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INTRODUCTION

Schizophrenia is a severe and chronic mental disorder, mainly characterized by the presence of
the so-called “positive” (delusions, hallucinations, disorganized thinking) and “negative”
(anhedonia, blunted affect, social withdrawal) symptoms, as well as cognitive dysfunctions.
Although several interrelated causes have been associated with the development of the pathology,
it is generally accepted that the hyperfunction of dopaminergic and/or hypofunction of
glutamatergic transmission (i.e., the so-called “combined glutamate/dopamine hypothesis of
schizophrenia”) might underlie the symptoms of schizophrenia (Howes et al., 2015; Snyder and
Gao, 2020). Clinical indications demonstrate that positive symptoms respond well to
conventional antipsychotic medications, which mainly act as dopamine D2 receptor (D2R)
antagonists, while negative symptoms and cognitive impairments are more difficult to be
counteracted. Several non-D2R related mechanisms of action of antipsychotic drugs have
been proposed over the last decades, but none has conclusively been proven effective.
Furthermore, while the newer antipsychotic drugs produce fewer motor side effects than
conventional “first generation” drugs, safety and tolerability concerns about weight gain and
endocrinopathies often limit their use (Li et al., 2016). Thus, there is an urgent necessity for more
effective and better-tolerated antipsychotic drugs, as well as to identify new molecular targets and
develop mechanistically novel compounds that can address the various symptom dimensions of
schizophrenia. Due to the complexity of the pathology, it seems likely, however, that a multi-
target strategy, i.e., the use of multifunctional drugs or a combination of drugs affecting distinct
targets, will lead to more effective therapeutic approaches.

Based on this background and recent findings, the present opinion paper was conceived to
critically review possible interactions between adenosine and kynurenic acid (KYNA) in this context.
These two neuromodulators may be pathophysiologically associated with schizophrenia, and a
deeper understanding of their interactions may lead to the development of innovative strategies for
the treatment of schizophrenia.

Adenosine and Schizophrenia
It is well recognized that, beside dopamine and glutamate systems, the purinergic systemmay be also
involved in the pathophysiology of schizophrenia (Lara and Souza, 2000; Krügel, 2016; Cheffer et al.,
2018). In fact, the so-called “adenosine hypothesis of schizophrenia” (Lara et al., 2006; Boison et al.,
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2012; Hirota and Kishi, 2013; Rial et al., 2014) postulates that a
reduced adenosine tone is involved in the dysregulation of
glutamatergic and dopaminergic activity in schizophrenia
patients. Accordingly, based on informative studies in
experimental animals, adenosine receptor agonists may act as
atypical antipsychotic drugs (Krügel, 2016).

Adenosine A2A receptors (A2ARs), which are highly
expressed in the striatum and the olfactory tubercle, exert
fine regulation of individual synapses (Hines and Haydon,
2014; Krügel, 2016), and their activation facilitates glutamate
release and potentiates N-methyl-D-aspartate (NMDA)
receptor function. As a consequence, A2ARs regulate
synaptic plasticity by promoting adequate (or aberrant)
adaptive responses in neuronal circuits (Azdad et al., 2009;
Boison and Aronica, 2015; Krügel, 2016). In general,
adenosine and A2AR agonists induce behavioral effects
similar to those of dopamine receptor (DR) antagonists
used as antipsychotics (Rimondini et al., 1997; Wardas,
2008; Shen et al., 2012; Borroto-Escuela et al., 2020). In
fact, A2AR agonists inhibit hyperlocomotion and
sensorimotor gating deficits induced by DR agonists and/or
NMDA receptor channel blockers in rodents (Krügel, 2016).
More specifically, converging evidence suggests that
heteroreceptor complexes containing AR and DR
protomers, especially adenosine A2AR-D2R heteroreceptor
complexes, exert strong inhibitory modulation of dorsal and
ventral striato-pallidal GABA neurons (Ferrè et al., 1991; Fuxe
et al., 2008; Borroto-Escuela et al., 2018; Borroto-Escuela et al.,
2020). Thus, A2AR agonists reduce D2R recognition and
function by acting on the A2A-D2 heteroreceptor complexes
located in the dorsal and ventral striato-pallidal anti-reward
GABA pathway. Upon activation of this pathway, the brain
circuit involved increases the glutamate drive to the frontal
cortex from the medial dorsal thalamic nucleus, and transfer
of anti-reward information takes place (Fuxe et al., 2008;
Borroto-Escuela et al., 2017; Borroto-Escuela et al., 2018;
Borroto-Escuela et al., 2020). Thus, it was suggested more
than a decade ago (Fuxe et al., 2008) and recently
demonstrated (Borroto-Escuela et al., 2020; Valle-León
et al., 2020) that drugs promoting A2AR-D2R heteromer
formation might constitute an alternative strategy for the
treatment of schizophrenia. Furthermore, A2AR agonists
can allow a reduction of the dose of the D2R antagonists
which should reduce the side effects of classical and
atypical antipsychotic drugs. These findings moved A2AR
agonists into the focus of interest for adenosinergic
therapeutic options in the disease.

The adenosine A1 receptor (A1R), too, has been proposed as a
potential antipsychotic drug target (Ossowska et al., 2020). A1Rs
are coupled to the Gi/o family of G-proteins, are abundantly
present throughout the central nervous system, and appear to
generally exert an inhibitory and neuroprotective ‘tone’ (Chen
et al., 2014; Krügel, 2016). Activation of presynaptic A1Rs
inhibits the release of neurotransmitters (e.g., glutamate,
GABA, dopamine, serotonin and acetylcholine) and depresses

postsynaptic neuronal signaling by inducing hyperpolarization
(Paul et al., 2011). Notably, pre- and post-synaptic A1R
activation, leading to reduced glutamate and GABA release
as well as impaired NMDA receptor and D1R function,
respectively, plays a major role in the “adenosine hypothesis”
of schizophrenia (Fuxe et al., 2008; Krügel, 2016). Thus, as the
pathophysiologically significant NMDA receptor hypofunction
in the disease can be traced mainly to fast-spiking GABA
neurons (Nakazawa and Sapkota, 2020), a reduction of A1R
signaling should benefit critical neuronal circuits and
consequently have positive effects on schizophrenia
symptoms. In line with this view, A2AR agonists might exert
part of their antipsychotic action by activating the A2AR
protomer in a prejunctional A1-A2A receptor complex.
Through this antagonistic receptor-receptor interaction, A2AR
agonists could lower the affinity of the A1R protomer and thus
the inhibitory action of the A1R protomer on glutamate release
(Ciruela et al., 2006; Franco et al., 2008; Borroto-Escuela et al.,
2020). Antagonists of A1R receptors have indeed been shown to
reduce memory impairment in experimental animals (Boison
et al., 2012).

On the other hand, since activation of A1Rs on dopaminergic
nerve terminals inhibits dopamine release (Paul et al., 2011;
Zhang and Sulzer, 2012), A1R agonists, too, may counteract
schizophrenia symptoms. In fact, preclinical findings have
indicated that stimulation of A1Rs may have antipsychotic
effects, although cognitive dysfunctions must be expected to
be associated with the treatment (Ossowska et al., 2020).
Specifically, recent studies demonstrated that the selective
A1R agonist 5-Chloro-5′-deoxy-N6-(±)-(endo-norborn-2-yl)
adenosine (5′-Cl-5′-deoxy-ENBA) reduces the hyperlocomotion
caused by amphetamine or the non-competitive NMDA receptor
antagonist dizolcipine (MK-801; Eyjolfsson et al., 2006; Ossowska
et al., 2020). Inhibition of amphetamine- and MK-801-mediated
hyperlocomotion may also be caused by allosteric interaction
of D1R signaling in the A1R-D1R heteroreceptor complex,
which is located in striato-nigral and striato-entopeduncular
GABA neurons as well as in D1R-rich GABA neurons in the
nucleus accumbens (Rimondini et al., 1997; Fuxe et al., 2007;
Fuxe et al., 2008; Fuxe et al., 2020; Franco et al., 2008; Pérez-de-
la-Mora et al., 2020).

Kynurenic Acid and Schizophrenia
KYNA, an astrocyte-derived neuromodulator, has been
repeatedly linked to the cognitive deficits that are observed in
individuals with schizophrenia. KYNA is a metabolite of the
kynurenine pathway (KP), which accounts for more than 90% of
the degradation of the essential amino acid tryptophan
(Cervenka et al., 2017). Through a series of enzymatic steps,
the evolutionarily preserved KP generates not only KYNA but
also a considerable number of other biologically active
compounds, several of which play increasingly appreciated
roles in brain physiology and pathology (Schwarcz et al.,
2012). KYNA is produced directly from the pivotal KP
metabolite kynurenine, either by oxidation (Ramos-Chávez
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et al., 2018) or by irreversible transamination by kynurenine
aminotransferases (KATs; Guidetti et al., 2007). These enzymes
are preferentially localized in astrocytes, which promptly release
newly formed KYNA into the extracellular compartment
(Turski et al., 1989; Guidetti et al., 2007). Though other
molecular targets may be of relevance as well, the
neurobiological effects of endogenous KYNA are mediated
primarily through its actions as an antagonist of both the
NMDA and the α7nAChR function, i.e. two receptors that
are critically involved in cognitive processes (Moroni et al.,
2012; Stone et al., 2013; Phenis et al., 2020). Consequently, as
shown consistently in experimental animals, elevated brain
KYNA levels are associated with a number of cognitive
deficits, such as impairments in contextual learning and
memory and abnormal visuospatial working memory
(Schwarcz et al., 2012; Muneer, 2020). These effects are likely
related to the fact that even relatively small fluctuations in
KYNA levels bi-directionally affect the extracellular levels of
neurotransmitters that play major roles in cognitive functions,
including dopamine, acetylcholine, glutamate and GABA (Wu
et al., 2007; Zmarowski et al., 2009; Konradsson-Geuken et al.,
2010; Beggiato et al., 2013). Notably, selective pharmacological
inhibition of KYNA formation has been shown to have pro-
cognitive effects in several established animal models (Kozak
et al., 2014; Pocivavsek et al., 2019).

The observation that KYNA concentrations are significantly
elevated in cortical brain regions and cerebrospinal fluid of
individuals afflicted with schizophrenia (Erhardt et al., 2001;
Schwarcz et al., 2001; Nilsson et al., 2005; Sathyasaikumar et al.,
2011; Linderholm et al., 2012) raised the possibility that KYNA
may be causally involved in the cognitive dysfunctions seen in
these patients (cf. reviews by Wonodi and Schwarcz, 2010;
Erhardt et al., 2017; Plitman et al., 2017; Muneer, 2020). This
hypothesis is compatible with the fact that the expression of
KYNA’s key biological targets (i.e., NMDA receptors and
α7nAChRs) was found to be reduced in the brain of patients
with schizophrenia (Guan et al., 1999; Young and Geyer, 2013;
Hu et al., 2015). Together with the insights gained from the pre-
clinical studies, these findings suggest that interventions
leading to a decrease in brain KYNA may constitute a useful
strategy for effecting cognitive improvement in the clinical
population.

Adenosine and Kynurenic Acid Interactions:
Are They Relevant for Schizophrenia
Treatments?
Although neurobiological properties of adenosine may be linked
to KYNA, interactions between the adenosine system and the KP
have not been carefully examined so far. However, in an in vivo
microdialysis study performed in rats, local perfusion of
adenosine was shown to rapidly and concentration-
dependently raise extracellular KYNA levels in the striatum
(Wu et al., 2004). Interestingly, this effect was mimicked by
perfusion of the A1R agonist N6-cyclopentyladenosine (CPA),

whereas the selective A2AR agonist 2-p-(2-carboxyethyl)
phenylethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride
(CGS-21680) was ineffective. Furthermore, local perfusion of
the A1R antagonist 8-cyclopentyltheophylline (CPT) attenuated
the effect of adenosine on extracellular KYNA levels. As the
effect of adenosine on KYNA was not observed in the
excitotoxically lesioned, i.e., neuron-depleted, striatum, it
appears that neuronal A1R activation influences glial KYNA
synthesis indirectly (Wu et al., 2004).

While A2AR activation does not appear to affect KYNA levels
in the brain under physiological conditions, it is noteworthy that
A2ARs not only interact physically with D2Rs (see above) but also
with the NMDAR (Agnati et al., 2005; Liu et al., 2006). An A2AR
agonist may therefore inhibit the activity of the D2R protomer
both in the A2AR-D2R heteromer (Borroto-Escuela and Fuxe,
2019) and in a putative A2AR-D2R-NMDAR heteromer, and
thereby indirectly enhance NMDAR activity. By this
mechanism, A2AR stimulation could counteract and reduce the
cognitive dysfunction caused by the elevated brain levels of the
endogenous NMDAR antagonist KYNA in pathological
situations (e.g., schizophrenia).

Furthermore, based on the postulated action of A2AR agonists
on prejunctional A1-A2A heteroreceptor complexes (Ciruela et al.,
2006), it also seems possible that A2AR agonists, in addition to
inhibition of D2R signaling, cause a reduction in KYNA levels by
allosteric inhibition of A1R signaling. In view of the study of Wu
et al. (2004); see above), this mechanism, too, may only operate
under pathological conditions.

Taken together, these phenomena may have implications for
the proposed use of adenosine receptor agonists in the treatment
of schizophrenia (Borroto-Escuela et al., 2020). Thus, the
beneficial antipsychotic effects of A1R agonists, which are
predicted from studies in experimental animals (Boison et al.,
2012; Ossowska et al., 2020), may also result in cognitive deficits
due to a A1R-induced increase in KYNA levels. Co-treatment
with drugs that are able to reduce brain KYNA levels may
therefore ameliorate the untoward side effects of A1R agonists.
Inhibitors of kynurenine aminotransferase II (KAT II), the
principal enzyme responsible for the synthesis of rapidly
mobilizable KYNA in the mammalian brain (Guidetti et al.,
2007), deserve particular attention in this context (Rossi et al.,
2010; Nematollahi et al., 2016; Plitman et al., 2017; Blanco-Ayala
et al., 2020). Notably, the beneficial effects of KAT II inhibitors
may be further enhanced by A2AR agonists and may also improve
negative symptoms in schizophrenia patients via allosteric
inhibition of D2R signaling in A2AR-D2R heteroreceptor
complexes of ventral striatal-pallidal GABA neurons (Borroto-
Escuela et al., 2020).

CONCLUSION

The considerations outlined here indicate a possible relevance of
adenosine and KYNA interactions in the pathophysiology and
treatment of schizophrenia, and emphasize the need to
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investigate this issue in detail in future preclinical studies.
Specifically, the effects of combined approaches with
adenosine receptor ligands and compounds able to reduce
brain KYNA levels (e.g., KAT II inhibitors) have not been
assessed experimentally so far. Hypothesis testing in rats that
were prenatally exposed to kynurenine, which have deficits
resembling several of the cognitive impairments seen in
schizophrenia patients (Hahn et al., 2018), may be particularly
informative for this purpose. These studies may support the
development of new multi-target therapeutic strategies that
focus on both the purinergic system, especially in relation to
adenosine receptor containing heteroreceptor complexes, and
brain KYNA function.
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