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Adenosine triphosphate (ATP) is among the molecules involved in the immune response. It
acts as danger signal that promotes inflammation by activating both P2X and P2Y
purinergic receptors expressed in immune cells, including microglia, and tumor cells.
One of the most important receptors implicated in ATP-induced inflammation is P2X7
receptor (P2X7R). The stimulation of P2X7R by high concentration of ATP results in cell
proliferation, inflammasome activation and shedding of extracellular vesicles (EVs). EVs are
membrane structures released by all cells, which contain a selection of donor cell
components, including proteins, lipids, RNA and ATP itself, and are able to transfer
these molecules to target cells. ATP stimulation not only promotes EV production from
microglia but also influences EV composition and signaling to the environment. In the
present review, we will discuss the current knowledge on the role of ATP in the biogenesis
and dynamics of EVs, which exert important functions in physiology and pathophysiology.
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INTRODUCTION

Adenosine triphosphate (ATP) is a ubiquitous nucleotide that not only provides energy source
within cells but acts as transmitter/signaling molecule mediating interactions among various cell
types in the brain (Inoue, 2002; Hansson and Ronnback, 2003) and many other organs and systems.

Under physiological conditions, the concentration of extracellular ATP (eATP) is very low
(400–1,000 nM), allowing a 106-fold gradient for ATP efflux (Trautmann, 2009). Larger increase in
eATP levels occurs during metabolic stress or brain injury, and persists in the peritraumatic zone for
many hours after the insult (Wang et al., 2004). Indeed, at the site of injury activated immune cells,
i.e., lymphocytes (Filippini et al., 1990), macrophages (Sikora et al., 1999), microglia (Ferrari et al.,
1997), and platelets (Beigi et al., 1999), release ATP and other purines, such as adenosine diphosphate
(ADP) and uridine triphosphate (UTP) into the extracellular space mainly via exocytosis of secretory
granules or transport through channels or transporters (Lazarowski, 2012).
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eATP acts as a Danger Associated Molecular Patterns
(DAMPs) and binds to specific surface receptors called P2
purinoceptors, promoting acute inflammation (Soni et al.,
2019). There are two subsets of P2 receptors: P2Y and P2X
receptors (Idzko et al., 2014). P2Y receptors (P2YR) are
G-protein-coupled receptors, which mediate adenylyl cyclase,
phospholipase C and ion channel activation (Abbracchio et al.,
2006). On the contrary, P2X receptors (P2XR) are Ca2+-
permeable, non-selective cation channels sensitive to
micromolar concentration of eATP (Trautmann, 2009). Both
P2YR and P2XR are expressed on microglia, the immune cells
resident in the brain, along with receptors specific for the ATP
metabolite Adenosine, and are necessary for the rapid microglial
response to changes in brain homeostasis (Orr et al., 2009; Illes
et al., 2020).

During inflammation, microglia undergo progressive
modifications, including altered expression of cell surface
markers and inflammation-related genes, process retraction
and acquisition of an ameboid morphology, enhanced
migration and phagocytic ability (Kettenmann et al., 2011).
These changes in microglial functions are partly associated with
changes in purinergic receptors expression that determine
different responses to ATP. Process retraction is mainly due
to upregulation of adenosine receptor A2A and downregulation
of P2Y12 receptors (Orr et al., 2009), whereas migration is
mediated by adenosine A1 and P2X4 (Li et al., 2013) as well as
P2Y12 receptors (Haynes et al., 2006; Ohsawa et al., 2007).
Phagocytosis is triggered by the upregulation of P2Y6R, which is
activated by the release of UTP by dying cells (Inoue, 2007).
Finally, the ATP-sensitive P2X7 receptor (P2X7R) has been
shown to drive important morphological alterations in
microglia as well as the release of pro-inflammatory/
pathological agents via extracellular vesicles (EVs) (Ferrari
et al., 2006).

The present review focuses on the role of ATP/P2X7R
signaling axis in inducing EV shedding from immune and
tumor cells, and on ATP involvement in the control of EV
composition and dynamics of interaction with target cells.

ATP STIMULATES THE RELEASE OF EVS
BY IMMUNE CELLS UPON P2X7R
ACTIVATION
P2X7 receptor (P2X7R) is highly expressed on inflammatory cells
(Faas et al., 2017) and requires a very high concentration
(>100 µM) of ATP for its activation (Trautmann, 2009). Once
stimulated, influx of Na+ and Ca2+ into the cell and efflux of K+

out of the cell occur, inducing cell proliferation (Nuttle and
Dubyak, 1994; Bianco et al., 2006) and inflammasome
activation (Yaron et al., 2015; Orioli et al., 2017). Furthermore,
upon prolonged activation, P2X7R forms an aqueous pore at the
cell membrane allowing the passage of hydrophilic molecules,
that results in cell death (Faas et al., 2017).

Fifteen years ago, Verderio and colleagues demonstrated
another fundamental function mediated by P2X7R activation
in cultured microglia. P2X7R stimulation massively increases the

shedding of large membrane vesicles from the plasma membrane
(PM). These large extracellular vesicles (EVs), also known as
microvesicles, are circular membrane structures enriched in
bioactive molecules that play an important role in cell-to-cell
communication (Bianco et al., 2009).

Differently from other members of the P2X family, P2X7R
present a long cytoplasmic C terminus that contains several
binding sites for Src kinases proteins, which phosphorylate
and activate ROCK and p38 MAP kinases (Kanthou and
Tozer, 2002; Pfeiffer et al., 2004). These signaling proteins
induce the local disassembly of the cytoskeletal elements and
the translocation to the PM of the enzyme acid sphigomyelinase
(A-SMASE). A-SMASE hydrolyzes sphingomyelin, a
phospholipid abundant in the outer leaflet of the PM, to
ceramide, facilitating blebs formation and EV shedding
(Figure 1A) (Bianco et al., 2009).

Notably, surface blebbing occurs in proximity of lipid rafts
(Del Conde et al., 2005), where P2X7R localizes, and requires the
loss of membrane asymmetry and the exposure of
phosphatidylserine at the outer leaflet of PM. Vesicle shedding
causes a decrease in PM capacitance (MacKenzie et al., 2001) and
is markedly inhibited by removal of extracellular Ca2+ or
treatment with either P2X7R antagonists (Bianco et al., 2005;
Pizzirani et al., 2007) or p38 and rho kinases inhibitors (Pfeiffer
et al., 2004). In accordance, membrane blebbing is increased by
antagonism of the P2X7R negative regulator HSP90 (Adinolfi
et al., 2003).

In addition to large EVs, P2X7R stimulation triggers release of
small EVs, also called exosomes, originating in the endocytic
compartment (Figure 1 Panel A) (Asai et al., 2015; Ruan et al.,
2020).

The major finding related to P2X7R-dependent EV
production from microglia and peripheral immune cells is
linked to its involvement in the processing and release of
inflammatory cytokines (MacKenzie et al., 2001; Bianco et al.,
2005).

Several lines of evidence indicated that EVs are loaded with
unprocessed pro-IL-1β, mature IL-1β and the IL-1β converting
enzyme caspase-1, and express P2X7R in their membranes
(Bianco et al., 2005; Pizzirani et al., 2007). Caspase-1 is
activated upon P2X7R stimulation on the vesicle surface, and
is responsible for conversion of the biological inactive IL-1β
precursor into the active form of the cytokine (Bianco et al.,
2005) (Figures 1A,B). Other reports showed that EVs act as
carriers of the protease cathepsin D (Qu et al., 2009; Sarkar et al.,
2009) besides caspase-1, and other cytokines such as TNF and IL-
18 (Hide et al., 2000; Ferrari et al., 2006).

Specifically, Barbera-Cremades and colleagues showed
that stimulation of P2X7R in macrophages leads to the
release of EVs containing both TNF and the TNF-
converting enzyme (TACE), that cleaves membrane-bound
TNF, generating the soluble cytokine (Barbera-Cremades
et al., 2017; Raffaele et al., 2020). Furthermore, a recent
study demonstrated that ATP redirects TNF intracellular
trafficking in activated macrophages, limiting the release of
soluble TNF and preferentially packaging transmembrane
TNF in EVs (Soni et al., 2019). Importantly, TNF-carrying
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EVs are biologically more potent than soluble TNF, and
mediate significant lung inflammation in mice (Soni et al.,
2019).

Through EV production, inflammatory proteins can be
released at significant distance from donor cell, in possible

proximity to target cells, thus preventing the dispersal and
degradation of mediators in the extracellular environment.

In recent years, several studies investigated the physiological
and pathological functions of EVs within the brain. These
functions include control of neuronal development (Marzesco

FIGURE 1 | Panel (A): Scheme of ATP/P2X7R signaling axis inducing EV shedding from immune cells. Upon ATP stimulation, P2X7R activates p38 MAPK and
ROCK through Src kinases. In turn, p38 and ROCK trigger the local disassembly of the cytoskeletal elements and the mobilization of A-SMASE from the luminal
lysosomal compartment to the outer leaflet of the PM, where the enzyme hydrolyzes sphingomyelin to ceramide favoring blebs formation and the shedding of large
vesicles carrying IL-1β (Bianco et al., 2005).P2X7R also regulates the release of small EVs. ATP-induced P2X7R stimulation drives the assembly and the activation
of the inflammasome composed by regulatory proteins, NEK7, ASC and NLRP3, which are essential for caspase-1 activation. Caspase 1 is a protease implicated in IL-1β
processing and in regulating the membrane trafficking pathways that control multivesicular bodies fusion with the PM and the release of IL-1β storing small EVs (Qu et al.,
2009). Panel (B): Schematic representation of protein cargo and cytokine processing in large EVs released upon ATP stimulation. By activating P2X7R, ATP induces in
large EVs the processing of inflammatory cytokines (Hide et al., 2000; Bianco et al., 2005; Ferrari et al., 2006) and sorting of proteins implicated in autophagy-lysosomal
pathway, phagocytosis and endocytosis, energy metabolism and cell adhesion/extracellular matrix organization (Drago et al., 2017). Panel (C): Graphic representation of
morphological changes of EVs isolated from human mast cell lines, human blood serum, mouse lung, and Saccharomyces cerevisiae as imaged by Cvjetkovic and
colleagues (Cvjetkovic et al., 2017) (left), and of a single EV in motion at the cell surface of microglia (Prada et al., 2016) (right).
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et al., 2005), synaptic activity (Antonucci et al., 2012; Gabrielli
et al., 2015), axon-glial transfer of information (Prada et al.,
2018), nerve regeneration (Lai and Breakefield, 2012) and myelin
formation (Pusic et al., 2016; Van Niel et al., 2018; Lombardi et al.,
2019); as well as disease-associated events, such as tumor
progression, spreading of inflammation (Verderio et al., 2012)
or dissemination of pathogenic proteins (Joshi et al., 2014; Asai
et al., 2015; Eitan et al., 2016; Sardar Sinha et al., 2018; Crotti et al.,
2019; Ruan et al., 2020). However, the contribution of ATP-
induced EV shedding vs. constitutive EV release in brain disease
pathogenesis is just emerging.

ATP-induced EVs may play a relevant pathogenic role in
traumatic brain injury (TBI). After TBI, high concentrations of
eATP activate P2X7R in microglia and increase EV production,
while treatment of TBI-affecting rats with the P2X7R antagonist
A804598 or the immune modulator FTY720, that inhibits
A-SMase-dependent EV biogenesis (Verderio et al., 2012),
significantly decreases the number of microglial EVs in the
injured/adjacent regions and in cerebrospinal fluid (CSF), and
improves disease outcome (Liu et al., 2017).

Another study implicated microglial EVs released upon ATP
stimulation of P2X7R in the spreading of tau protein and disease
progression in a tauopathy mouse model. Specifically,
pharmacologic blockade of P2X7R with GSK1482160, an
orally applicable and CNS-penetrant inhibitor, suppressed
both secretion of small EVs (exosomes) and disease outcome
in the early disease stages (Ruan et al., 2020).

Conversely, the role of ATP and P2X7R-mediated EV release
in multiple sclerosis (MS), the prototypical neuroinflammatory
disease, remains controversial. Treatment of EAE mice, a MS
mouse model, with the specific P2X7R antagonists oxATP and
BBG reduced disease severity (Matute et al., 2007), but P2X7R
knockout mice displayed a more severe pathology (Chen and
Brosnan, 2006). Furthermore, EAE ameliorated in A-SMASE
knock-out mice, genetically impaired in ATP-evoked EV
production (Verderio et al., 2012), but injection of the
A-SMASE inhibitor imipramine did not significantly reduce
the level of myeloid EVs in the CSF. The latter finding rules
out a major role of ATP in sustaining EV production in a context
of chronic neuroinflammation, where cytokines may mainly
control EV release from myeloid cells (Colombo et al., 2018).

P2X7R-DEPENDENT EV PRODUCTION
FROM TUMOR CELLS

The tumor microenvironment is rich in eATP, and the role of this
nucleotide and its receptors, particularly P2X7R, in cancer has
been the focus of numerous papers in recent years (Di Virgilio
et al., 2018; Adinolfi et al., 2019; Lara et al., 2020). P2X7R is
upregulated in solid cancer and onco-hematological conditions,
and several preclinical studies have demonstrated that its
blockade has good potential as an anticancer treatment
(Adinolfi et al., 2012; De Marchi et al., 2019; Pegoraro et al.,
2020). Recently, the association of P2X7R with EV release has
been supported by a work showing an increase in cancer patient’s
serum concentration of soluble P2X7R, possibly expressed on the

surface of EVs (Giuliani et al., 2019). As mentioned above, the
activation of P2X7R is also associated with the release of EVs
from the monocyte/macrophage cell lineage (Baroni et al., 2007;
Pizzirani et al., 2007; Gulinelli et al., 2012). These vesicles carry
several molecules, including cytokines and tissue factor,
associated with cancer pathogenesis and progression but also
with tumor immune eradication and immunosuppression
(Graner, 2018). EVs released from both cancer and immune
cells have shown to facilitate angiogenesis, cause extracellular
matrix remodeling, prepare the pre-metastatic niche, and
consequently cause organ tropism of disseminating tumor cells
(Kuriyama et al., 2020; Schubert and Boutros, 2021). However,
only few manuscripts have reported P2X7-dependent EV release
from cancer cells (Gutierrez-Martin et al., 2011; Kholia et al.,
2015; Park et al., 2019) and therefore evidence relating to P2X7R
activity, EV content, and cancer function is far to be complete and
will deserve further attention.

ATP STIMULATION INFLUENCES EV
COMPOSITION

So far, only one study showed that ATP strongly influences the
composition of EVs (Drago et al., 2017). Label free proteomics
revealed that ATP stimulation induces sorting into microglial
EVs of proteins implicated in autophagy-lysosomal pathway,
phagocytosis and endocytosis, energy metabolism and cell
adhesion/extracellular matrix organization (Drago et al., 2017).

The overexpression of degradative enzymes in EVs produced
by ATP-stimulated microglia (ATP-EVs), compared to those
released constitutively, may reflect the enhanced capacity of
microglia to phagocyte apoptotic cells or synapses in response
to ATP. By contrast, the abundance of metabolic enzymes
necessary for glycolysis, lactate production, the oxidative
branch of the pentose phosphate pathway, glutamine
metabolism and fatty acid synthesis may reflect an increase in
cellular metabolism to sustain ATP-dependent microglial
functions, such as process scanning and phagocytic activity
(Grabert et al., 2016).

Due to the higher content of proteins involved in extracellular
matrix organization and cell adhesion, ATP-EVs adhere more
and have stronger capacity to activate cultured astrocytes
compared to constitutive EVs.

Collectively, these data indicate that ATP stimulation not only
promotes EV production from microglia but also enhances their
signaling to the environment.

ATP IS AMONG THE CARGO OF EVS

ATP is a component of EVs (Graner, 2018). A pioneer study by
Ronquist and colleagues showed that small EVs generated in the
endocytic compartment of prostate epithelial cells, also called
prostasomes, can produce ATP by glycolysis. Prosteasomes
contain glycolytic enzymes and their capacity to produce ATP
from fructose or glucose has been proven by the luciferin/
luciferase assay (Ronquist et al., 2013). Interestingly, glycolytic
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enzymes, generating ATP from glucose, have been systematically
reported in EVs of different cell origin, including EVs produced
by mesenchymal stem cells, which have the capacity to restore
ATP levels when delivered to an ischemic tissue (Arslan et al.,
2013). Among glycolytic enzymes, 3-phosphate dehydrogenase
(GAPDH), pyruvate kinase (PKM), enolase-1 (ENO1),
phosphoglycerate kinase 1 (PGK1), aldolase A (ALDOA),
triosephosphate isomerase 1 (TPI1) and glucose-6-phosphate
isomerase (GPI) are listed among the 100 proteins more often
identified in EVs according to the database Vesiclepedia (http://
microvesicles.org/), suggesting that ATP production by glycolysis
may be a common feature of EVs (Figure 1B).

Furthermore, it has been recently shown that mitochondria,
the main source of cellular ATP, can be also packaged into EVs
(Figure 1B) (Hough et al., 2018; Zhang et al., 2020), further
indicating that ATP can be generated in metabolically active EVs.

ATP CARGO MAY INFLUENCE THE
DYNAMICS OF EV INTERACTION WITH
RECIPIENT CELLS
Inside EVs ATP may represent a crucial source of energy, able to
fuel active processes, such as the activity of ATP-dependent
enzymes, e.g., V-type proton ATPase subunit B (Atp6v1b2),
RNA helicase DDX25 (Ddx25), Sodium/potassium-
transporting ATPase subunit alpha-1 and 3 (Atp1a1, Atp1a3),
which are part of the proteome of microglial EVs (Figure 1B)
(Drago et al., 2017). More importantly, vesicular ATP may
support cytoskeleton rearrangements. Consistently, a large
body of evidence has located actin inside EVs, a key
component of the cellular cytoskeleton mediating cell
migration and shape changes, and allowing cells to form
adhesion with each other and with the extracellular matrix
(Figures 1A,C) (Svitkina, 2018). Cryo-electron micrographs
imaged actin-like filaments in a subpopulation of EVs isolated
from different biological samples [fresh plasma, (Yuana et al.,
2013); human ejaculate, (Hoog and Lotvall, 2015); human
ejaculate and human mast cell cultures, (Cvjetkovic et al.,
2017); HeLa cells, (Yang et al., 2020)] and its presence was
confirmed by mass-spectrometry, western blot analysis or
mRNA Microarray in EVs from most cell types (human
dendritic cells, (Kowal et al., 2016); mouse microglia, (Drago
et al., 2017); mesenchymal stem cells, (Adamo et al., 2019); HeLa
cells, (Yang et al., 2020); osteoclasts, (Holliday et al., 2019);
human blood, (Eguchi et al., 2020), and more), together with
actin-binding proteins and regulators of actin cytoskeleton. Not
surprisingly, actin beta (ACTB) and several actin network
proteins (such as actinin alpha 4 (ACTN4) and alpha 1
(ACTN1), gelsolin (GSN), cofilin-1 (CFL1), talin-1 (TLN1),
filamin alpha (FLNA)) are among the top 100 proteins more
frequently detected in EVs on Vesiclepedia (Figure 1B Panel B).
These data open up the fascinating possibility that EVs, exploiting
actin complexes present in their lumen and ATP as energy source,
may have an intrinsic capacity to change their shape to interact
with target cells.

In support to this hypothesis, findings from Jan Lötvall’s and
Johanna L Höög’s laboratories have shown that, among EVs
either isolated from cell cultures, biological fluids or tissue, a part
(albeit small) displays morphological changes detectable by time-
lapse fluorescence imaging Cvjetkovic et al., 2017. EVs could
round up starting from an elongated structure, glide one along the
other, move inside a larger vesicle and, importantly, stretch out
flexible protrusions (Figure 1C). Being exhibited also by EVs
from Saccharomyces cerevisiae, these phenomena seem to be
evolutionary conserved. Furthermore, time-lapse imaging
revealed that single EVs, produced by microglia and gently
placed in contact with other microglial cells by optical
manipulation, can move after adhesion along the cell surface
toward sites of internalization (Figure 1C) (Prada et al., 2016).
These findings point at the possibility for EVs to undergo an
ATP-dependent actin-mediated form of extracellular motion.
Further experiments will be necessary to verify this captivating
hypothesis. Intriguingly, intrinsic active motility would allow EVs
to travel in the extracellular space at the cell surface,
independently from fluid fluxes or cell-driven mechanisms
(e.g., filopodia surfing/grabbing/pushing, (Heusermann et al.,
2016), and we can speculate that it might even ease cell entry
at specific sites of the PM. These perspectives are absolutely worth
to be better explored in the future.

CONCLUSION

The interest for EVs released upon ATP stimulation has
increased exponentially, given that they have become vehicle
of inflammatory signals (Verderio et al., 2012), tumorigenic
factors (Graner, 2018) or misfolded proteins in
neurodegenerative diseases (Ruan et al., 2020), and their
number is significantly augmented in the body fluids of
patients affected by many neurological diseases (Verderio
et al., 2012; Colombo et al., 2018). Since the analysis of EV
cargo may provide indications on the activation state of donor
cells and the pathological state of the brain, EVs are currently
under intense investigation for a possible employment in
clinical practice as prognostic biomarkers. In addition,
further knowledge of EV dynamics and interaction with
target cells may reveal new molecular targets to limit cancer
metastasis and propagation of neurodegenerative lesions
throughout the brain.
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