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INTRODUCTION

The ubiquitous purinergic system is composed by adenine- and guanine-based compounds, their
converting enzymes (Yegutkin, 2014), and by the adenosine (P1) G protein-coupled receptors
(GPCRs) and the nucleotide (P2) receptors, which are further classified into P2X1-7 ion channels and
P2Y1,2,4,6,11–14 GPCRs (Burnstock, 2011). The activation of these receptors has been correlated to a
number of patho-physiological conditions such as neurodegenerative diseases, cancer, ischemia and
inflammation (Burnstock, 2018). Guanine-based purines (GBPs) are endogenous molecules
comprising the nucleotides guanosine 5′-triphosphate (GTP), guanosine 5′-diphosphate (GDP)
and guanosine 5′-monophosphate (GMP), the nucleoside guanosine (GUO) and the nucleobase
guanine (GUA) (Schmidt et al., 2007).

GBPs inspired numerous studies in the late ‘90s, followed by a long period of sporadic works with
a renewed research interest only in recent years. The reason why GBPs have been neglected likely
relies on the lack of specific GBPs receptors able to confer them a real therapeutic potential.

GBPs share many structural and functional similarities with ABPs (Santos et al., 2006): they are
released by many cell types, interconverted by soluble and membrane-bound ecto-enzymes and
either taken up by selective nucleoside transporters or further metabolized up to the formation of uric
acid (Zimmermann and Braun, 1996). Specifically, extracellular GUO is converted by purine
nucleoside phosphorylase (PNP) to GUA that, in turn, is metabolized to xanthine (XAN) by
guanine deaminase (GDA) (Yuan et al., 1999; Giuliani et al., 2016; Shek et al., 2019).

This brief work illustrates the most recent findings regarding GBPs and sheds light on the new
therapeutic potential of Guanylates and their converting enzymes in cancer and age-related diseases.

ROLES OF GBPs IN THE CNS

GBPs have been classically described as neuromodulators, playing neurotrophic and neuroprotective
effects in the central nervous system (CNS) (Schmidt et al., 2007).

Indeed, there is a general consensus about GBPs behaving as a repair system upon brain injury in
both in vitro and in vivomodels (Lanznaster et al., 2016; Ribeiro et al., 2016). Accordingly, 1) higher
extracellular levels of GBPs but not ABPs are detected in cultured astrocytes upon hypoxic or
hypoglycaemic conditions (Ciccarelli et al., 1999) ii) GBPs, especially GUO, interferes with
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glutamatergic system by preventing glutamate excitotoxicity
(Tasca et al., 2004; Lanznaster et al., 2017); iii) GBPs
demonstrate anxiolytic, antidepressant and anticonvulsant
effects (Tavares et al., 2008; Kovacs et al., 2015; Bettio et al.,
2016; Frinchi et al., 2020); iv) GUO administration prevents
NMDA-evoked neurotoxicity and apoptosis in hippocampal
slices (Molz et al., 2008), inhibits the neurotoxin 6-
hydroxydopamine (6-OHDA)-mediated apoptosis in a model
of Parkinson’s disease (Giuliani et al., 2012b), induces
neuroprotection in hippocampal slices subjected to oxygen/
glucose deprivation (OGD) and ischemia (Ganzella et al.,
2012; Dal-Cim et al., 2013); v) GUO stimulates neural stem
cells and astrocyte proliferation (Ciccarelli et al., 2000; Su
et al., 2013), as well as neurogenesis (Bau et al., 2005; Decker
et al., 2007; Piermartiri et al., 2020); vi) GTP induces
differentiation of C2C12 skeletal muscle cells and PC12 cells
via Ca2+-activated K+ channel, upon phospholipase C (PLC)/
inositol triphosphate (IP3)/diacylglycerol (DAG) activation
(Gysbers and Rathbone, 1996; Guarnieri, Fanò et al., 2004;
Pietrangelo, Fioretti et al., 2006; Mancinelli, Pietrangelo et al.,
2012) vii) GUA improves learning and memory formation
(Giuliani et al., 2012a; Zuccarini et al., 2018b).

The molecular mechanisms underlying GBPs-induced
neuroprotection involve the activation of Phosphoinositide 3-
kinase (PI3K)/Protein kinase B (PKB)/Glycogen Synthase
Kinase3β (GSK3β), Protein kinase C (PKC), extracellular
signal-regulated kinases (ERK) and Heme Oxygenase-1 (HO-
1) signaling transduction pathways (Molz et al., 2011; Bellaver
et al., 2015; Giuliani et al., 2015).

For an in-depth description of the pathophysiological roles of
GBPs in the central nervous system we direct readers to these
reviews (Di Liberto et al., 2016; Tasca et al., 2018; Mancinelli et al.,
2020).

GBPs IN AGING DISORDERS

Reactive oxygen species (ROS) are involved in a wide number
of age-related disorders in many organs and tissues. The end-
products of GBPs metabolism, namely XAN and uric acid
(UA), have been associated to ROS production and are,
therefore, considered potential targets for anti-ageing
strategies.

Thus, XAN-generating GDA has been evaluated in skin
disorders such as Riehl’s melanosis (hyperpigmentary lesions
of neck and face), psoriasis and, more in general, epidermal
senescence (Kizaki et al., 1977). This enzyme is abundantly
expressed in melasma, an hyperpigmentation caused by UV
irradiation and inflammation (Noh et al., 2014). Upon chronic
exposure to UVA or UVB radiations, GDA expressed in
keratinocytes may trigger seborrheic keratosis by generating
XAN, which is further metabolized to UA leading to the
production of ROS and DNA damage (i.e., upregulation of
c-H2AX) (Cheong and Lee, 2020). ROS, in turn, can react
with GUA and generate 8-oxo-7,8-dihydroguanine (8-oxoG)
which is known to induce DNA damage and skin senescence
(Valavanidis et al., 2009). Of note, GDA has also a direct role in

skin lesions by interacting with several cytokines and growth
factors, thus promoting melanogenesis (Jung et al., 2020).

Furthermore, in a murine model of lower urinary tract
dysfunction (LUTD), 6 weeks-treatment with a PNP-inhibitor,
8-aminoguanine (8-AG), ameliorated LUTD symptoms (bladder
structure and functions alterations and insensitivity) and reversed
the age-associated up-regulation of several pro-apoptotic factors
such as cleaved caspase-3, p16 and cleaved Poly (ADP-ribose)
polymerase (PARP), a downstream effector of oxidative damage
(Birder et al., 2020a). In addition, 8-AG decreased urinary levels
of hypoxanthine but did not modify those of GUO. The
protective effect of 8-AG in the urinary tract has been
detected also in age-related urinary incontinence in female rats
(Birder et al., 2020a). In this study, the PNP inhibitor reverted
mitochondrial injury in urethra smooth and striated muscle and
normalized oxidative and nitrosative markers.

GBPs AND CANCER

Over the last few years there has been a growing interest about the
role of GBPs in cancer progression. As a matter of fact, GUA is
not only a building block of DNA and RNA but also an
extracellular signaling molecule involved in cell metabolism
and proliferation.

DNA and RNA exhibit guanine (G)-rich sequences, namely
GROs, able to self-assembly and form G-quadruplexes.
G-quadruplex based aptamers showed therapeutic potential
in several diseases such as HIV and cancer by targeting DNA
promoter regions of oncogenes such as c-MYC, HIF-1α, VEGF
(Collie and Parkinson, 2011). For example, the aptamer
AS1411 was able to reduce tumor cell proliferation in
human leukemic T cell lymphoblasts by targeting nucleolin,
NF-kB and bcl-2 and is currently under phase II clinical trials
for metastatic renal cell carcinoma (Bates et al., 1999;
Soundararajan et al., 2008; Rosenberg et al., 2014). The
cytotoxic activity of these nucleic acid drugs likely relied on
the massive production of GBPs that would unbalance
nucleotides/nucleosides ratio and subvert DNA repair
mechanisms (Wang et al., 2019). Specifically, concerning
the antiproliferative effect of guanine-based biomolecules, it
has been demonstrated that in the leukemic T-cell lymphoblast
the IC50 values were 14–18 μM (Zhang et al., 2015).

A recent study showed that the upregulation of inosinates
and guanylates was associated with radiotherapy (RT)-
resistance in glioblastoma multiforme (GBM) (Zhou et al.,
2020). In this work, RT-sensitive cells (U118 MG, DBTRG-
05MG, and GB-1) were exposed to nucleosides (cytidine,
guanosine, uridine and thymidine at concentrations
80–240 μM) and showed a decreased RT ability to induce
DNA double-stranded breaks (DSBs), thus promoting DNA
repair and tumor cell survival. Interestingly, cell treatment
with Mycophenolic acid (MPA) (10 μM), an inhibitor of
inosine monophosphate dehydrogenase (IMPDH), an
enzyme involved in de novo synthesis of guanine
nucleotides, radiosensitized RT-resistant cell lines (U87
MG and A172). IMPDH inhibitors, responsible for
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increased IMP levels and reduced de novo synthesis of GTP and
XMP have been developed as antiviral, antineoplastic (Cuny et al.,
2017) and antimicrobial drugs (Shah and Kharkar, 2015). In line
with these findings, Garozzo et al. previously reported that
glioblastoma cell growth was inhibited by GUA, GUO and
GMP with GI50 values of 44 ± 2.8, 137 ± 9.1 and 140 ±
10.2 µM, respectively (Garozzo et al., 2010).

In addition to the nucleobase GUA, a key role seems to be
played by GUA-generating (PNP) and GUA-removing (GDA,
Hypoxanthine Guanine Phosphoribosyltransferase-HGPRT)
enzymes. PNP converts GUO into GUA and inosine (INO)
into hypoxanthine (HYPO); GDA deaminates GUA into
xanthine (XAN); HGPRT converts H YPO and GUA into
IMP and GMP, respectively.

PNP inhibitors have been developed for the treatment of
leukemia wherein they caused cell death via up-regulation of
the apoptotic caspase-8, -9, and -3 and dGTP accumulation
(Balakrishnan et al., 2006; Tong et al., 2009). PNP has also
been employed in a gene-directed enzyme prodrug therapy
(GDEPT), where the bacterial PNP metabolizes the substrate
adenine analogue to the cytotoxic 2-Fluoroadenine (Balakrishnan
et al., 2006; Afshar et al., 2009).

The chemotherapeutic effect of another purine nucleoside
analogue, namely the deoxyguanosine analogue CNDAG, was
reported in leukemias and linked to single- and double-strand
breaks in DNA (Liu et al., 2020).

Furthermore, in leukemic cells lacking the expression of Sterile
alpha motif and HD domain-containing protein 1 (SAMHD1), an
enzyme degrading deoxyribonucleoside triphosphates (dNTPs),
the administration of the PNP inhibitor, forodesine, caused cell
apoptosis upon deoxyguanosine triphosphate (dGTP) overload
(Kicska et al., 2001; Davenne and Rehwinkel, 2020). The
antiproliferative activity of dGTP and deoxyguanosine (dGUO)
was described in T- and B-lymphoid cells, although the molecular
mechanism behind this effect remains as yet unclear (Chan, 1978).

In oncology, HGPRT plays a crucial role as it is considered a
reporter gene able to detect somatic mutant cells and the related
risk of cancer, therefore serving as cancer biomarker (Russo et al.,
2004). Akin to PNP, HPRT has been used to activate the pro-drug
deoxy-6-thioguanosine-5′-triphosphate which is responsible for
cell apoptosis due to DNA mispairing (Yan et al., 2003). In a
recent study, high levels of circulating uric acid in patients
affected by gastric and pulmonary adenocarcinomas has been
observed (Dumanskiy et al., 2020).

DISCUSSION

The lack of identified specific GBPs receptors able to provide a
potential therapeutic target represents the main reason for the low
interest in GBPs related research. Interestingly, a binding site for
GUO has been already detected and it was recently reported that
GUO would exert neuroprotection by interacting with A1R-A2AR
heteromer (Traversa et al., 2002; Lanznaster et al., 2019). Moreover,
several GTP binding sites were identified in excitable cells likely
belonging to Gi/0 protein-coupled receptor family and associated with
[Ca2+]i elevation (Pietrangelo et al., 2002).

The role of GBPs as neuromodulators is now well-
documented (Tasca et al., 2018). GBPs and their converting
enzymes have been studied in urinary dysfunctions and skin
diseases (melasma, Riehl’s melanosis, seborrheic keratosis)
where XAN- and UA-mediated ROS generation seems to
promote DNA damage in age-related oxidative stress
(Birder et al., 2020b). In the urinary tract, the
accumulation of GUO and INO following PNP inhibition
has a double protective role since it hampers the generation of
urotoxic compounds and preserves the anti-inflammatory and
protective nucleosides (Liu et al., 2009). As aging positively
correlates with extracellular matrix (ECM) remodeling, the
role of GDA, which is able to interact with ECM components
(Zuccarini et al., 2018a), may be evaluated too.

A large body of evidence suggests a possible role of GBPs in
cancer, with purine salvage pathway being the fuel of nucleotide
pool maintenance and correct cell division. Several findings
support the anti-proliferative effect of GUO, GUA and GMP
in glioblastoma cells, prostate cancer cells, lung adenocarcinoma
cells and myeloid leukemia cells (Garozzo et al., 2010; Zhang
et al., 2015; Oliveira et al., 2017). The cytotoxic effect is due to
their genotoxic activity that signals cell cycle arrest (Wang et al.,
2019), although a recent study revealed that guanylates and
inosinates would promote radio-therapy resistance and DNA
breaks repair (Zhou et al., 2020).

Extracellular and intracellular GBPs amounts are related to the
activity of GBPs converting enzymes, therefore their deficiency
negatively correlates with GBPs effects. To reinforce this
hypothesis, GDA gene knockout in dGUO insensitive HeLa
cells induced cell response to the antiproliferative effect of
dGUO. Vice versa, cell transfection with pCMV-Myc-GDA
plasmid into the sensitive human embryonic kidney HEK293
cells prevented dGUO-mediated arrest at the S phase (Wang
et al., 2019). More in general, the same authors suggested that in
those cells were GDA expression was lower, GBPs
antiproliferative effect resulted to be greater. A crucial role is
played by PNP, HGPRT and IMPDH. These enzymes are part of
de novo and salvage pathways and their modulation allow cells to
meet metabolic needs and proliferate, as they ultimately lead to
nucleotides synthesis (Tong et al., 2009).

The PNP inhibitor, forodesine, has shown therapeutic effects
in the treatment of leukemias (Tong et al., 2009). It is worth to
mention that most of these enzymes (i.e. GDA and IMPDH)
exhibit a non-enzymatic activity; for example, SAMPHD1 and
IMPDH can both interact with nucleic acids and are regulated by
epigenetic mechanisms (Seamon et al., 2015). Importantly, the
presence of GBPs metabolic enzymes both inside and outside the
cell, makes it difficult to distinguish the origin of single
nucleotides or nucleosides without inhibiting the respective
enzymes.

In cancer therapy, GBPs demonstrated innovative therapeutic
potential as they were used in gene-directed enzyme prodrug
therapy (GDEPT) or in G-quadruplex based aptamers.

The greatest challenge about therapeutic applications of GBPs
is represented by their ubiquitous expression and their
involvement in pleiotropic circuits which may lead to
unfavorable side effects in other organ/tissues. Therefore, it is
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extremely important to fine-tune purinergic signaling by
controlling the expression/activity of these enzymes, with an
eye on the complex network of simultaneously activated
pathways.

Taken together, these recent findings unravel the high
translational potential of GBPs not only in neuromodulation
but also in age-related diseases and cancer (Figure 1), where an
unbalance in nucleotides/nucleosides/nucleobase ratio become
crucially important as it directs cells toward senescence/apoptotic
processes or uncontrolled cell proliferation.
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FIGURE 1 | Schematic representation of the roles of Guanine-Based Purines and their metabolizing enzymes in cancer and aging disorders. At extracellular level,
guanine-based nucleosides are metabolized up to the formation of uric acid (UA), they can also interact with adenosine (A1/A2A)/unknown metabotropic receptors, or
enter the cell via specific equilibrative nucleoside transporters (ENT and NBT). At intracellular level, de novo and purine salvage pathways restore the purine nucleotide
pool. Pharmacological manipulation of purine-converting enzymes demonstrated a therapeutic potential in LUTD, oxidative damage and leukemia (PNP), skin
disorders (GDA), viral and microbial infections (IMPDH). Ecto-NTPDase: Ecto-nucleoside Triphosphate diphosphohydrolase; PNP: Purine Nucleoside phosphorylase;
GDA: Guanine deaminase; XO: Xantine oxydase; HGPRT: Hypoxanthine-guanine phosphoribosyltransferase; 5′-NT II: Cytosolic 5′-nucleotidase II; IMPDH: Inosine
Monophosphate dehydrogenase.
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