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Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of β-amyloid (Aβ)
in the walls of cerebral vessels, leading to complications such as intracerebral hemorrhage,
convexity subarachnoid hemorrhage and cerebral microinfarcts. Patients with CAA-related
intracerebral hemorrhage are more likely to develop dementia and strokes. Several
pathological investigations have demonstrated that more than 90% of Alzheimer’s
disease patients have concomitant CAA, suggesting common pathogenic
mechanisms. Potential causes of CAA include impaired Aβ clearance from the brain
through the intramural periarterial drainage (IPAD) system. Conversely, CAA causes
restriction of IPAD, limiting clearance. Early intervention in CAA could thus prevent
Alzheimer’s disease progression. Growing evidence has suggested Taxifolin
(dihydroquercetin) could be used as an effective therapy for CAA. Taxifolin is a plant
flavonoid, widely available as a health supplement product, which has been demonstrated
to exhibit anti-oxidative and anti-inflammatory effects, and provide protection against
advanced glycation end products and mitochondrial damage. It has also been shown to
facilitate disassembly, prevent oligomer formation and increase clearance of Aβ in a mouse
model of CAA. Disturbed cerebrovascular reactivity and spatial reference memory
impairment in CAA are completely prevented by Taxifolin treatment. These results
highlight the need for clinical trials on the efficacy and safety of Taxifolin in patients with CAA
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INTRODUCTION

Cerebral amyloid angiopathy (CAA) refers to the abnormal accumulation of amyloid proteins in the
walls of cerebral vasculature (Love et al., 2014; Saito et al., 2020b). Seven amyloid proteins have so far
been reported in CAA including β-amyloid (Aβ), cystatin C, transthyretin, gelsolin, prion protein,
ABri/ADan and immunoglobulin light chain amyloid (Yamada, 2015). The most common form is
Aβ-type CAA, which is present in over 90% cases of sporadic, non-familial age-related Alzheimer’s
disease (AD) (Saito and Ihara, 2016). The shared role of Aβ deposition in AD and CAA implies
interaction between neurodegenerative and cerebrovascular processes (Saito et al., 2015). In this
review, we discuss the pathophysiological basis of such interactions and how Taxifolin could act as a
potential therapeutic agent for CAA.
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CAA INDUCING CEREBROVASCULAR
DISEASE

CAA induces smooth muscle cell degeneration, vessel wall
thickening, luminal narrowing and concentric wall splitting,
resulting in varying degrees of intracerebral hemorrhage (ICH)
(Love et al., 2014). Lobar, but not deep, ICH is associated with
CAA (Saito et al., 2020a). Finger-like projections and
subarachnoid hemorrhage extension of lobar ICH, together
with the ApoE4 genotype, are reliable diagnostic markers for
CAA (Rodrigues et al., 2018; Renard et al., 2019) (Figure 1A).
Cerebral microbleeds (CMBs) are commonly observed in patients
with CAA. Strictly lobar CMBs are highly specific for CAA, while
CMBs in deep brain may indicate hypertensive arteriopathy
(Greenberg and Charidimou, 2018; Jung et al., 2020). The
estimated annual incidence of CAA-related ICH is 5.3 per
100,000 people in the United Kingdom and 5.8 per 100,000
people in Japan; however, the incidence of ICH not resulting
fromCAA, andmainly associated with hypertensive arteriopathy,
is 2.5-fold higher in Japan than the United Kingdom (Yakushiji
et al., 2020). Early diagnosis of CAA is clinically important for
guiding prognosis and treatment decisions. A recent prospective
study, with a median follow-up time of 2.5 years, showed
progression to dementia in more than 25% of patients with
CAA-related ICH, even if no dementia had presented after the
acute phase of ICH (Xiong et al., 2019). ICH recurrence was more
frequent in patients with CAA than other potential causes (Pasi
et al., 2018).

CAA is likely clinically underdiagnosed, due to the various
clinical presentations outside of lobar ICH (Sakai et al., 2019;
Fakan et al., 2020). Subarachnoid hemorrhage (SAH), resulting
from bleeding into the subarachnoid space, known as “convexity
SAH” in the acute phase (Figures 1B–D) and “superficial
siderosis” in the chronic phase, can be induced by CAA (Saito
et al., 2020a). Most CAA-induced bleeding into the subarachnoid
space is limited without the involvement of the adjoining brain
parenchyma (Kumar et al., 2010). Many convexity SAH are
asymptomatic, though the risk of future intracranial
hemorrhage and death of patients with CAA-convexity SAH is
very high (Calviere et al., 2019; Saito et al., 2020a).

CAA also induces ischemic strokes consisting of both macro
and microinfarcts (Saito et al., 2015; Saito and Ihara, 2016).

Cerebral microinfarcts were originally defined as infarcts only
visible by microscopy (Okamoto et al., 2012). However,
technological advances in imaging modalities, such as ultra-
high-field MRI, have enabled cerebral microinfarct observation
(Ishikawa et al., 2020; Ter Telgte et al., 2020). AD and CAA
patients frequently possess cortical cerebral microinfarcts near
Aβ-laden vessels (Okamoto et al., 2009; Okamoto et al., 2012).
Cerebral microinfarcts were replicated in CAA model mice
following chronic cerebral hypoperfusion by bilateral common
carotid artery stenosis (Okamoto et al., 2012). Impaired
vasodilation due to vascular Aβ accumulation may contribute
to cerebral microinfarct pathogenesis. AD and CAA patients have
numerous, sometimes exceeding 1,000 (Westover et al., 2013),
cerebral microinfarcts (van Rooden et al., 2014), which are likely
to contribute to cognitive impairment (Saito et al., 2015).

CAA AS A CONTRIBUTOR TO
NEURODEGENERATIVE DISORDER

CAA plays a pivotal role in the pathogenesis of dementia and is
independently associated with cognitive decline (Boyle et al.,
2015; Banerjee et al., 2018). Since there is little evidence for
overproduction, the failure of clearance of Aβ peptides is a likely
key factor in the pathological development of AD and CAA
(Mawuenyega et al., 2010; Iturria-Medina et al., 2014). There is
therefore increasing interest in developing agents that promote
the safe elimination of Aβ from the brains of aged people (Saito
and Ihara, 2014). The necessity of promoting Aβ clearance has
been demonstrated in clinical trials using Aβ immunization. In
AN-1792-vaccinated AD patients, the number and extent of
parenchymal Aβ plaques diminished, while cerebrovascular Aβ
accumulation and CAA increased (Nicoll et al., 2003; Patton et al.,
2006). This finding was also observed in patients treated with
solanezumab, a monoclonal anti-Aβ antibody (Roher et al., 2016).
Antibody-solubilized Aβ appears to be removed from the cortex
and re-deposited in the walls of the cerebral blood vessels via
intramural periarterial clearance pathways (Carare et al., 2020).

Intramural periarterial drainage (IPAD), is a mechanism for
the drainage of fluid and solutes from the brain along the walls of
cerebral arteries (Tarasoff-Conway et al., 2015; Saito et al., 2019)
(Figure 2). The central nervous system is devoid of lymph vessels.

FIGURE 1 | Head CT images of an 84-year-old woman with CAA showing repeated non-traumatic intracranial hemorrhage over four months. (A) ICH presenting
finger-like projections (white arrow) with SAH extension (black arrow). (B) Acute convexity SAH (arrowhead) at two months later than A. (C) Acute convexity SAH
(arrowhead) at three months later than A. (D) Acute convexity SAH (arrowhead) at four months later than A.
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Instead, interstitial fluid and solutes within the extracellular
matrix, including soluble Aβ, enter the IPAD pathways within
the basement membranes of capillaries and continue to the
basement membranes surrounding smooth muscle cells
(SMCs) of the intracerebral and leptomeningeal arteries
(Carare et al., 2020), which lead to the cervical lymph nodes
(Piotrowska et al., 2020). This process has been examined in detail
by several imaging methods including electron (Morris et al.,
2016), confocal (Carare et al., 2008; MacGregor Sharp et al., 2020)
and two-photon (Arbel-Ornath et al., 2013; Kim et al., 2020),
microscopy. IPAD flow rapidly moves toward the leptomeningeal
arteries where the deposition of Aβ is prominent in CAA (Keable
et al., 2016). Aβ levels in the cerebrospinal fluid are decreased in
CAA (Verbeek et al., 2009; van Etten et al., 2017), suggesting that
Aβ transport is impeded in the IPAD pathways.

Transcytosis is another vascular-mediated Aβ clearance
system closely associated with AD and CAA. The brain
parenchyma is separated from capillary lumen by the blood
brain barrier (BBB), which prevents passive exchange between
the brain and blood, allowing controlled carrier-mediated
bidirectional transport of nutrients and waste products
(Sweeney et al., 2018; Sweeney et al., 2019). Several molecules,
such as low-density lipoprotein receptor related protein-1 (LRP-
1), are thought to be involved in Aβ efflux from brain to blood
(Shibata et al., 2000; Deane et al., 2004). Aβ binds to LRP-1 at the
abluminal side of the vascular endothelium, either as a free

peptide or bound to ApoE2 and ApoE3. Aβ-ApoE2 and Aβ-
ApoE3 complexes are rapidly cleared across the BBB into the
blood, while Aβ bound to ApoE4 interacts poorly with LRP-1 and
is less efficiently removed from brain (Deane et al., 2008). Aβ
deposition is frequently found in the cerebral capillaries in
subjects possessing the ApoE4 allele (Thal et al., 2008).

CAA is not merely a consequence of impaired IPAD or
transcytosis but also an important contributor to these
processes (Kim et al., 2020; Rosas-Hernandez et al., 2020).
CAA damages arterial structure and function, leading to
worsening of cerebrovascular function and cognition.
Therefore, early intervention strategies against CAA could be
key to preventing progression of AD.

Challenges in Developing Novel Therapies
for CAA
Development of novel treatments for CAA has proved
challenging, with no pharmaceutical agents currently available
(Smith and Markus, 2020). While more than 100 trials are in
progress for AD (Cummings et al., 2020), to our knowledge, there
are no ongoing clinical trials for agents targeting CAA (The U.S.
National Institutes of Health, 2020), though a clinical trial of
minocycline, a tetracycline derivative with anti-inflammatory
properties is being planned in the Netherlands. Previous
clinical trials on agents targeting CAA have reported mixed

FIGURE 2 | Scheme of leptomeninges and penetration of leptomeningeal artery into the brain parenchyma. Brain waste is cleared through the IPAD route (green
arrow). Aβ is preferentially deposited in the tunica media of the leptomeningeal and cortical arteries in CAA.
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findings. Tramiprosate (3-amino-1-propanesulfonic acid), a low-
molecular-weight ionic compound with preferential binding to
soluble form of Aβ, has been shown to effectively block the
deposition and facilitate the clearance of Aβ from the brains of
transgenic mice expressing a double mutant (K670N/M671L and
V717F) human APP gene (Gervais et al., 2007) but does not bind
to insoluble fibrillar Aβ (Gervais et al., 2007). However, a phase-II
trial of tramiprosate demonstrated no beneficial effects on CMBs
despite causing no major safety issues (Greenberg et al., 2006;
Gauthier et al., 2009; Aisen et al., 2011; Smith and Markus, 2020).
In another trial, the anti-Aβ-monoclonal antibody, ponezumab
was investigated in patients with CAA (Leurent et al., 2019).
Ponezumab was well tolerated and plasma levels of Aβ40 were
increased in the ponezumab-treated group, suggesting effective
removal from the brain. However, ponezumab did not improve
visual task-related functional MRI activation, a marker for
cerebrovascular reactivity (Leurent et al., 2019).

Taxifolin for CAA
Taxifolin is emerging as a viable safe therapeutic agent for the
prevention and treatment of CAA. Taxifolin, also known as
dihydroquercetin, is a bioactive flavanonol commonly found in
grapes, citrus fruits, onions, green tea, olive oil, wine and several
herbs such as milk thistle, Frenchmaritime bark, Douglas fir bark,
and Smilacis Glabrae Rhizoma (Yang et al., 2016). Taxifolin is
also widely used as a food additive and can be found in health
supplement products including silymarin (Yang et al., 2016).
Taxifolin has received increasing attention as a potential
treatment for various diseases such as cancer, cardiovascular
diseases, viral hepatitis, dyslipidemia and neurodegenerative
disorders (Weidmann, 2012). It exhibits various
pharmacological effects (Sunil and Xu, 2019), including anti-
oxidant (Guo et al., 2015), advanced glycation end product
suppressing (Harris et al., 2011), and mitochondrial protecting
(Haraguchi et al., 1996) properties. Inhibition of Aβ fibril
formation by Taxifolin has been demonstrated by using
transmission electron microscopy imaging (Sato et al., 2013a;
Sato et al., 2013b; Saito et al., 2017). Thioflavin T fluorescence
assays have also shown that aggregated Aβ fibrils can be
disaggregated by Taxifolin (Sato et al., 2013a), seemingly due
to its chemical structure properties. Taxifolin is oxidized to form
o-quinone on its B-ring. Since Lys16 and Lys28 are involved in
the formation of β-sheets of Aβ, oxidized Taxifolin prevents the
aggregation of Aβ as it covalently binds to Aβ at Lys16 and Lys28
residues (Sato et al., 2013b; Tanaka et al., 2019).

Aβ disassembly by Taxifolin treatment was confirmed in
vivo. We administered Taxifolin or vehicle to a mouse model of
CAA expressing the human APP gene with Swedish/Dutch/
Iowa triple mutations (Saito et al., 2017). Filter trap assays
showed a significant decrease in the concentration of Aβ
oligomer in the soluble fraction of brain of Taxifolin-treated
mice (Saito et al., 2017). However, the amount of total Aβ in the
soluble fraction was similar between the Taxifolin-treated and
vehicle-treated CAA mice, suggesting Taxifolin prevented the
formation of Aβ oligomers from monomers (Saito et al., 2017).
Furthermore, Taxifolin treatment prevented spatial memory
deficits induced by injection of oligomeric Aβ into the

hippocampus of wild-type mice (Wang et al., 2018).
Decreased levels of Aβ oligomers by Taxifolin treatment were
seen even in advanced stages of CAA (Saito et al., 2017). Higher
blood Aβ levels were found in Taxifolin-treated CAA mice,
suggesting facilitation of Aβ clearance from brain to blood.
Taxifolin also fully restored both cerebrovascular reactivity and
spatial reference memory in CAA mice (Saito et al., 2017).
Higher expression of triggering receptor expressed on myeloid
cell 2 (TREM2) is associated with the inflammation in the brain
(Tanaka et al., 2020). We reported that Taxifolin suppressed
inflammation, alleviating the accumulation of TREM2-
expressing cells in the brains of CAA model mice (Inoue
et al., 2019). Furthermore, Taxifolin suppressed glutamate
levels and oxidative tissue damage, resulting in the
amelioration of apoptotic cell death. In short, Taxifolin
exhibits pleiotropic neuroprotective effects against CAA
(Inoue et al., 2019).

FUTURE PERSPECTIVE

In light of the promising preclinical data outlined in this review,
we are currently preparing a clinical trial of Taxifolin in CAA
patients. Nevertheless, several caveats on the use of this exciting
potential treatment option should be addressed. Firstly,
preclinical studies have not demonstrated that Taxifolin
mitigates or prevents ICH, suggesting this may represent an
inappropriate efficacy outcome in a clinical trial. Considering
that Taxifolin restores cerebrovascular reactivity in mice (Saito
et al., 2017), improvement of the cerebrovascular reserve
capacity may be a more suitable in evaluating efficacy in
CAA patients; indeed, impaired vascular reactivity is an early
manifestation of CAA (van Opstal et al., 2017). However, the use
of a surrogate, instead of a clinical, endpoint as a primary
outcome of the efficacy of a drug in a clinical trial of a
common disease such as CAA remains controversial (Broich
et al., 2011). Secondly, the optimal dose and usage of Taxifolin in
humans should be assessed. We reported the inhibition of Aβ
oligomer formation in mice using a high dose of Taxifolin (Saito
et al., 2017). In our experiments, 3% Taxifolin was administered
orally to mice weighing approximately 30 g and consuming
3–5 g chow a day. It is still unknown whether smaller doses
of Taxifolin initiate Aβ disassembly in vivo. Daily doses of
100 mg per day of Taxifolin are frequently administered as a
health supplement product. However, whether high doses of
Taxifolin are safe and tolerated in humans has yet been
established and the elimination half-life period of Taxifolin is
short at less than 1 h (Saito et al., 2017). Thirdly, as many as 191
metabolites of Taxifolin were reported in rats (Yang et al., 2016).
Given that some of the metabolites could exhibit anti-CAA
effects as well as Taxifolin, individual differences in the
metabolism of Taxifolin may affect the response on Aβ
disassembly in each patient, meaning the safety of such
derivatives should be also evaluated. Finally, the
identification of predictive indicators of favorable response of
Taxifolin on CAA should be prioritized. Heterogeneity and
multimorbidity are common in the elderly (Barnett et al.,

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 6433574

Saito et al. Taxifolin for CAA

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


2012), meaning the pharmacokinetic and pharmacodynamic
effects of Taxifolin may vary in different individuals. However,
the grouping of the patients based on the results of predictive
indicators may facilitate more targeted, stratified or precision
medicine treatments (Hampel et al., 2018).

CONCLUSION

Although numerous agents derived from natural plants now play
pivotal roles in the prevention and treatment of various diseases,
the importance of medicinal plant research may be
underestimated in the field of AD and CAA. The beneficial
effects demonstrated in preclinical studies suggest more
promise for the clinical use of Taxifolin than other drug
candidates for CAA. Future basic and clinical studies of this
commonly used bioactive flavonoid could open new avenues for
preemptive medicine for AD and CAA.
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