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Aim: Kukoamine B, a small molecule compound, is being developed for the treatment of
sepsis in a Phase II clinical trial. The objective of this study was to optimize dosing selection
for a Phase IIb clinical trial using an exposure-response model.

Methods: Data of 34 sepsis patients from a Phase IIa clinical trial were used in the model:
10 sepsis patients from the placebo group and a total of 24 sepsis patients from the
0.06 mg/kg, 0.12 mg/kg, and 0.24 mg/kg drug groups. Exposure-response relationship
was constructed to model the impact of the standard care therapy and area under curve
(AUC) of kukoamine B to the disease biomarker (SOFA score). The model was evaluated
by goodness of fit and visual predictive check. The simulation was performed 1,000 times
based on the built model.

Results: The data of the placebo and the drug groups were pooled and modeled by a
nonlinear mixed-effect modeling approach in sepsis. A latent-variable approach in
conjunction with an inhibitory indirect response model was used to link the standard
care therapy effect and drug exposure to SOFA score. The maximum fraction of the
standard care therapy was estimated to 0.792. The eliminate rate constant of the SOFA
score was 0.263/day for the standard care therapy. The production rate of SOFA score
(Kin) was estimated at 0.0569/day and the AUC at half the maximal drug effect (EAUC50)
was estimated at 1,320 h*ng/mL. Model evaluation showed that the built model could well
describe the observed SOFA score. Model-based simulations showed that the SOFA
score on day 7 decreased to a plateau when AUC increased to 1,500 h*ng/mL.

Conclusion: We built an exposure-response model characterizing the pharmacological
effect of kukoamine B from the standard care therapy in sepsis patients. A dose regimen of
0.24 mg/kg was finally recommended for the Phase IIb clinical trial of kukoamine B based
on modeling and simulation results.
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INTRODUCTION

Sepsis is an infection-initiated system inflammatory syndrome.
More than 25–30% of patients with sepsis die from the condition,
and hospital mortality for septic shock approaches 40–60%
(Annane et al., 2005; Lever and Mackenzie, 2007; Martin,
2012; Singer et al., 2016). Pathogen associated molecule
patterns (PAMPs) from infection source can activate the
pattern-recognition receptors of the innate immune system,
mediate inflammatory cell activation, and release inflammatory
factors (Martin, 2012). Current interventions are focused on
organ support, infection source control, and antibiotic therapy
(Cecconi et al., 2018). The disease severity of sepsis was correlated
with the degree of organ dysfunction.

The Sequential Organ Failure Assessment (SOFA) score, used
to codify the degree of organ dysfunction, is a simple and effective
method to monitor patient condition and disease progression,
and is widely used in ICUs to evaluate the severity and prognosis
of patients with sepsis (Ferreira et al., 2001; Tan et al., 2018;
Lambden et al., 2019). SOFA score is a total score including six
domains: respiratory system (PaO2/FiO2), renal system
(creatinine), central nervous system (Glasgow Coma Score),
coagulation system (platelet counts), hepatic (bilirubin), and
cardiovascular system (systolic blood pressure). Sepsis is now
defined in the presence of an infection combined with an acute
change of two or more points of the SOFA score (Raith et al.,
2017). SOFA values range from 0–25, with higher values denoting
higher disease activity. The European Medicines Agency has
accepted that a change in the SOFA score is an acceptable
surrogate marker of efficacy in exploratory trials of novel
therapeutic agents in sepsis (European Medicine Agency,
2006). Thus, SOFA score can be used as the biomarker of
pharmacological effect in sepsis patients along with PK
exposure to guide the development of novel drugs in clinical
trial. To date, no exposure-response models using the SOFA score
have been reported.

Lipopolysaccharides (LPS) and oligodeoxynucleotides
containing CpG motifs (CpG DNA) are important drug
targets for sepsis treatment. Kukoamine B, a major bioactive
component of Cortex Lycii (Liu et al., 2011a; Liu et al., 2011b), has
high affinities for LPS and unmethylated CpG DNA, and is a
developed novel drug that targets both LPS and CpG DNA in the
treatment for sepsis (Krieg, 2003; Liu et al., 2009). Kukoamine B
was approved for investigation in a Phase I clinical trial in healthy
volunteers by the National Medical Products Administration
(ClinicalTrials.gov # NCT02219971) in 2014. Pharmacokinetics
(PK), pharmacodynamics (PD), and the safety profile of
kukoamine B in sepsis patients were investigated in a placebo-
controlled, randomized, and double-blind Phase IIa trial, in
which SOFA score was evaluated as the biomarker of
pharmacological effect (ClinicalTrials.gov #NCT03237728).
The decreasing trend of SOFA score across time was
preliminarily observed to depend on the dose of kukoamine B.
No obvious drug-related adverse effects were found in the drug
groups. To recommend a safe and efficient dose for the following
Phase IIb study design, exposure-response relationship was
established based on Phase IIa clinical trial data.

The objective of our study was to i) develop an exposure-
response model using a population approach; ii) differentiate the
drug effect from the standard care therapy; iii) simulate the
profiles of day 7 SOFA score vs. area under curve (AUC) and
recommend an optimized dose for the Phase IIb clinical trial.

METHODS

Data Source
A multiple-dose, randomized, double-blind, placebo-controlled
phase IIa trial (ClinicalTrials.gov #NCT03237728) was conducted
in Chinese sepsis patients. In the pre-trial, a total of eight patients
were randomized at a 3:1 ratio to the 0.06 mg/kg drug group and
the placebo group. In the formal trial, a total of 36 patients were
randomized at a 1:1:1 ratio to the 0.12 mg/kg, 0.24 mg/kg, and
placebo group. In the placebo group, enrolled sepsis patients
received the standard care therapy required by the sepsis bundle
such as antibiotics and vasopressor, etc. (Levy et al., 2018). In the
drug groups, all enrolled subjects were administrated for 1 h with
an intravenous infusion of kukoamine B every 8 h for seven days
besides the standard care therapy by the sepsis bundle. The dose
of kukoamine B was calculated according to the patient’s
bodyweight. SOFA score was evaluated prior to the dose and
each day for eight days following dosing. In the pre-trial, blood
samples were collected pre-dose and 0.5, 1, 2, 4, 6, and 8 h after
the first starting dose, before the last three doses, and 0.5, 1, 2, 4, 6,
8, 12, 16, and 24 h after the last dose. In the formal trial, blood
samples were collected pre-dose and 0.5, 1, 2, 6, and 8 h after the
first starting dose, before the last three doses, and 0.5, 1, 2, 6, and
12 h after the last dose. The study was conducted in accordance
with the ethical principles stated by the Declaration of Helsinki,
International Conference on Harmonization Technical
Requirements for the Registration of Pharmaceuticals for
Human Use of Good Clinical Practice. All participants or their
guardians were required to sign a subject information agreement
and the protocols of the study were approved by the Peking
Union Medical College Hospital (PUMCH) Investigational
Review Board (IRB).

Data Analysis
Kukoamine B concentrations in the plasma of sepsis patients were
analyzed using a validated ultra-performance liquid
chromatography tandem mass spectrometry (UPLC-MS/MS)
method with a limit of quantification (LLOQ) of 0.1 ng/ml
(Wang et al., 2017). Concentrations vs. time profiles per group
were plotted by Phoenix WinNonlin (version 7.0, Certara, NJ,
United States). Area under curve (AUC0–8 h) of the first dose and
the last dose of 19 patients were calculated by non-compartment
analysis (NCA) using Phoenix WinNonlin (version 7.0, Certara,
NJ, United States), respectively. AUC0–8 h of the first dose of five
patients were calculated by NCA because of the missing day 7 PK
samples. The exposure-response model was built by a nonlinear
mixed-effect modeling approach using NONMEM (version 7.3;
Icon Inc., North Wales, PA, United States) in conjunction with
Pirana (version 2.8.0, Pirana Software and Consulting BV,
Amesterdam, The Netherlands) and the PSN (version 1.1.453)
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toolkit. Post processing of the NONMEM output was undertaken
with Xpose (Version 4.0 preview, release 6), programmed in the
statistics package R (version 3.5.1). The FOCEI algorithm was
employed in the model-building process. The baseline SOFA as a
variable was directly included in the model. The structure of the
model was evaluated based on objective function value (OFV),
goodness-of-fit plots, the precision of parameter estimates,
prediction-corrected visual predictive check (pcVPC,
Bergstrand et al., 2011), physiological/pathological plausibility,
and shrinkage (Savic et al., 2009). Conditional weighted residuals
were calculated.

The Exposure-Response Model
The data of the placebo and drug groups were pooled for
modeling. Pharmacological effect in the drug groups was
affected by two factors: i) pharmacological effect of the
standard care therapy (Zhang et al., 2019) and ii)
pharmacological effect of kukoamine B. The exposure-
response model was modeled in Eq. 3 (Hu, 2014; Hu et al.,
2014; Hu and Zhou, 2016):

SOFA(t) � Base − Fplacebo × Base × (1 − e− kt) − (1 − Fplacebo)
× Base × (1 − R(t)) + ε,

(3)

Where SOFA (t) is time-dependent SOFA, Fplacebo (0≤ Fplacebo ≤ 1)
is the maximum fraction of the standard care therapy.
(1 − Fplacebo) is the maximum fraction of drug effect. Base
indicated the baseline SOFA, Base × (1 − e−kt) is the change of
SOFA which is productive by the standard care therapy, IIV for k
is assumed to be normally distributed and is described by an
addition model, R(t) is a latent variable which is productive by
kukoamine B. ε ∼ N (0, σ2) represents the residual unexplained
variability, which is described by an additional function.

The pharmacological effect of kukoamine B is assumed to be
driven by a latent variable as follows:

R (t) governed by:

dR(t)
dt

� kin × (1 − AUC
AUC + EAUC50

) − kout × R(t), (4)

Where AUC is steady state AUC for kukoamine B: kin, EAUC50,
and kout are the parameters of the indirect response (IDR) model.
EAUC50 is the steady state AUC of kukoamine B that produces
half of the maximum attainable inhibition. kin is the zero-order
production rate of the residual percentage of the SOFA score, kout
is the first-order elimination rate of the residual percentage of the
SOFA scores. It is assumed that at the baseline, R (0) � 1, yielding
kin � kout. IIV for kin and EAUC50 is fixed to achieve successful
OFV minimization. For the placebo group, R (t) � 1 (AUC � 0).

Model Evaluation
Goodness-of-fit (GOF) plots were used to evaluated the predictive
performance of the exposure-response model, including
dependent variable vs. individual prediction (IPRED) or
population prediction (PRED), individual weighted residuals
(IWRES) vs. PRED, and CWRES vs. time. pcVPC was used

for model evaluation (n � 1,000) and stratified by the dose to
ensure the models performed adequately across subgroups (U.S.
Food and Drug Administration, 2019).

Simulations
To characterize the profiles of day 7 SOFA vs. AUC, the
simulation was performed based on the built exposure-
response model. The method was as follows: time in the
exposure response model was fixed at 7 (t � 7), day 7 SOFA
scores were simulated at the baselines 15, 10, and 5 1,000 times
when AUC ranged from 0 ng*h/mL to 5,000 ng*h/mL. The 30th,
50th, and 70th percentiles (prediction intervals) of day 7 SOFA
scores were plotted against AUC. The profiles of SOFA vs. time
were also simulated, and the plot was shown with different
colored shaped areas representing the placebo group and the
recommended 0.24 mg/kg group in a panel.

RESULTS

Patients and Samples
The data of 10 sepsis patients in the placebo group and 24
sepsis patients in the drug groups contributing 245 measurable
SOFA scores were finally included into our model dataset. Ten
patients were excluded from the SOFA dataset according to
the exclusion criteria or due to their withdrawal from the
clinical trials. There were 43 missing PK samples due to
subjects withdrawing from clinical trials or because the drug
was not successfully administrated. The results are shown in
Supplementary Table S1. The PK concentrations of all samples
except 0 h were more than LOQ. For 19 patients, we calculated
the AUC0–8 h of the first dose and the last dose, and the average of
them was used as the exposure measure. Five patients dropped
out of the clinical trial, so the PK sample of the last dose was
missing, and the AUC0–8 h of the first dose was used. AUC
(mean ± SD) for the 0.06 mg/kg group was 295.21 ± 47.16
(mean ± SD) h*ng/ml; AUC (mean ± SD) for the
0.12 mg/kg group was 827.85 ± 334.10 (mean ± SD) h*ng/ml;
AUC (mean ± SD) for the 0.24 mg/kg group was 1,482.51 ±
378.34 (mean ± SD) h*ng/ml. Supplementary Figure S1
shows the concentration vs. time profiles per group,
Supplementary Figure S2 shows the SOFA score vs. time

TABLE 1 | Parameter estimation results for the exposure-response model.

Parameter Estimate Units RSE% IIV (RSE%) Shrinkage (%)

Kin
a 0.0569 1/day 53 0 FIXED —

EAUC50
c 1,320 ng/mLah 37 0 FIXED —

kb 0.263 /day 29 30.2 (22) 8
Fplacebo

d 0.792 3 —

εe 1.96 9 30.2% 6

aThe production rate of SOFA score.
bAUC at half the maximal effect.
cThe amelioration rate constant of SOFA score in the placebo group.
dThe maximal fraction of the standard care therapy.
eAdditive error.
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profiles per group. Baseline SOFA (mean ± SD) for the placebo
group was 12.10 ± 4.36 (mean ± SD); baseline SOFA (mean ± SD)
for the 0.06 mg/kg group was 9.25 ± 2.22 (mean ± SD); baseline

SOFA (mean ± SD) for the 0.12 mg/kg group was 9.56 ± 3.09
(mean ± SD); and baseline SOFA (mean ± SD) for the 0.24 mg/kg
group was 10.09 ± 3.86 (mean ± SD).

FIGURE 1 | Goodness-of-fit plots. Group 1: the drug group; Group 2: the placebo group; (A) population predictions vs. observation. (B) Individual predictions vs.
observation. (C) Individual predictions vs. absolute of individual weighted residuals and (D) conditional weighted residuals vs. time. The black solid lines in (A) and (B)
represent the line of identity and that in (D) represent the line y � 0. The red solid lines in each panel represent the Loess smooth curve of the data.

FIGURE 2 | A visual assessment of the prediction-corrected posterior predictive performance (pcVPC) of the drug effect model in terms of its ability to predict the
observed SOFA score. Red solid lines are the 50th percentiles for observation. And black dash lines and black solid lines are the 10th, 50th, and 90th percentiles for
prediction.
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Exposure-Response Model
A latent-variable approach in conjunction with an inhibitory
indirect response model was used to link the standard care
therapy effect and drug exposure to SOFA score. The results
of the parameter estimation are summarized in Table 1. The OFV
value was 526.34.

Model Evaluation
The validity of the exposure-response model was assessed by
graphical analysis (goodness-of-fit plots) and pcVPC. Cross-
validation or external validation was not used due to the
limitation of sample sizes (Colby and Bair, 2013). The
goodness-of-fit diagnostic plots are shown in Figure 1.
The SOFA score of some subjects did not decrease, indicating
that these subjects had no response to the standard care therapy
and kukoamine B. Most dots of CWRES were shown to lie within
an acceptable range (−2 to 2), which suggested little to no bias
over time. Most dots of absolute value of IWRES lay within an
acceptable range (0–2), indicating no bias with the predicted
value. pcVPC stratified on dose was carried out with 1,000
simulations, the plot with 80% confidence interval (low sample
size) is shown in Figure 2. Most of the observed SOFA scores
were within the 80% CI of the model-predicted SOFA score,
demonstrating adequate model prediction. In the 0.06 mg/kg
group and 0.12 mg/kg group, the 10th and 90th percentiles of
the predicted values were wider than the 10th and 90th
percentiles of the observed values. It was elucidated that the
random effect predicted was higher than the observed values
because of a low sample size. The 50th percentiles of the observed
values and predicted values were generally consistent. In the
placebo group, the standard care effect was somewhat
overestimated, which was assumed to be related to the high
heterogeneity of sepsis patients.

Simulation
Day 7 SOFA vs. AUC profiles were simulated, which are shown in
Figure 3. It was observed that day 7 SOFA decreased to a plateau
when AUC was 1,500 h* ng/mL and the patients were
administrated for 1 h an intravenous infusion of kukoamine B
every 8 h for seven continuous days. Furthermore, SOFA score
decreased more significantly when the baseline SOFA was high. It

provided some important information for the inclusion criteria of
subjects in the following Phase IIb clinical trial. Besides, SOFA
score vs. time profiles were also simulated, and the plots
overlaying the effect of the placebo and the recommend
0.24 mg/kg dosing regimen are shown in Figure 4. A
difference in the efficacy of the placebo group and the
0.24 mg/kg group was observed. In the 0.24 mg/kg dosing
regimen, no serious adverse effect was investigated in the
Phase IIa trial. For 80% of patients, AUC can achieve
1,500 h*ng/mL. Based on the simulated results and good
safety, we recommended the 0.24 mg/kg dosing regimen for
the Phase IIb clinical trial.

DISCUSSION

Sepsis, irregulated systemic inflammatory response, is triggered
by severe infection. Confounding factors such as heterogeneous
clinical presentation, various causative pathogens, and different
sites of infection, all contribute to disease progression. SOFA
score is widely used in ICUs to evaluate disease severity and
predict sepsis patients’ outcome. Patients’ baseline SOFA scores
in our study had a wide range, representing all possible
characteristics of this disease. The change trend of patients’
SOFA score also had a large difference.

Exposure-response (E-R) relationship was important for
optimizing dose selection in the drug development. PK
measure in the E-R relationship should be properly selected
based on the mechanism of action of kukoamine B.
Considering that AUC is often more accurately estimated,
AUCs were thought to be related to the pharmacological effect
from the perspective of the mechanism of action of kukoamine B
in our study. Thus, AUC was finally selected as the PKmeasure to
build the E-Rmodel (Krzyzanski and Jusko, 1998) The drug effect
R (t) was a latent variable which was described by the IDR model
consisting of a zero-order increase of R (t) and a one-order
decrease of R (t). Because kukoamine B exerts anti-inflammatory
effects based on its potent affinity with LPS and CpG DNA, drug
effect in zero-order increased the SOFA score. Themixture model
was tested considering that some subjects had no response to
kukoamine B and the standard care therapy. However, the OFV

FIGURE 3 | The simulated profiles of day 7 SOFA vs. AUC based on the exposuremodel (A) baseline 15, (B) baseline 10, and (C) baseline 5. The red lines represent
the 50th percentiles of SOFA score distribution in each panel. The upper and lower bound of shadow represent the 30th and 70th percentiles of SOFA score distribution
in each panel.
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minimization failed. It was thought that the number of subjects
with no response was low. The observed baseline SOFA score as a
variable was included in the model. In the primary stage of model
development, the baseline was estimated as a parameter, but the
variability of the baseline was high (487.1%). Sources of the
variability cannot be explained, so the observed baseline SOFA
as a variable was directly included in the model. In our study, for
patients’ safety, a total of eight patients with mild sepsis were
firstly randomized at a 3:1 ratio to the 0.06 mg/kg drug group and
the placebo group. The baseline SOFA was the lowest in the
0.06 mg/kg dose group. In the formal trial, the total of 36 patients
were randomized at a 1:1:1 ratio into the 0.12 mg/kg, 0.24 mg/kg,
and placebo groups. The group difference of the baseline SOFA
was attributed to the low sample size.

In the model building step, several structural models based on
the graphic exploration and prior knowledge were explored. The
results are summarized in Supplementary Table S2. This model
structure was not applied because of the failed model
minimization or high RSE% of the parameters or some model
shortcomings. The final model had some limits as follows: 1)
some parameters were fixed to achieve successful minimization;
2) pcVPC results indicated that random variability may be
overestimated especially for the 0.06 mg/kg group and
0.12 mg/kg group. It was elucidated that SOFA score had a
high interindividual and intraindividual variability (shown in
Supplementary Figure S2) and the sample size was low. 3)
pcVPC plot indicated that the standard care effect was
somewhat overestimated for the placebo group. It was
assumed to be related to the limited sample size and the high
heterogeneity of sepsis patients. The model would be validated by
large population data in the following Phase IIb clinical trial.

From model estimation results, the maximum fraction of the
placebo effect was estimated to be 0.792, while the maximum
fraction of the drug effect was 0.208. The drug effect was modest
compared with the standard care therapy effect. From Figure 4, a
small difference between groups was observed. These results may
be limited by the low sample size, but would be validated by the
following Phase IIb data. Day 7 SOFA was simulated when AUC

of kukoamine B ranged from 0 to 5,000 h*ng/mL, based on the
built model. When AUC was 1,500 ng/ml*h, day 7 SOFA
decreased to a plateau. The pharmacokinetic study of
kukoamine B in sepsis patients showed that the average
AUC0–8 h of the 0.24 mg/kg group patients was 1,500 h*ng/mL.
Thus, the 0.24 mg/kg dosing regimen was recommended for the
Phase IIb clinical trial.

Up to date, no report about an exposure-response model using
the SOFA score has been published (Hu et al., 2014; Hu et al.,
2016). In our study, the exposure-response model linking AUC
and SOFA score incorporating the standard care effect and the
drug effect was developed for the first time. The built model can
not only be used for dosing optimization for kukoamine B in the
following clinical trials, but could also be utilized in the clinical
trials of similar drugs in which SOFA score is used as a biomarker
of efficacy. Our study had some limitations like the low sample
size and no identified influence factors. In the future, important
covariates could be identified in a large population.
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