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COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It
has a disastrous effect on mankind due to the contagious and rapid nature of its spread.
Although vaccines for SARS-CoV-2 have been successfully developed, the proven,
effective, and specific therapeutic molecules are yet to be identified for the treatment.
The repurposing of existing drugs and recognition of new medicines are continuously in
progress. Efforts are being made to single out plant-based novel therapeutic compounds.
As a result, some of these biomolecules are in their testing phase. During these efforts, the
whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics
systems and approaches to overcome this unprecedented health challenge globally.
Genome, proteome, and metagenome sequence analyses have helped identify virus
nature, thereby assisting in understanding the molecular mechanism, structural
understanding, and disease propagation. The multi-omics approaches offer various
tools and strategies for identifying potential therapeutic biomolecules for COVID-19
and exploring the plants producing biomolecules that can be used as
biopharmaceutical products. This review explores the available multi-omics approaches
and their scope to investigate the therapeutic promises of plant-based biomolecules in
treating SARS-CoV-2 infection.

Keywords: COVID-19, SARS-CoV-2, coronavirus, multi-omics, biomolecules, therapeutic molecules

INTRODUCTION

The world has faced several chronic diseases, a few epidemics, and pandemics that were disastrous
and eliminated a predominant human population throughout history. Among all these, the present-
day COVID-19 is potentially contagious and has left the most devastating effect on humankind
(Prasad and Prasad, 2020; Shahriar et al., 2021). The virulent nature of COVID-19 and the rise of its

Edited by:
Christophe F. Hano,

INRA EA1207 Laboratoire De Biologie
Des Ligneux et Des Grandes Cultures,

France

Reviewed by:
Giuseppe Biondi-Zoccai,

Sapienza University of Rome, Italy
Talha Bin Emran,

Begum Gulchemonara Trust
University, Bangladesh

Ahmed Rakib,
University of Tennessee Health

Science Center (UTHSC),
United States

*Correspondence:
Rajnish Kumar

rkumar2@lko.amity.edu
Md. Sahab Uddin

msu-neuropharma@hotmail.com

†ORCID:
Md. Sahab Uddin

orcid.org/0000-0002-0805-7840

Specialty section:
This article was submitted to

Ethnopharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 12 January 2021
Accepted: 21 April 2021
Published: 12 May 2021

Citation:
Singh R, Singh PK, Kumar R, Kabir MT,

Kamal MA, Rauf A, Albadrani GM,
Sayed AA, Mousa SA,

Abdel-Daim MM and Uddin MS (2021)
Multi-Omics Approach in the

Identification of Potential Therapeutic
Biomolecule for COVID-19.

Front. Pharmacol. 12:652335.
doi: 10.3389/fphar.2021.652335

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6523351

REVIEW
published: 12 May 2021

doi: 10.3389/fphar.2021.652335

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.652335&domain=pdf&date_stamp=2021-05-12
https://www.frontiersin.org/articles/10.3389/fphar.2021.652335/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.652335/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.652335/full
http://creativecommons.org/licenses/by/4.0/
mailto:rkumar2@lko.amity.edu
mailto:msu-neuropharma@hotmail.com
http://orcid.org/0000-0002-0805-7840
https://doi.org/10.3389/fphar.2021.652335
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.652335


different strains have forced researchers worldwide to search for
rapid diagnostic methods for detection, development of new
vaccines, various therapeutic drugs, and immunization options.
Success has been achieved in developing different diagnosis
methods, but no drug has been developed to efficiently
provide treatment to the infected patient (Hossain et al., 2020;
Lurie et al., 2020; Loeffelholz and Tang, 2020).

Coronavirus belongs to the family Coronaviridae in the order
Nidovirales. This group of viruses is classified into four genera
such as Alpha coronavirus (α-CoV), Beta coronavirus (β-CoV),
Gamma coronavirus (γ-CoV), and Delta coronavirus (δ-CoV)
(Woo et al., 2010). Both the alpha- and beta-coronaviruses tend
to infect mammals. Among them, β-CoV has become the utmost
concern of the world due to its ability to cause serious illness in
the human population, like the Middle East respiratory
syndrome–related coronavirus (MERS-CoV), SARS-CoV, and
SARS-CoV-2, which cause fatal respiratory tract infection in
humans (Lu et al., 2020). The structural and nonstructural
information of SARS-CoV-2 has already been explained and
explored by many studies available in the literature (Hillen
et al., 2020; Jin et al., 2020; Clark et al., 2021; Hasana et al.,
2021; Semper et al., 2021).

Although many vaccines such as Comirnaty (mRNA based),
Moderna (mRNA based), AstraZeneca/Covishield (adenovirus
vaccine), Sputnik V (nonreplicating viral vector), CoronaVac
(inactivated vaccine), BBIBP-CorV (inactivated vaccine),
EpiVacCorona (peptide vaccine), Convidicea (adenovirus type
5 vector-recombinant vaccine), and Covaxin (inactivated
vaccine) have been approved in various countries, a specific
approved drug for COVID-19 is still missing. The significant
challenges in mass immunization include large-scale production,
cost-effectiveness, and global allocation. Moreover, until the
vaccination preferably drives herd immunity, social distancing
is still the most effective measure adopted all over the world to
prevent the spread of the disease (McKibbin and Fernando, 2020;
Sohrabi et al., 2020). Mostly, preexisting antiviral drugs are still
being used in the management of SARS-CoV-2–infected patients.
Simultaneously, the repurposing of drugs is also recommended
for testing and application. Some preexisting antiviral drugs like
remdesivir and lopinavir/ritonavir are currently being used in the
management of COVID-19 (Kumar et al., 2020a; Choy et al.,
2020; Wang et al., 2020f; Zhu et al., 2020).

However, there is an urgent need to investigate and discover
potential therapeutic compounds that could restrict viral
replication and its assembly in the human body. Finding a
permissive cell and delivering genetic information into its
cytoplasm are essential steps for viral infection into the host
cell. From a therapeutic point of view, there are at least two
important ways. The first is that blocking viral entry stops
infection early on and the second is preventing viral
replication. The antiviral drugs can be developed by targeting
different viral entry stages, either by blocking virus-specific
interactions or by inhibiting conserved cellular mechanisms
that viruses exploit to enter cells (Mazzon and Marsh, 2019).

Advancements in biotechnology and computational analysis
have taken place in the past decade, and they have provided
massive amounts of new data that have given an optimistic

outlook for intensifying disease treatment developments
(Belfiore et al., 2020; Infusino et al., 2020; Stebbing et al.,
2020). Nearly every disease and clinical research area has
exploded with enormous data (Lin et al., 2020).
Computational analysis of the available diverse omics data
could provide an in-depth understanding of molecular
mechanisms and associated transitions of the diseases (Kumar
et al., 2020b; Muthuramalingam et al., 2020; Su et al., 2020).
Clinical data management, genome and proteome analyses, next-
generation sequencing data mining, machine learning, and deep
learning algorithms have progressed significantly for mining
patterns from such enormous data (Kumar et al., 2016; Kumar
et al., 2018; Hossain et al., 2021; Overmyer et al., 2021).

Omics represent the collective technologies that help to
investigate the different molecules’ roles and actions that make
up an organism’s cells. These include genomics (gene),
transcriptomics (mRNA), proteomics (proteins), and
metabolomics (metabolites). These techniques have already
played a significant role in vaccine development and
repurposing of drugs, as shown in Figure 1. Omics
technologies’ main importance lies in detecting and verifying
all gene products (transcripts, proteins, andmetabolites) available
in any given biological sample. Omics analysis has been
extensively applied in drug discovery (Horgan and Kenny,
2011; Chen B. et al., 2020; Aaron et al., 2020) and estimation
of their effectiveness and toxicity (Figure 2). These are high-
throughput technologies that have been significantly assisting in
describing gene/protein expression profiles and their complex
effects for SARS-CoV-2 (Wang et al., 2020a; Bojkova et al., 2020;
Kim et al., 2020; Li et al., 2020). With their immense possibilities,
the powerful omics techniques seem like they will continue
supporting researchers and healthcare professionals in
exploring and exploiting SARS-CoV-2 pathophysiology for a
deeper understanding of its processes and understanding the
disease for diagnosis, screening, and prognosis (Wang et al.,
2020b; Hart and Halden, 2020; Robson, 2020).

The reports on the uses of preexisting drugs suggest that
3CLpro, Spike, RNA-dependent RNA polymerase (RdRp),
PLpro, and human angiotensin-converting enzyme 2 (human
ACE2) are potential drug targets for SARS-CoV-2 for further
in vitro and in vivo studies (Xu et al., 2020).

Since ancient times, plant preparations have been utilized as
herbal medicines, which probably also contain active antiviral
extracts/compounds, to cure and control infectious diseases (Israt
and Ahmet, 2020; Yang et al., 2020; Al-Ishaq et al., 2020).
Screening of plants to find the potential antiviral compounds
was conducted long ago, during 1952. A total of 288 extracts from
plant sources were experimented to check their role against the
influenza A virus (Chantrill et al., 1952). Thereafter, many
scientists have worked on utilizing the potential of plant
extracts with different viral diseases. Debiaggi et al. (1988)
worked on the antiviral activity of Chamaecyparis lawsoniana
(A. Murr bis) Parl. against herpes simplex virus type 2. Another
study found that Geranium sanguineum L. has an antiviral
activity for the influenza A virus. It was discovered that
polyphenolic extract derived from Geranium sanguineum L.
effectively inhibits the influenza virus’s reproduction

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6523352

Singh et al. Multi-Omics Approach for Biomolecule Identification Against COVID-19

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(Serkedjieva, 2003). Medicinal plants contain a variety of
secondary metabolites with the potential to inhibit viral
proteins and their enzymes, which consequently stop/suppress
the viral entry and replication into the host (Semple et al., 1998; Li
and Peng, 2013; Arbab et al., 2017; Akram et al., 2018; Dhama

et al., 2018). Kotwal and coworkers studied the acidic extract of
Trifolium species that showed an antiviral activity (broad-
spectrum) (Kotwal et al., 2005). Several studies have been
carried out, and they have confirmed that bioactive natural
compounds are potential candidates for the treatment of

FIGURE 1 | Omics science and flow of biological information assisting the vaccine development and drug repurposing for various diseases.

FIGURE 2 | Multi-omics schema integrating different types of omics data to support the healthcare professionals in decision-making.
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SARS-CoV-2 because of their effective antiviral activity
(Figure 3) (Behl et al., 2020; Kabir et al., 2020; Qamar et al.,
2020; Zhang L. et al., 2020; Kumar et al., 2021).

These natural biomolecules are economical and deemed safe with
minimum side effects compared to synthetic compounds (Enmozhi
et al., 2020). Although the use of natural biomolecules generally
involves minimal or no side effects, sometimes, they can
potentially be toxic. This may be due to misidentification of the
biomolecules in the form that they are sold, wrong preparation,
dispensing, or administration by inadequately trained personnel
(Karimi et al., 2015). Moreover, if a potential biomolecule could be
found to regulate COVID-19 infection, it would be a boon in the
treatment and could be used immediately after acquiring compulsory
ethical clearances. Despite sufficient evidence that plant-derived
biomolecules are effective as an antiviral agent, their use is still
limited because these compounds are either available at minimal
levels or might not be stable outside the plants (Anand et al., 2021;
Balkrishna et al., 2021). Therefore, a comprehensive strategy is needed
to properly identify potential biomolecules’ biosynthetic pathways and
analyze the genes underlying those pathways (Shree et al., 2020). As
the identification of plant-based moieties with anti–SARS-CoV-2

action is in a devolving phase, it will take a long time to explore
their full potential using the traditional drug development method.
The omics techniques used in plantmolecular biology could accelerate
this procedure using a strategically planned study design and provide a
platform to researchers and the bio-manufacturer of these
biomolecules to manage the COVID-19 pandemic (Sharma N.
et al., 2020; Chojnacka et al., 2020). This article has explored the
plant-based compounds that contain antiviral activities to assess the
impact of the multi-omics approach for plant biomolecular research
and its potential application against SARS-CoV-2.

POTENTIAL OF PLANT-DERIVED
BIOMOLECULES FOR COVID-19

There is enough evidence that herbal medicines have been used in
different parts of the world since prehistoric times. Asian
countries like India, Japan, China, and Pakistan, and countries
in Africa are using medicinal plants for herbal treatment. Herbal
plants are supplemented with various phytochemicals like
alkaloids, flavonoids, phenolic acids, lignins, and terpenoids.

FIGURE 3 | Interaction of SARS-CoV-2 structural proteins with the potential plant-based biomolecules. (A) Structure of SARS-CoV-2 and available biomolecules.
(B) Rich resources of Chinese herbal medicines targeting SARS-CoV-2 (Sharma N. et al., 2020; Xian et al., 2020).
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All have shown their potential against infectious diseases (Kim
et al., 2019; Lalani and Poh, 2020). It was demonstrated that
biomolecules of plants exhibit inhibitory activity on hepatitis-B
virus (Huang et al., 2006), herpes simplex virus type-2 (Debiaggi
et al., 1988), human immunodeficiency viruses (Asres and Bucar,
2005; Lubbe et al., 2012), dengue virus, rotavirus, Zika virus
(Oliveira et al., 2017; Akram et al., 2018), and SARS coronavirus
(Prasad et al., 2020; Tsai et al., 2020; Yang et al., 2020). Different
computational studies on the antiviral promises of herbal plants
indicated that secondary metabolites present in plant extracts
could interact with different targets of the SARS-CoV-2 virus.
Table 1 summarizes some of the recently published plant-based
secondary metabolites that have shown some therapeutic
promises against SARS-CoV-2 in computational studies.

Due to homology in SARS-CoV and SARS-CoV-2, the
previous studies may also endorse the potential of naturally
occurring compounds to inhibit SARS-CoV-2. Various studies
are currently using traditional medicines and extracting their
therapeutic potential against SARS-CoV-2 (Ang et al., 2020; Ren

et al., 2020; Silveira et al., 2020). A well-studied traditional
Chinese medicine (TCM) is reported to treat SARS-CoV and
various other diseases (Tong et al., 2004; Cao et al., 2020; Huang
et al., 2020; Zhang Q. et al., 2020; Zhang et al., 2021). This
medicine is also applied to treat the patients of SARS-CoV-2, with
approximately 85% success (Yang et al., 2020). The plants used in
TCM contain active biomolecules like flavonoids (herbacetin,
isobavaschacone, rhoifolin, quercetin 3-b-D-glucoside,
epigallocatechin gallate, and pectolinarin) that regulate virus
accumulation by restricting the multiplication. In a recent
report, Sehailia and Chemat (2020) studied the infection
mechanism of SARS-CoV-2, compared it with that of
plasmodium, and reported that each pathogen causes lung
infection by crystallizing carbon dioxide. Based on this finding,
artemisinin, isolated from Artemisia annua L., has been proposed
to treat SARS-CoV-2–infected patients. Artemisinin is
commonly used to treat malaria and against various viral
infections like MERS-CoV and SARS-CoV (D’Alessandro
et al., 2020; Hahn et al., 2018). Collaborative research between

TABLE 1 | Plant secondary metabolites as probable drug candidates for COVID-19.

Metabolites Drug targets Applied
computational approach

Study group

Curcumin, nimbin, withaferin A, piperine, mangiferin,
thebaine, berberine, and andrographolide

ACE-2 and spike
protein

_ Maurya et al. (2020)

Chebulagic acid ACE-2 and spike
protein

Molecular docking Krishnasamy et al. (2020)

Emodin, hesperidin, and chrysin ACE-2 and spike
protein

Molecular docking and modeling of protein Basu et al. (2020)

Curcumin, epigallocatechin gallate, chrysophanol, and
apigenin

Spike protein Molecular docking Subbaiyan et al. (2020)

Quercetin, magnoflorine, luteolin, tinosponone, cirsimaritin,
chrysoeriol, and vasicinone

Spike protein Molecular docking Kiran et al. (2020)

Digitoxigenin, crocin, and β-eudesmol Main protease Molecular docking Aanouz et al. (2020)
Folic acid, hispidin, and lepidine-E Main protease Structure activity relationship and molecular docking Serseg et al. (2020)
Baicalin, hypericin, 3-glucoside, cyanidin, and glabridin Main protease _ Islam et al. (2020)
Benzylidenechromanones Main protease Molecular docking and bioinformatics Sepay et al. (2020)
Leucoefdin Main protease Molecular docking and molecular dynamic simulation Singh and Mishra (2020)
Arjunglucoside-I, carnosol, and rosmanol Main protease Virtual screening, molecular docking, and molecular

dynamic simulation
Umesh et al. (2020)

Withaferin A, silybin, quercetin, cordioside, and catechin Spike protein,
MPro, and RdRp

Molecular docking Pandit and Latha (2020)

(±) 6-acetonyldihydrochelerythrine, allocryptopine, and
protopine

RdRp Molecular docking Pandeya et al. (2020)

Piceatannol, resveratrol, pinosylvin, and pterostilbene ACE-2 receptor Molecular docking Wahedi et al. (2020)
Chloroquine, isothymol, and captopril ACE-2 receptor Drug-likeness, PASS and P450 site of metabolism

prediction, pharmacophore mapper, molecular docking,
and dynamic simulation

Abdelli et al. (2020)

Macaflavanone E, belachinal, and vibsanol B Envelope protein Protein sequence analysis, dynamic simulation,
molecular docking, and intermolecular interaction

Gupta et al. (2020)

Myricitrin, amaranthin, calceolarioside B, licoleafol, methyl
rosmarinat, and colistin

3CLpro _ Rothan and Byrareddy
(2020)

Cryptoquindoline, 10-hydroxyusambarensine, 20-
epibryonolic acid, 22-hydroxyhopan-3-one,
cryptospirolepine,
6-oxoisoiguesterin, and isoiguesterin

3CLpro Drug-likeness, prediction analysis, and ligand–protein
interaction

Gyebi et al. (2020)

Coumarine and flavone 3CLpro Structure-based virtual screening and molecular
dynamic simulation

Khan et al. (2020)

Nimocin, nimbolin A, and cycloartanols Envelope and
membrane proteins

Virtual screening, molecular dynamic simulation, and
docking

Borkotoky and Banerjee
(2020)

Glabridin, apigenin, glycoumarin, glucobrassicin, and
oleanolic acid

6LU7 and 6Y2E
proteases

Molecular docking analysis Sampangi-Ramaiah et al.
(2020)
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the Max-Plank Research Center, Germany, and Mateon
Therapeutics, California, is being performed using Artemisia
annua L. to treat COVID-19–infected patients. This research
is supported by the World Health Organization (WHO).

3-Chymotrypsin–like protease (3CLpro) is vital for replicating
the virus, and thus represents a promising drug target for the
development of therapeutic agents for SARS-CoV and other
human coronaviruses, including SARS-CoV-2 (Yang et al.,
2020). The following reports suggest that Chinese rhubarb
extracts (Luo et al., 2009), Houttuynia cordata (Lau et al.,
2008; Fung et al., 2011), flavonoids (Jo et al., 2019; Jo et al.,
2020), beta-sitosterol extracted from the root extract of Isatis
indigotica, and herbal extracts of TCM could inhibit the
enzymatic activity of SARS 3CLpro. Besides that, the
flavonoids, namely, herbacetin, isobavaschalcone, quercetin 3-
β-D-glucoside, and helichrysetin, had shown their capability to
block the enzymatic activity ofMERS-CoV 3CL protease (Jo et al.,
2019). The RNA-dependent RNA polymerase (RdRp) is a key
enzyme responsible for both positive- and negative-strand RNA
synthesis, and it is another potential target for a drug. It was
reported by Fung et al. (2011) that the extracts of Kang Du Bu Fei
Tang, Sinomenium acutum, Coriolus versicolor, and Ganoderma
lucidum, inhibited SARS-CoV RdRp when tested in different
doses (Fung et al., 2011).

Essential Oils
The applications of essential oils, extracted from various
medicinal plants like Citrus spp, Mentha spp, ginger, Hyssopus
officinalis L., Illicium spp, and Santalum spp with antiviral effects,
have been well studied by numerous researchers (Li and Peng,
2013; Akram et al., 2018; Dhama et al., 2018; Wink 2020). Ben-
Shabat and coworkers reported that these essential oils alter the
viral-envelope lipid-bilayer membrane’s fluidity (Ben-Shabat
et al., 2020). In 2003, Schnitzler reported that monoterpenes,
oxygenated sesquiterpenes, and phenylpropanoids of essential
oils could disrupt the phospholipid bilayer membrane of human
coronavirus that interferes with the envelope protein structure of
the virus during infection (Schnitzler et al., 2008).

A major study showed that eucalyptol (essential oil from gum
trees, Eucalyptus spp.) is effective against SARS-CoV-2 and other
coronaviruses because its major component, eucalyptus oil,
consists of ketone, ether, and hydroxyl groups that play a
crucial role in the inhibition of SARS-CoV-2 (Sharma, 2020).
Another compound named jensenone, obtained from eucalyptus
essential oil, has also shown antiviral potential to inhibit Mpro of
COVID-19 (Sharma and Kaur, 2020).

Alkaloids
Chloroquine is an alkaloid that is obtained from the cinchona
tree’s bark. It has DNA intercalating properties and is identified
as a potential candidate for developing an effective drug for
SARS-CoV-2 (Devaux et al., 2020). Another alkaloid,
Resochin, used in malaria treatment, has been thought to be
an effective antiviral compound as it can interfere with the
replication, transcription, and protein synthesis of viral RNA
(Wink, 2020). The isoquinolines, for example, palmatine and
chelidonine, are also promising biomolecules that could be

potential drug candidates against COVID-19 (Ho et al., 2019;
Wink, 2020).

Kim et al. (2019) studied the important bis-benzylisoquinoline
alkaloids extracted from Stephania tetrandra S. Moore and
related species of Menispermaceae, such as cepharanthine
(CEP), tetrandrine (TET), and fangchinoline (OFAN). They
investigated the antiviral activity of these alkaloids against
HCoV-OC43 in human coronavirus–infected MRC-5 human
lung cells (Kim et al., 2019). The result showed that all three
of these alkaloids could decrease the replication of HCoV-OC43
inside host cells. Apart from that, they also inhibited the viral
spike and nucleocapsid protein expression.

Flavonoids, Phenolics, and Polyphenols
Flavonoids, phenolic compounds, steroids, polyphenols, and
terpenoids, and their derivatives are commonly found in
secondary metabolites of plants and consist of aromatic rings
with one or many hydroxyl groups (Vieira et al., 2010; Wink,
2020). Wink’s study revealed that polyphenols could bind with
the lipoprotein of the virus envelope that checks the viral invasion
in host cells. Various other studies confirmed the antiviral activity
of phenolic compounds like curcumin, catechin, bavachinin,
gallate, silvestrol, and tomentin (Ryu et al., 2010; Khaerunnisa
et al., 2020; Wink, 2020; Yang et al., 2020). Besides phenolic
compounds, flavonoids are also potential candidates against
SARS 3CLpro enzymes of human coronavirus. Various
antiviral studies on flavonoids have shown promising results
(Table 2).

In recent research on biomolecules, Letko et al. (2020)
reported that SARS-CoV-2 associates with host cells using
angiotensin-converting enzyme 2 (hACE2), that is, a host
receptor. Therefore, plant-based biomolecules that can inhibit
the interaction with this receptor could become an excellent
pharmaceutical candidate to fight against SARS-CoV-2. For
further analysis, molecular docking was performed with
cannabinoids and different phytochemicals to establish these
biomolecules’ binding positions with viral spike protein (S)
(Ho et al., 2007; Tallei et al., 2020).

IDENTIFICATION OF THERAPEUTIC
BIOMOLECULES OF PLANTS THROUGH
THE MULTI-OMICS APPROACH
Before discussing the application of the multi-omics approach in
the different research fields, it is essential to understand how all
these technologies work individually and how information could
be combined to generate a more in-depth understanding. Various
methods can apply all the omics knowledge depending on the
availability of data and requirements (Zhou et al., 2020; Zoppi
et al., 2021). The data available in the public domain related to all
these omics technologies are extracted for complex analysis, and
attempts are made to link all markers at the different levels
(genomic, proteomic, and metabolomic) back to annotated genes
(Figure 4; Subramanian et al., 2020). Usually, this method works
appropriately because well-curated and interpreted databases
with a complete description of genes and their biological
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TABLE 2 | List of the promising phytochemicals used worldwide for antiviral studies that could play a crucial role in the treatment of COVID-19.

Source (medical plants) Antiviral compound(s) Virus Mode
of antiviral effects

References

Curcuma longa L., Camellia
sinensis (L.) Kuntze, Mentha
longifolia (L.) L., Phonix hanceana
var. loureiroi, Capsicum annum L.,
and Olea europea L.

Glucoside, luteoloin-7, curcumin, de
menthoxy curcumin, epicatechin-
gallate, oleuropein, apigenin-7, and
catechin

Coronavirus (CoV) Mpro protein of COVID-19 was
inhabited by all these antiviral
compounds. However, further
investigations are required.

Khaerunnisa et al.
(2020)

Tylophora indica (Burm.f.) Mabb. Tylophorine CoV These biomolecules showed broad-
spectrum potential for inhibiting
coronaviruses.

Yang et al. (2020)

Lycoris radiata (L’Hér.) Herb. Lycorine CoV Lycorine could be a promising
biomolecule for antiviral activity.

Suryanarayana and
Banavath (2020)

Psoralea corylifolia (L.) Medik. Bavachinin, corylifol, and psoralidin CoV The ethanol extract of these
secondary metabolites showed
potential activity against SARS-CoV
PLpro.

Kim et al. (2014)

Clivia miniata (L.) Medik. Mycophenolate mofetil and lycorine HCov-OC43, MHV- A59,
HCoV-NL63, and
MERS-CoV

Mycophenolate mofetil
demonstrated immune-suppressing
effects on CoV, while lycorine
showed inhibition of RNA, DNA, and
protein synthesis that affects cell
division.

Shen et al. (2019)

Carapichea ipecacuanha (Brot.) L.
Andersson

Emetine Emetine showed strong antiviral
activity by blocking entry of
MERS-CoV.

Aglaia foveolata Pannell Silvestrol HCoV-229E Silvestrol demonstrated strong
inhibition of cap-dependent viral
mRNA translation.

Muller et al. (2018)

Broussonetia papyrifera (L.) L’Hér.
ex Vent.

Kazinol A, Kazinol F, Kazinol B,
Kazinol J

Papain-like and 3-
chymotrypsin–like CoV
cysteine proteases

These polyphenols showed inhibition
against both CL and PL CoV
proteases.

Park et al. (2017)

Broussonetia papyrifera (L.) L’Hér.
ex Vent.

Polyphenols, for example, biphenyl
propanoid and broussochalcone A
and B

CoV cysteine proteases All of these polyphenols could be
potential biomolecules for developing
anti-CoV drugs.

Park et al. (2017)

Peel extracts of Citrus sinensis L.,
Anthemis hyaline, and Nigella
sativa L.

Essential oils CoV-infected HeLa-
epithelial carcinoembryonic
antigen

Reduces the virus loads by
downregulation of tryptophan-
operon (TRP- gene) of CoV.

Ulasli et al. (2014)

Paulownia tomentosa (Thunb.)
Steud.

Tomentin SARS-CoV These granulated flavonoids inhibit
the proteases of SARS-CoV.

Cho et al. (2013)

Camellia sinensis (L.) Kuntze Catechins SARS-CoV During screening of various teas,
catechins showed strong inhibition
for N-protein of SARS-CoV.

Roh (2012)

Aglaia perviridis Hiern Myricetin and scutellarein SARS-CoV This study showed its effect against
ATPase activity that leads to inhibition
of the helicase protein of SARS-CoV.

Yu et al. (2012)

Pelargonium sidoides DC. Extract EPs
®
7630 Human coronavirus (HCoV) EPs

®
7630 interferes with replication

of various respiratory viruses such as
HCoV.

Michaelis et al. (2011)

Eucalyptus globus 1,8-cineol SARS-CoV-2 Translocation of NF-kB p65 to the
nucleus is inhibited, which negatively
affects NFkB-driven transcription.

Greiner et al. (2013)

Curcuma longa L. Curcumin SARS-CoV-2 Curcumin showed inhibition of the
Notch1-GATA3 signaling pathway
and averted the progress of allergic
inflammation.

Chong et al. (2014)

Papaver somniferum L. Codeine SARS-CoV-2 Codeine is metabolized to morphine
in the animal body. It produces an
analgesic effect by interacting with
muopoid receptors, which are
available in the cells of the nervous
system (central and peripheral).

Bhandari et al. (2011),
Kodaira and Spector
(1988)

Thebaine
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functions can be acquired from several data sources. However, it
is a big challenge to collect all the information separately and
make a common analysis. Multi-omics data are usually not cross-
referenced between repositories. A web application, that is,
MOD-Finder, searches for multi-omics datasets related to a
user-defined chemical of interest (Canzler et al., 2020).

The commonly used and readily available databases are the gene
database of NCBI (http://www.ncbi.nlm.nih.gov/gene), Gene
Ontology (http://geneontology.org) (Carbon et al., 2019),
Ensembl (http://useast.ensembl.org) (Andrew et al., 2020),
KEGG (http://genome.jp/kegg/pathway.html), HMDB (http://
hmdb.ca/), MetaCyc (http://metacyc.org/), Wikipathways
(http://wikipathways.org/index.php/WikiPathways), and DAVID
(http://david.abcc.ncifcrf.gov/P). Extensive work is underway on
the genome using its different aspects. The forecasting or
designating genotypes that cannot be assayed directly in
individuals’ samples are known as genotype imputation
(Ashburner et al., 2000; Naj, 2019; Chen S. F. et al., 2020). In
recent years, the studies on genome-wide association (GWA) have
revealed many significantly replicated associations for various
complicated diseases (McGuire et al., 2020). In the analysis of
GWA studies, genotype imputation has been widely used to
enhance power, fine-map connections, and expedite the
integration of results throughout the studies using meta-
analysis. For genotype imputation, a resource like 1000

Genomes (http://www.1000genomes.org) (Marchini and Howie,
2010; Howie et al., 2011; Belsare et al., 2019) is available that
facilitated combining various genotyping platforms and
consequently enhanced the capability to interpret the genomics
data and execute meta-analyses. Although some forms of data
cannot be easily mapped to annotated genes, such limitations of
annotation are addressed with the newest omics technologies.

Metabolomics is seen with considerable gaps in the
annotation, restricting the efficacy of pathway-based and
integrative method approaches (Kilk, 2020). Metabolomic
datasets are mostly deciphered in the form of metabolic
pathways. The KEGG database consists of metabolic pathways
and contains information about both enzymes and metabolites.
This database is categorized into groups related to cellular
processes, metabolism, human diseases, etc. (Kanehisa and
Sato, 2020). However, the annotated metabolites are very
limited, suggesting that there is a lot to be learned regarding
the role of several metabolites in human health.

Due to the availability and storage of the extensive amount
of molecular data, an urgent demand has developed as a new
branch of science: “system biology,” which unravels the basic
functional properties of living beings originating from the
interaction of macromolecules (Zupanic et al., 2020). The
increased ability to elucidate genetic variations and their
role in downstream molecular changes, like metabolite

FIGURE 4 | Schema representing steps to discover therapeutics (plant-based biomolecules and vaccines) for COVID-19. The biomolecules/plant metabolites can
be screened and tested following the mentioned steps for potential antiviral activity against SARS-CoV-2. The figure also depicts the steps to develop vaccines by
exploring the genetic material of the virus.
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levels, would play a crucial role in interpreting and combining
various data types.

Multi-omics approaches can be used to identify and screen
plant-based biomolecules. They also provide deep insights into
the effect of these biomolecules on COVID-19. The addition of
proteomic datasets to genomic and transcriptomic data helps to
understand the role of plant-based biomolecules against COVID-
19. The integration of proteomics data complements genomics in
the identification of multiple pathways. As soon as any cell is
given exposure to biomolecules, it triggers a series of effects at the
regulatory pathway level, which involve changes of levels and
interactions of different types of biomolecules. Transcriptomics
can detect biomolecules of one type and can only capture changes
in a small subset of the biological cascade.

How to employ multi-omics data for the study is solely
dependent on integration strategies. Various methods are
available for the integrative analysis of multi-omics data. This
review focuses on implementing these approaches for screening
potential therapeutic biomolecules, which can be efficiently used
against COVID-19. The comprehensive reviews on multi-omics
integration methods are provided by various researchers (Cavill
et al., 2016; Huang et al., 2017; Tarazona et al., 2018; Subramanian
et al., 2020).

Genomics Approaches for Production of
Plant-Based Biomolecules
Plant biotechnology provides a comprehensive platformwith several
strategies to facilitate the synthesis of biomolecules on a large scale,
viz. hairy root culture, cell suspension culture, etc. The advancement
of genomics can accelerate the gene manipulation and pathway
triggering the biosynthesis of therapeutically active compounds.
Genetic manipulation of genes and genomes in plants can be
achieved by various methods, including transformation
(development of transgenic), inducible and transient expression
systems, gene-silencing methodologies, knockout, knockdown,
and the most advanced genome-editing (Wang et al., 2020c). In
pandemic situations, the best vaccine productionmethod is transient
expression because it is time-saving and could be advanced for large-
scale manufacturing. The most advanced next-generation
sequencing offers detailed information about the genes and
complete genomes, including the noncoding region and
regulatory elements that facilitate the identification of genes
associated with biomolecules’ biosynthesis (Peška et al., 2017).
Gene cloning helps in the identification and molecular
characterization of the genes that encode biomolecules.
Furthermore, it can be transformed into a plant system for the
expression and optimization of the product. For example, Nicotiana
benthamiana Domin extends a systematic and effective system and
is used to express VLP of SARS-CoV-2 to produce the plant-based
vaccine (Rattanapisit et al., 2020). This system could yield the
required biomolecules that can be scaled up, isolated, and
purified by downstream approaches (Sharma N. et al., 2020).

The CRISPER/Cas9 (genome editing) approach facilitates
accurate editing of genes (Dangi et al., 2019). Specifically, this can
be applied to knock out the enzymes that involve the target
biomolecule as a precursor. It accelerates the processes with the

overproduction of required metabolites. The higher level of
biomolecule production and fine-tuning of biosynthetic
machinery could be attained by using transient methods like
virus-induced gene silencing or RNA interference. A genetic
transformation like Agrobacterium-mediated transformation
provides the stable and reliable change and expression of genes
in the plants (Ma et al., 2020). This method could easily be
customized to develop target biomolecules in different plants,
which can further undergo downstream processing and
convenient purifications. Some of the useful phytochemicals are
found in endangered species viz. Chinese medicinal plants Panax
ginseng C. A. Mey. and Magnolia officinalis Rehder and E. H.
Wilson, but their use in therapeutics is prohibited. Genetic
manipulation and transformation methods offer model plant
species as an alternative. The biosynthetic pathway can be studied
and engineered into these, such as tomato, tobacco, rice, and maize.
This has the advantage of producing beneficial compounds without
putting any pressure on the original medicinal plant (Sassi et al.,
2008; Moon et al., 2019). An excellent example of the application of
genomics and biotechnology is the saponin glycyrrhizin. It is a
naturally occurring class of compounds and is reported to inhibit
coronavirus replication, and its antiviral activity augments ten folds
by modification in its glycosidic chain (Hoever et al., 2005). The
successful whole nucleic acid sequencing of SARS-CoV-2 from a
different population of patients has given a new vision regarding the
pathogen and its nonuniformity worldwide. As sequence data on the
virus’s proteomics and metabolomics are available, they could help
study it more precisely (Gordon et al., 2020; Shen et al., 2020; Wang
M. et al., 2020).

Deploying Proteomics Approaches for
Plant-Based Biomolecules and Their
Interaction with COVID-19
Proteomics is the most powerful tool for studying total expressed
proteins in an organism or cell type at a particular time. This
provides the methodologies used for identification, detection,
sample preparation, separation methods, and quantification of
proteins. Proteins are responsible for the cells’ function, and the
expression, localization, and activity of proteins differ in various
conditions. Hence, the study of protein expression in cell types or
different conditions helps to identify and understand their biological
information. All plant biomolecules derive from specific biosynthetic
pathways. The comprehensive study of those pathways, starting
from the analysis of the genes underlying them and biosynthetic
enzymes and their regulation (Song et al., 2015), is another
challenging task that can be achieved by deploying different
proteomics methods. Mass spectrometry (MS) is an important
technique that enables the analysis of proteomes and
identification of proteins present in the biological system. The
separation of proteomes can be performed by gel
chromatography or liquid chromatography before analysis.
Production of allergens and toxins while deriving a specific plant
biomolecule should also be monitored to check if any toxic by-
product is also produced. All such allergens and toxins are identified
and systematized in www.allergenonline.org/ and www.allergen.org
(Ahsan et al., 2016; Croote and Quake, 2016). Identification of
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accurate therapeutic plant biomolecules is the critical and key step.
Once they are identified, their interaction and effect on cells and
cellular activities in another aspect of proteomics and proteomics
research can help identify medicinal plant biomolecules.

Proteomics relates proteins’ functional role to host and pathogen
(Zheng and Perlman, 2018). Zheng and Perlman (2018) studied
proteomics’ role in the host immune system and its responses to the
respiratory virus interactions. Other researchers also studied
G-protein–coupled receptors (Sriram and Insel, 2018), enzymes
(Ding et al., 2017), and ion channels (Duncan et al., 2020).
Recently, various protein-based analyses of coronavirus have been
done to identify structural proteins that include SDS-PAGE analysis,
Western blot, protein categorization, protein identification,
separation, and quantification. The proteome microarray of
SARS-CoV-2 was demonstrated by Wang et al., which helps in
mapping COVID-19 antibody interactions (Wang X. et al., 2020). A
detailed report was given by Gordon et al. on the human
protein–protein interaction map of SARS-CoV-2, where they
defined 332 human protein–protein interactions, and out of
them, 66 were targeted by several preexisting FDA-approved
drugs or under trial drugs (Gordon et al., 2020).

Transcriptomics and Metabolomic
Approaches
Transcriptomics studies primarily deal with gene expression
profiles, that is, by RNA sequencing (Depledge et al., 2019),
ribosome profiling, and high-throughput DNA microarray
studies (Wang et al., 2009). Transcriptomics is an approach

for exhaustive study and detection of RNA in the cell. In
transcriptomics, a pathway response is mainly detected via a
known set of target genes of the pathway expressed differentially.
The information on association with a particular pathway is
mainly available for protein-coding RNAs (mRNAs). Earlier,
transcriptomics was dependent on microarrays as a
measurement technique. Microarrays constitute a targeted
detection approach; that is, they require prior selection and
knowledge of the sequence of the interrogated RNAs.
Recently, transcriptomics has switched to transcriptome
sequencing (RNA-seq), which provides a platform for
simultaneous identification of transcripts, isoform detection,
and quantification (Canzler et al., 2020). The dose–response
models were generated to determine the factors affecting gene
expressions (Hashem et al., 2019) at various viral protein
concentrations (Haas, 2020). Studies were also conducted to
check the concentration of mRNA at different infection stages
and its propagation (Albarino et al., 2018).

The metabolome is a collection of chemically highly
heterogeneous molecules. It can be defined as the complete
complement of all small molecule metabolites found in a
specific cell, organ, or organism (Wishart, 2007). Different
metabolic enzymes run cellular metabolism (Ahmed et al.,
2020), and this is reported by a fierce study of genomics,
proteomics, and transcriptomics (Fanos et al., 2020). These are
directly connected with pathways available in metabolomics
(Haas et al., 2016). The primary importance of metabolomics
is related to diagnostics (Debnath et al., 2010; To et al., 2016). The
concentration of metabolites is observed and identified by high-

FIGURE 5 | Use of biotechnology and multi-omics approaches for screening and profiling of plant-based biomolecules against SARS-CoV-2.
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performance liquid chromatography/mass spectrometry (HPLC/
MS) and nuclear magnetic resonance (NMR) (Peng and Liu,
2017). The early studies concluded that metabolic profile analysis
reveals the inactivation and binding of metabolites with the
therapeutic compounds (Eisfeld et al., 2017).

Applications of Artificial Intelligence in
Multi-Omics Data Analysis
Artificial intelligence (AI) is the computational design,
development, and application of computer programs and
algorithms that perform cognitive functions based on human
intelligence traits, for example, anticipating, problem-solving,
and learning (Saxena et al., 2019; Sharma A. et al., 2020). AI
techniques have the potential to accelerate the virtual screening,
lead discovery and validation, etc. (Kumar et al., 2011; Kumar
et al., 2017), thereby assisting in drug design and repurposing,
and they can complement the traditional drug development
methods for COVID-19. AI technique–based Benevolent AI
has been successfully applied to identify baricitinib as a
potential drug against COVID-19 (Favalli et al., 2020;
Randhawa et al., 2020). PolypharmDB (Redka et al., 2020) and
inclProject IDentif.AI (Abdulla et al., 2020) have already been
successful in identifying potential drug candidates against SARS-
Cov-2. A supervised learning–based Vaxign reverse vaccinology-
machine learning platform has been developed for assisting the
development of vaccine candidates against COVID-19 (Ong
et al., 2020). Figure 5 summarizes the applications of
biotechnology and multi-omics approaches for screening and
profiling of plant-based biomolecules against SARS-CoV-2.

Wang et al. (2020d) developed a deep learning and ontology-
based side effect prediction framework to evaluate and assess
traditional Chinese medicines against COVID-19 treatment.
Moreover, AI techniques are efficiently applied in SARS-CoV-
2 protein structure prediction (Zhang et al., 2004; Senior et al.,
2020). Apart from assisting the drug design, drug repurposing,
and vaccine candidate development, AI has also been
instrumental in spreading awareness, curbing misinformation
(Hung et al., 2020; Miner et al., 2020; Rashid and Wang, 2020),
assisting in early diagnosis (Xu et al., 2020), and decreasing the
burden in healthcare professions by providing accurate decision
support (Iwendi et al., 2020) during the COVID-19 pandemic.

CONCLUSION

The present review gives an insight into the applicability of multi-
omics tools and different omics approaches in identifying
potential therapeutic plant biomolecules. These tools could

explore the immense potential of plant-based biomolecules for
the prevention, mitigation, or cure of SARS-CoV-2–infected
patients. There is a need to reduce the gaps between the
conventional treatment from plant extracts and herbs with an
updated understanding of biomolecules/phytochemicals present
in plant extracts using omics technologies. Advancement in
technology and discovery of different omics approaches to
explore and analyze the genomic, proteomic, and metabolomic
data can generate the profile of plant biomolecules and identify
the potential antiviral compounds that could be used against
SARS-CoV-2.

Due to the highly contagious nature of SARS-CoV-2,
handling of clinical samples in omics research facilities is
often restricted. This has made the implementation of
system-level molecular research extremely challenging. With
this limitation, it is helpful for academicians, scientists, and
health professionals from this field to be aware of the recent
trends in omics approaches to address issues related to
COVID-19. Various plant-based biomolecules have already
been identified and studied at different levels of omics
research. Now, screening those potential therapeutic
compounds to treat SAR-CoV-2–infected patients and
devising a relevant strategy to optimize the production and
purification of those biomolecules using multi-omics
approaches are the urgent needs of the situation. Multi-
omics techniques are anticipated to play a crucial role in
the identification of potential therapeutic plant biomolecules
and effective clinical management of COVID-19. Once these
approaches have been applied successfully, the screened
repository of plant-based therapeutic biomolecules could be
used for future health emergencies like the emergence of a new
strain or mutation in the virus. We hope that this document
may help future researchers to quickly get an overview and
understand the applications of omics approaches to find out
therapeutically active plant-based biomolecules in infectious
outbreaks or pandemics.
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