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INTRODUCTION

The pharmacological treatment of chronic pain is still unsatisfactory. The cellular and molecular
mechanisms at the basis of pain chronification are still poorly understood.

The commercially available drugs for treating chronic pain, including neuropathic pain, are
effective in few patients and own several side effects that often limit the compliance of the patients. In
addition, the opioids, which are the most potent analgesics, often fail in chronic pain conditions,
especially in neuropathic pain syndromes. Moreover, it is well known that opiates can lead to
addiction, tolerance and hyperalgesia. Therefore, new targets for treating neuropathic pain are
needed. Purines, including ATP, ADP and adenosine and their receptors are deeply involved in the
pathophysiology of neuropathic pain, particularly in the immune-mediated reactions that are
responsible for the induction of the tactile allodynia, that represents the main symptom of
neuropathic pain. The first response to the insult is mediated by the production of ATP and the
activation of P2X receptors (Jacobson et al., 2020). In particular, the P2X4 receptors on microglia
have been identified to be essential for the involvement of microglia cells in the pain pathophysiology
(Trang et al., 2012). Beside the P2X, the P2Y receptors tend to boost the immune cells in response to
nucleotides, with their ligands acting as immediate danger signals (Cekic and Linden, 2016). The
subsequent stimulation of the metabotropic P1 adenosine receptors (ARs), of which are known four
subtypes (A1, A2A, A2B, and A3), is overall associated with the reduction of both
immunoinflammatory response and pain (Vincenzi et al., 2020).

In the present opinion paper we will focus on the role of the P1 adenosine receptors in the
pathophysiology of chronic neuropathic pain. The involvement of P2X and P2Y receptors in chronic
pain has been discussed elsewhere (Jacobson et al., 2020).

SUBSECTIONS RELEVANT FOR THE SUBJECT

A1 Adenosine Receptor in Chronic Pain
The role of the A1AR in pain and nociception has been well described in both preclinical and clinical
studies. Preclinical evidence showed a potent beneficial effect of several A1AR agonists in different
animal models of chronic pain (Sowa et al., 2010; Luongo et al., 2012; Kan et al., 2018). It has been
suggested that A1AR stimulation in peripheral nerves, might represents the molecular mechanism
through which acupuncture exerts an antinociceptive effect (Goldman et al., 2010). A1AR knock out
(KO) mice were used to evaluate the role of the A1AR in nociception. Under normal conditions, as
well as during inflammatory or neuropathic pain, A1AR KO animals showed a lower thermal
threshold as compared to the wild-type (WT) mice. A1AR KO mice also showed a reduced
antinociceptive response to morphine given intrathecally, but not systemically (Wu et al., 2005).
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This is in agreement with other data showing that intrathecal
morphine generates an antiallodynic effect through A1AR
activation (Zhang et al., 2005). A1AR is widely expressed in
the nervous system. A1AR activation induces presynaptic
inhibition of primary afferent fibers at the dorsal horn level.
This inhibition is associated with decreased release of glutamate,
substance P, and other proinflammatory mediators from primary
afferents fibers to the spinal cord. A1AR also hyperpolarizes
dorsal horn neurons by increasing K+ conductance and
reducing Ca2+ influx (Bai et al., 2017).

Moreover, recent evidence also highlights the expression of the
A1AR in primary microglia cell cultures (Luongo et al., 2014),
assuming its potential role also in neuroinflammatory processes
at the basis of the induction of tactile allodynia. Clinical studies
also have been carried out for A1AR agonists. However, several
side effects, especially at the cardiovascular level were associated
to the use of those compounds (Zylka, 2011).

A2A and A2B Adenosine Receptors in
Chronic Pain
The role of the A2AAR in pain is still a matter of debate since both
pronociceptive and antinociceptive effects have been reported in
animal models of inflammatory and neuropathic pain. Several
reports highlighted the long lasting antiallodynic effect of the
spinally-injected A2AAR agonists (Loram et al., 2009; Kwilasz
et al., 2018). CGS21680, a selective A2AAR agonist, reduced the
formalin-induced nocifensive behavior in both the early
(0–15°minutes) and late (15–60°minutes) phases in a mouse
model of formalin-induced inflammatory pain (Nalepa et al.,
2010).

On the other hand, several papers showed a facilitative role of
the A2AAR on nociceptive threshold. In particular, it has been
suggested that mice lacking the A2AAR are less responsive to the
noxious stimuli and, in these mice, the spinal cord neurons seems
to be less active (Hussey et al., 2007; Hussey et al., 2010).
Moreover, A2AAR KO mice showed reduced tactile allodynia
as compared to the wild type animals in a mouse model of
neuropathic pain due to the sciatic nerve injury (Bura et al., 2008).

A3 Adenosine Receptor in Chronic Pain
The role of the A3AR emerged only recently in the pain field. The
analgesic effect of adenosine was, in fact, believed to be mediated
mainly by A1AR stimulation and, at least in part, by A2AAR
(Sawynok, 2016; Kwilasz et al., 2018). In addition, A1AR and
A2AAR modulating drugs, although effective in the preclinical
models, did not reach clinical experimentation for their
important cardiovascular side effect (Zylka, 2011; Jacobson
et al., 2020). Contrary to what emerged from the early studies
showing A3AR levels in the brain that were difficult to detect
(Rivkees et al., 2000), the A3AR is expressed in different areas of
the central nervous system (CNS) of both rodents and humans
(Yaar et al., 2002; Jacobson et al., 2018). Besides the A3AR
expression in neurons, which is lower as compared to the
A1AR and A2AAR in physiological conditions, there is a high
expression of this receptor in immune cells in the periphery and
CNS. Indeed, it has been demonstrated that A3AR is expressed by

astrocytes, oligodendrocytes, microglia, and endothelial cells,
including in human tissue (Zhang et al., 2016). This is
important since recent evidence highlighted the key role of the
microglia and astrocytes in the induction and maintenance of
tactile allodynia, which represents a major symptom associated
with neuropathic pain.

After early confusing reports about the involvement of the
A3AR in chronic pain, recent evidence supports a pivotal role of
this receptor in the reduction of tactile allodynia in different
preclinical models of neuropathic pain. The recent synthesis of
highly selective agonists for A3AR (>10,000-fold in comparison
to other AR subtypes) and the possibility to use A3AR KO
animals paved the way for more definitively investigating these
receptors in the pain axis. In fact, the selective pharmacological
stimulation of the A3AR induced pronounced and prolonged
antiallodynic effects in traumatic nerve-injury, chemotherapy-
induced and other models of neuropathic pain (Bar-Yehuda et al.,
2011; Chen et al., 2012; Fishman et al., 2012; Janes et al., 2015;
Little et al., 2015; Tosh et al., 2015; Terayama et al., 2018;
Wahlman et al., 2018; Stockstill et al., 2020). Moreover, A3AR-
selective agonists reduced the formalin-induced nocifensive
behaviour and diabetic neuropathy (Yan et al., 2016; Petrelli
et al., 2017). The A3AR seems to exert its beneficial effect at
different levels of the pain axis. Indeed, the receptors can be
activated at the spinal cord (SC) and rostral ventromedial medulla
(RVM) levels, where the mRNA has been found (Little et al.,
2015). Moreover, the selective activation of the A3AR can recruit
several downstream pathways (Cohen and Fishman, 2019; Kim
et al., 2019). These pleiotropic mechanisms might be the reason
for the high efficacy of the A3AR agonists. Among several
downstream mechanisms, the A3AR stimulation has been
shown capable of reducing the expression of proinflammatory
cytokines including tumor necrosis factor (TNFα) and
interleukin-1β (IL-1β), and enhancing the expression of
antiinflammatory cytokines, such as interleukin-10 (IL-10) and
interleukin-4 (IL-4) in the SC (Janes et al., 2015; Wahlman et al.,
2018). Intriguingly, it has also been observed that the A3AR
signaling is associated with a spinal mechanism of action that
modulates the chloride potassium symporter 5 (KCC2
transporter), which has been shown to be downregulated and,
in turn, responsible for the GABAergic gradient shift from
inhibitory to excitatory signaling in neuropathic pain (Ford
et al., 2015). This latter mechanisms is very important for the
establishment of tactile allodynia, which also involves microglia
cells (Coull et al., 2005). Coppi and coworkers also highlighted the
capability of A3AR agonists to inhibit the pronociceptive N-type
Ca2+ currents and cell excitability in dorsal root ganglion (DRG)
neurons (Coppi et al., 2019). This latter mechanism has also been
suggested by Lucarini and colleagues in a model of visceral pain in
rats (Lucarini et al., 2020).

Very recently, it has been demonstrated that the morphine-
induced tolerance could also be mediated by the A3AR, suggesting
a possible use of the A3AR agonists as adjuvant therapy in
combination with opioids (Doyle et al., 2020). Coadministration
of an A3AR agonist at a low dose also reduced withdrawal behavior
following morphine administration in rats, without reducing
morphine’s antinociceptive effect. A scheme summarizing the
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molecules acting on the A3AR in different preclinical models of
neuropathic pain is shown in Figure 1.

DISCUSSION

Purinergic signaling is involved in pain transmission. Data from
different laboratories suggested that adenosine metabotropic
receptors play key role in chronic pain models. In the
previous years, the focus on adenosine in pain was mostly
directed to the A1 and A2A receptors and their
pharmacological manipulation. Cardiovascular side effects are
the most limiting for the use of these compounds clinically.

More recent research has revealed the central role of the A3AR
and its pharmacological manipulation for chronic pain of various
origins. The efficacy of the A3AR agonists could be due to their
pleiotropic mechanism of action, without exerting pronounced
cardiovascular side effects. Interestingly, the antinociceptive

effect of the A3AR pharmacological stimulation is independent
from the recruitment of the opioid or cannabinoid systems, it
does not alter physiological pain, thus, avoiding the problems
related to the tolerance and abuse (Janes et al., 2016). Worthy of
note is also the capability of A3AR to synergize with other drugs
commonly used for treating chronic pain including opioids,
amitriptyline and gabapentin (Chen et al., 2012).

To conclude, it is clear that the purines deserve further
research attention in the pain field offering very promising
results indicative of future potential. In particular, A3AR
seems to represent a promising candidate for developing safer
and more effective drug treatment for neuropathic pain.
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