because immunity to AAV is likely to prevent repeat
administration of AAV gene therapy to patients (George et al.,
2020), therefore risking their eligibility for future AAV-based
therapies. In 2020, the imlifidase (IdeS) enzyme was tested in
rodents and non-human primates and successfully demonstrated
inhibition of the host immune response to AAV resulting from
preexisting immunity and following AAV gene therapy (Leborgne
et al., 2020). If IdeS treatment in human patients were to enable
repeat administration of AAV-based therapies, this could have big
implications for the future course of AAV gene therapy. To
improve the gradual decrease in CFTR expression due to the
transient episomal expression nature of AAV, and avoid the
need for repeat dosing of the AAV vector, Cooney and
colleagues designed a novel integrating AAV-based CFTR-
expressing vector (termed piggyBac/AAV), which demonstrated
efficient transduction and persistent expression in primary human
CF airway cells in vitro and inmouse airways in vivo (Cooney et al.,
2015). A follow-up large animal study delivered aerosolized
piggyBac/AAV-CFTR to CF pig airways and demonstrated
phenotypic restoration of CFTR function (Cooney et al., 2019).

Lentivirus
In comparison to AAVs, lentivirus vectors (LV) have a larger
packaging capacity (approximately 8 kb) whichmakes themmore
compatible for full length CFTR packaging (Castellani and
Conese, 2010). Additionally, LVs can transduce and integrate
into the genome of both dividing and non-dividing cells (Naldini,
Blomer et al., 1996; Wang et al., 1999). Proof-of-principle that a
lentiviral vector could correct the CFTR defect in vivo and
provide persistent CFTR expression was first demonstrated in
mouse airways (Limberis et al., 2002). This was followed by a

demonstration of partially restored in vivo CFTR channel activity
following aerosol delivery of Feline immunodeficiency virus (IV)-
CFTR to CF pig airways (Cooney et al., 2016). More recently,
insertion of a LacZ marker gene into airway basal cells via a LV
vector produced persistent transgene expression and importantly,
the basal cells successfully passed on the introduced gene to their
daughter cells in a mouse airway (Farrow et al., 2018b). In support
of a first-in-man CF trial, a simian IV-based lentiviral vector,
pseudotyped with Sendai virus fusion protein and
Hemagglutinin/Neuraminidase envelope proteins exhibited
efficient transduction of human airway cells in vitro and
murine lung epithelium in vivo (Alton et al., 2017).

Non-viral Vectors
Progression of viral vectors as a clinical therapy for CF remains
contingent on demonstrating successful long-term transduction
efficacy, the safety of delivery to the CF lung and the ability for
repeat dosing (Donnelley and Parsons, 2018). Some of these
barriers have necessitated the development of more cost-effective
non-viral vectors to provide an increased safety profile and
limitless genetic material packaging size, while obtaining more
reproducible delivery outcomes. Non-viral vectors are naturally
produced by the body and can also be engineered in the
laboratory. Despite reduced immunogenicity, the transfection
efficiency of non-viral vectors is still low compared to viral
vectors. Specifically, unmodified non-viral vectors are rapidly
cleared and have low accumulation in target tissues and cells
(Takahashi et al., 2013; Smyth et al., 2015), thus new compounds
are constantly engineered and investigated (Murphy et al., 2019).

Exosomes
Exosomes are naturally occurring nanoscale extracellular vesicles
which, following their release from cells, facilitate intercellular
communication by transporting material to neighboring or
distant recipient cells (Doyle and Wang, 2019). Due to this
ability to function as an endogenous intercellular cargo
transfer system, they have been exploited as vehicles for the
delivery of genetic material, and as such, are a promising vector
for in vivo gene therapy. Exosomes have been demonstrated to
deliver human CFTR mature glycoprotein, as well as CFTR
mRNA, in both Chinese hamster ovarian cells (Gonzalez et al.,
2012) and CFTR-deficient cells derived from CF patients (Vituret
et al., 2016; Villamizar et al., 2019). In both models, CFTR
channel function was shown to be corrected in exosome-
recipient cells. Exosomes have similarly shown utility in
delivering small interfering RNA in well-differentiated human
AECs (Singh et al., 2020), suggesting value beyond gene transfer
for the delivery of gene editing materials. These studies
demonstrated the potential application of exosomes as vectors
for CFTR transfer and functional correction of the genetic defect
in human CF cells.

Liposomes
Liposomes are artificially created vesicles with a lipid bilayer
membrane and an aqueous core (Akbarzadeh et al., 2013). In a
single dose, dose-escalation phase 1/2a safety trial assessment of a
liposomal mixture that included the cationic lipid mixture
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(GL67A) complexed with CFTR complementary DNA, patients
with CF showed improved lung function and no adverse effects
(Alton et al., 2015b). This was followed by a double-blind, placebo-
controlled multi-dose phase 2b trial (NCT01621867) that found
that repeated administration of GL67A liposome significantly, yet
modestly, stabilized lung function in the treatment group (n � 62)
vs. placebo (n � 54) in CF adults or children aged 12 years or older
enrolled in this trial (Alton et al., 2015a). Although this trial
reached its primary efficacy endpoint (lung function
improvement), the magnitude and variability in effect did not
support progression to phase 3 trials. These results established for
the first time a proof of principle that gene therapy was capable of
favorably modulating CF lung function, with no safety concerns
with repeat dosing. However, they also highlighted the need for
more efficacious methods of gene delivery transport, such as viral
vectors, before large-scale clinical translation can be achieved. Gene
delivery systems likely face greater barriers in adults with
established lung disease and irreversible fibrotic scarring in
comparison to children, with less progressed lung disease.
Strong reasoning to include children in gene therapy clinical
trials has been given previously (Jaffe et al., 2006; Delhove et al.,
2020) and may present the most rational avenue forward as a
clinical target age.

Lipid Nanoparticles
Like liposomes, lipid nanoparticles (LNPs) are used to
encapsulate and deliver therapeutic RNA formulations to the
lung via intranasal or systemic routes. However, LNPs differ in
their composition, often carrying cargo within a non-aqueous
core (Kraft et al., 2014). Recent advances have focused on
exploiting the dynamic structure of LNPs to engineer
specialized formulations tailored to increase mucus penetrance
(Nafee et al., 2018; Wan et al., 2018) and evade host immune
detection (Vencken et al., 2019). This work climaxed in the
successful LNP-mediated delivery of chemically modified
CFTR mRNA to CF airway cells (Robinson et al., 2018).
However, it has since been shown that LNPs only modestly
increase CFTR expression in patient-derived human nasal
epithelial cells (Villamizar et al., 2019). It is probable that the
inefficiency of LNP delivery is due to endosome retention (Sahay
et al., 2013), and as such, further work to engineer particles
capable of escaping endosome retention is needed. Since CFTR
expression in the epithelial airway is cell type specific (Plasschaert
et al., 2018), further testing in vitro and in vivo models will be
required before LNPs can be established as efficient and clinically
relevant delivery systems.

CELL-BASED THERAPIES

Cell-based therapies offer an alternative therapeutic opportunity
to in vivo gene therapy. This approach integrates advances in
stem cell biology with the well-established platform of in vitro
gene delivery and repair strategies. The exemplar for cell-based
therapy is hematopoietic stem cell transplantation, which is
successfully performed in over 50,0000 patients per year
world-wide (Gratwohl and Niederwieser 2012). The safety of

correcting a patient’s cells ex vivo via a gene editing technology,
before reintroducing them into the same patient (autologous
transplantation), has been demonstrated in a clinical trial for
hematological malignancies (Stadtmauer et al., 2020). Autologous
cell therapy has also been used for treatment of epidermolysis
bullosa (Eichstadt et al., 2019; Lwin et al., 2019; Marinkovich and
Tang 2019), whilst treatment of insulin-dependent diabetes has
shown success with transplant of allogenic islet cells (Kumagai
et al., 2002; Yamada et al., 2011).

The efficacy of these regenerative cellular therapies has
propagated investigation of cell-based therapy for CF. Yet, in
the CF airways, the volume, viscosity and composition of the
mucus that protects the airway from foreign particles and irritants
is altered in such way that penetrating this barrier poses a great
challenge. Successful clinical translation of a cell therapy
approach will require regenerative cell 1) identification, 2)
CFTR correction (addition or editing), 3) expansion, and 4)
transplantation back into the patient’s lungs (Figure 1). The
remainder of this review will discuss the progress and challenges
toward these milestones.

Identification of Suitable Regenerative Cells
With Differentiation Capacity
One of the obstacles to cell-based therapy for CF is the
identification of an optimal self-renewing cell that can also
differentiate into the cells of the airway epithelium. In this
review we discuss therapeutic perspectives of using adult
tissue-resident basal stem cells, yet first we will briefly describe
advances in the field using mesenchymal and induced pluripotent
stem cells (iPSCs).

Mesenchymal stem cells (MSCs) are an allogenic source of
cells that have been investigated for their application in CF cell-
based therapy due to their immunomodulatory and anti-
inflammatory properties (reviewed in (Caretti et al., 2019)). In
favor of their potential for CF cell therapy, MSCs co-cultured with
CF immortalized airway epithelial cells at air-liquid interface have
demonstrated acquisition of an epithelial phenotype, and
subsequent restoration of functional CFTR protein (Carbone
et al., 2014; Carbone et al., 2018). However, there is concern
over low engraftment levels of administered MSCs in the lung
(Ortiz et al., 2003; Xu et al., 2007). Furthermore, recent studies
suggest that MSCs function transiently to reduce inflammation
via the secretion of extra-cellular vesicles such as exosomes (Zhu
et al., 2014; Zulueta et al., 2018) that can be used for delivery of
drugs or gene editing material (reviewed in (Almeida-Porada
et al., 2020)). Exosomes derived from MSCs genetically
engineered to carry a transcription activator protein have
demonstrated success in targeting and activating CFTR
transcription in primary human bronchial epithelial cells from
patients with CF (Villamizar et al., 2021). Further in vitro and in
vivo studies are needed before this approach is considered viable.
Until then, there remains uncertainty surrounding the capacity of
MSCs to effectively restore CFTR function in the respiratory
epithelium.

iPSCs are routinely generated from skin or blood cells that are
reprogrammed back into an embryonic-like pluripotent state. In
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addition, they are amenable to gene editing and expansion,
thereby providing a large potential source of gene-corrected
cells which upon differentiation into lung basal stem cells can
be engrafted into the lung for therapeutic use. Two iPSC-derived
cell populations have been isolated for the purpose of CF cell
therapy: one- airway epithelial cells (AECs) or 2-basal stem cells.
The strengths and limitations of both these will be discussed here
briefly. Firstly, several reports have demonstrated successful
directed differentiation of human iPSCs into AECs in vitro
(Firth et al., 2014; Huang et al., 2014; Dye et al., 2015; Konishi
et al., 2016; McCauley et al., 2017). The iPSC-derived AEC
cultures are a heterogenous cell population containing limited
numbers of basal cells with self-renewing capacity (McCauley
et al., 2017). As such, transplanting AECs will only provide a
short-term solution, even if engraftment of cells was successful.
Therefore, although this method can generate ample AECs,
transplantation of terminally differentiated AECs would not be
an effective CF cell therapy.

More recently, iPSCs have been differentiated into basal cells,
termed induced basal cells (iBCs) (Hawkins et al., 2020). These
iBCs are functionally indistinct from native basal cells and have
been shown in vitro to differentiate into a pseudostratified airway
epithelium exhibiting CFTR activity (Hawkins et al., 2020).
However, the rarer cell types of the epithelium such as the
CFTR-expressing ionocytes, and brush cells, were not observed
in vitro cultures of iBCs differentiated at air-liquid interface
(Hawkins et al., 2020). Furthermore, the long-term effects of
these manipulations are not well understood, and several
questions regarding the in vivo competence of iBCs remain
unanswered. For these reasons, development of additional
screening assays similar to the dual fluorescent transporter
assay used by Hawkins and colleagues will be necessary to
verify the cellular phenotype and differentiation capacity of
iBCs in comparison to their endogenous counterparts both
in vitro and in vivo before clinical translation of iPSC-based
CF cell therapy can be considered viable.

To improve the chances of successful cell transplantation to
the lung, it is possible that tissue-resident adult stem cell from the
lung itself would be a better suited candidate. For some time,
there had been a lack of clarity as to the identity of airway stem
cells. However, increased knowledge of stem cell biology together
with the characterization of lung progenitor lineage has brought
emerging consensus that basal cells are a stem cell or progenitor
cell of the airway epithelium (Rock et al., 2009; Bertoncello, 2016).
Importantly, basal cells have the capacity to differentiate into all
the cell types of the pseudostratified airway epithelium, including
the rare population of CFTR high-expressing ionocytes (Montoro
et al., 2018; Plasschaert et al., 2018). This means that upon CFTR
correction of basal cells, multi-lineage expression of the corrected
CFTR could be achieved in the airway epithelium.

The existence of multiple progenitors with various
differentiation capacities has been detected in human bronchial
xenografts (Engelhardt et al., 1995). This is in concordance with
reports that mouse tracheal basal cells comprise two molecularly
distinct subpopulations of multipotent stem cells and committed
secretory precursors (Hong et al., 2004; Watson et al., 2015). More
recently, a single-cell RNA-seq study on human airway epithelial

cells identified a heterogenous population of basal cells that include
multipotent and secretory-primed subsets (Carraro et al., 2020).
However, it remains unknown whether secretory-primed basal
cells represent a transitory state of basal cells or a phenotypically
stable state. The implication is that cell therapy approaches will
have to account for basal cell subtypes when selecting a suitable cell
to target.

Correcting CFTR in Regenerative Cells
Correction of CFTR in vitro in airway epithelial cells can be
achieved by direct addition of genetic material as discussed in the
sections above (Therapeutic Genetic Material Other Than DNA:
RNAAddition and Repair and Therapeutic Delivery Vectors). An
alternative to introducing new material is to correct the defective
CFTR via gene editing.

Gene Editing Technologies
The advent of gene editing technologies has refueled excitement
over gene therapy and is an area of vast development. The three
major gene editing technologies are clustered regularly
interspaced short palindromic repeat (CRISPR)–Cas-associated
nucleases, programmable nucleases, such as zinc-finger nucleases
(ZFNs) and transcription activator-like effector nucleases
(TALENs). The first in vivo application of CRISPR/Cas9 was
employed for a person with a mutation in the CEP290 gene which
causes retinal degeneration (Ledford, 2020). Clinical trials are also
underway to evaluate these therapeutic approaches for treatment
of cancer and sickle cell disease (Ernst et al., 2020). In the context
of CF, emerging gene editing technologies hold the potential to
repair specific CFTR gene mutations and restore their function,
offering the ultimate opportunity for precision medicine.
However, to date, gene editing technologies for CF remain in
the preclinical realm.

The first study of CRISPR/Cas9 as a potential therapy for CF
used site-specific knock-in of the correct CFTR sequence to
robustly restore CFTR function in human intestinal stem cell
organoids derived from patients homozygous for the Phe508del
mutation (Schwank et al., 2013). This approach has since been
implemented in cell culture by Ruan and colleagues to achieve
greater than 20% repair of patient-derived induced pluripotent
stem cells (iPSCs) (Ruan et al., 2019). Furthermore, in recent
advancements, an AAV-delivered Cas9 gene editing platform
facilitated correction of >30% Phe508del-CFTR in patient-
derived airway basal cells, prior to transplantation to an ex
vivo engraftment scaffold and near-normal levels of CFTR
function were restored (Vaidyanathan et al., 2020).
Considering reports that suggest as little as 4.7% of WT CFTR
expression can lead to a milder CF phenotype (Ramalho et al.,
2002), prospects for clinical translation are promising. However,
a shortcoming of these gene editing technologies is that they are
mutation specific. As such, different mutations must be
individually corrected, with some being more amenable to this
strategy than others.

CRISPR/Cas9 has successfully corrected CFTR splicing
mutations (Sanz et al., 2017) and mutations leading to the
formation of a premature termination codon that produce no
functional CFTR protein (Erwood et al., 2020). As such, an
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approach for allele-specific editing has been outlined. Gene
editing using Zinc finger nucleases (ZFNs) has also facilitated
the correction of iPSC-derived CF AECs (Crane et al., 2015).
Crane and colleagues showed that CFTR-corrected iPSCs,
following induced differentiation in vitro, expressed functional
CFTR protein (Crane et al., 2015). A similar study used ZFNs to
correct Phe508del and demonstrated restored CFTR protein
expression and function in air-liquid interface cultures
established from the edited basal cells (Suzuki et al., 2020).
TALEN technologies have also been used to restore normal
CFTR expression and activity in organoids derived from
Phe508del patient-derived iPSCs (Fleischer et al., 2020). The
ability to achieve CFTR correction in additional stem/
progenitor cells such as airway basal cells, either as primary
airway basal cells or those derived from iPSCs, has specific
relevance for progress toward cell-based therapies for CF.

Expansion of CFTR-Corrected
Regenerative Cells That Retain
Differentiation Capacity
Irrespective of which regenerative cell type or in vitro correction
method is to be used, cell-based therapy will require large
numbers of viable cells to repopulate the lung by replacing the
CFTR defective endogenous AECs. Hayes and colleagues have
estimated that 60 million regenerative cells will be required to
treat a human patient with cystic fibrosis cell therapy (Hayes et al.,
2019). However, procurement of basal lung epithelial cells via
bronchial lavage, sputum collection or endobronchial biopsy
provides only low cell numbers (Mou et al., 2012; Pollock
et al., 2013; Butler et al., 2016). To overcome the issue of low
initial cell numbers, extensive cell expansion will be required
prior to implantation.

Bronchial basal cells have a limited lifespan (Ghosh et al.,
2011) with differentiation capacity that decreases over time
in vitro (Gentzsch et al., 2017). Various culture protocols for
cell expansion have been adapted to overcome these limitations
(reviewed in (Awatade et al., 2018)). The conditionally
reprogrammed cell (CRC) methodology (Liu et al., 2012) is
one approach to increase bronchial cell yield (Martinovich
et al., 2017) and maintain differentiation potential for multiple
passages (Lee et al., 2020). CF and non-CF bronchial basal cells
have been expanded to a therapeutic dose of 60 million cells via a
modified CRC method, albeit the frequency of regenerative cells
having decreased to 20% by the time the therapeutic dose was
reached (Hayes et al., 2019). Importantly, the bronchial basal cells
were demonstrated to retain their differentiation potential from
passages 2 to 15 using this approach (Hayes et al., 2019). Yet,
further concern is raised by reports of in vitro basal cell expansion
altering CFTR functional activity (Awatade et al., 2021) and
differentiation cell-fate composition, leading to a reduced
number of ciliated cells in expanded cells compared to freshly
isolated cells (Eenjes et al., 2018). If expanded basal cells
differentiate to pseudostratified epithelium with an altered cell
type composition, this would have implications for their
suitability for cell therapy, therefore necessitating further
investigation.

Another challenge faced by cell expansion for the purpose of
CF cell-based therapy is reports that differentiated cultures
established from extended in vitro expansion of basal cells
often have decreased CFTR ion transport function (Peters-Hall
et al., 2018). Lee and colleagues report that although CRC
expanded cells have increased CFTR ion transport compared
to conventionally expanded cells, short-circuit current (a proxy
for CFTR function) still decreased by passage three in CRC
expanded cells (Lee et al., 2020). A better understanding of the
impact of extended cell expansion on CFTR function is required.

Transplantation of CFTR-Corrected
Regenerative Cells
Basal cells are located within the surface epithelium, adjacent to
the basement membrane, and their differentiation leads to the
cellular diversity of the airway epithelium. As such, if CFTR-
corrected basal cells are to be the basis of a cell therapy, then
they would need to be engrafted onto the basement membrane
of the airway epithelium. This should replenish the airways with
CFTR-corrected ciliated and secretory cells, and ionocytes.
Meanwhile, the engrafted basal cells, corrected by integrating
CFTR addition or mutation-specific gene editing, would retain
their capacity for self-renewal to establish a long-term corrected
cell population.

Studies of hematopoietic stem cell transplantation show that
transplanted cells compete with endogenous bone marrow
stroma cells (Abbuehl et al., 2017). Similar concerns have been
raised for competition between endogenous and transplanted
cells used to repair the lung epithelium. In a competitive
repopulation assay, a mixed culture of CF and healthy (non-
CF) basal cells were differentiated at air-liquid interface to
generate a pseudostratified airway epithelium in vitro (Lee
et al., 2020). Lee and colleagues found that non-CF cells
outcompeted CF donor cells, suggesting that endogenous
airway epithelial repair and regeneration is likely to hinder cell
engraftment. However, more work is required to fully
comprehend and address factors such as these which may
impact stable integration of transplanted cells.

The innate barrier properties of the CF airway epithelium–the
thick mucus layer and the ciliated pseudostratified multi-layered
nature of the epithelial tissue–will likely make the delivery of the
corrected basal cells to the basement membrane difficult. An
effective cell delivery method will need to first overcome the
mucus layer covering the epithelial surface. Whilst aerosolization
of stem cell MSCs has demonstrated feasibility as a new method
of cell delivery in vivo in rabbit airways (Kardia et al., 2014; Kardia
et al., 2018; Halim et al., 2019), this technique has not been trialed
using basal stem cells. Most studies of basal cell engraftment
delivered via intratracheal instillation (Ghosh et al., 2017) or
injection (Millerl et al., 2018) use rodent models (Ghosh et al.,
2017; Miller et al., 2018). However, these animal models are
limited in their capacity to accurately recreate human CF airway
pathogenesis. Evidently further testing in appropriate in vivo
animal models is required to determine an effective approach for
cell delivery capable of overcoming the altered mucus barrier in
CF. Yet, even if an optimal method is achieved, it is anticipated
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that disruption of the epithelial cell layer via conditioning or
transient injury will be necessary to facilitate effective cell
transplantation. Similar strategies have been successful for
conditioning of the bone marrow prior to haemopoietic stem
cell transplantation (Gyurkocza and Sandmaier, 2014).

Experimental evidence for successful donor cell engraftment in
the lungs of animal models has been shown with various injury
protocols. Following conditioning with naphthalene, both iPSCs
(Miller et al., 2018) and airway basal cells (Ghosh et al., 2017)
successfully transplant into mouse airways and persist for up to six
weeks. Comparatively, partially stripping the AECs by treatment
with polidocanol, an agent that creates a larger site for donor cell
engraftment than naphthalene, has enabled basal cells to engraft
into live mouse airways and the transplanted cells remained viable
for at least three weeks (Farrow et al., 2018a). The long-term effect
of these conditioning protocols upon cell engraftment is yet to be
examined. In the context of CF, no ideal strategy has yet been
developed. To injure the already inflamed and infected lungs of CF
recipients might appear counterintuitive. The question remains:
what is the optimal conditioning scenario that will cause minimal
injury, whilst facilitating effective engraftment of corrected cells in
sufficient numbers to restore lung function?

CONCLUSION

There are clear challenges to the successful translation of gene and
cell therapies designed to correct the CFTR defect in the airways.
Various novel viral and non-viral therapeutic vectors have advanced
to clinical trials; however, no significant clinical benefit has been
achieved. The greatest barrier to the success of these gene
therapeutics is their delivery to the human airways. Overcoming
this barrier will be central to ongoing research and paramount to the
achievement of an efficacious in vivo CF gene therapy.

Cell-based therapies represent a promising alternative strategy
wherein CFTR is corrected ex vivo. Yet, questions remain
unanswered. Even if regenerative basal cells that are corrected
via integrating CFTR addition or mutation-specific gene editing
can efficaciously transplant at the basement membrane of the
airway epithelium, how safe are these ex vivo-corrected cells? We
know that reprogramming, expansion, and editing increases the

probability of tumorigenicity (reviewed in (Berical et al., 2019)).
Can basal cells only be expanded to the necessary therapeutic
dose at the cost of preserving the transcriptome, epigenome, and
differentiation capacity of these basal cells? Long-term
investigations are needed to confirm transplanted basal cells
are free from mutations, that they are stably engrafted and
that CFTR function is retained. Future studies to investigate
and improve the findings discussed in this review are required
to validate the feasibility of cell-based therapy for treatment of CF.

Moreover, challenges will likely be met in transitioning gene-
and cell-based therapies to clinical care. Discussions of the
difficulties in developing and sustaining a successful business
model for cell-based therapies, and the changes in clinical care
necessary to make this potentially transformative therapeutic
approach accessible to patients, are ongoing (Elverum and
Whitman, 2019). As we continue to forge ahead in this era of
personalized medicine, improvements to current CFTR
modulator drugs will likely herald increased patient benefit.
However, clinical translation of gene or cell-based therapies,
though still an ambitious goal, offers future promise of a
mutation-agnostic cure for CF.
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