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There has been growing recognition of the vital links between structural variations (SVs)
and diverse diseases. Research suggests that, with much longer DNA fragments and
abundant contextual information, long-read technologies have advantages in SV detection
even in complex repetitive regions. So far, several pipelines for calling SVs from long-read
sequencing data have been proposed and used in human genome research. However, the
performance of these pipelines is still lack of deep exploration and adequate comparison.
In this study, we comprehensively evaluated the performance of three commonly used
long-read SV detection pipelines, namely PBSV, Sniffles and PBHoney, especially the
performance on detecting the SVs in tandem repeat regions (TRRs). Evaluated by using a
robust benchmark for germline SV detection as the gold standard, we thoroughly
estimated the precision, recall and F1 score of insertions and deletions detected by
the pipelines. Our results revealed that all these pipelines clearly exhibited better
performance outside TRRs than that in TRRs. The F1 scores of Sniffles in and outside
TRRs were 0.60 and 0.76, respectively. The performance of PBSV was similar to that of
Sniffles, and was generally higher than that of PBHoney. In conclusion, our findings can be
benefit for choosing the appropriate pipelines in real practice and are good complementary
to the application of long-read sequencing technologies in the research of rare diseases.
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INTRODUCTION

Previous studies typically defined structural variations as genomic changes at least 50 base pairs (bp)
in size. SVs are closely related to diverse human diseases Weischenfeldt et al. (2013); Lupski, (2015),
such as autism Pinto et al. (2010); Sanders et al. (2012); Chen et al. (2017) and schizophrenia (Sebat
et al., 2007; Stefansson et al., 2008; Walsh et al., 2008; Kirov et al., 2012). Compared with single-
nucleotide variations (SNVs), SVs contain more nucleotides and are considered to be higher
correlated with evolution, genetic diversity and disease-causing mutations (Stankiewicz and
Lupski, 2010; Weischenfeldt et al., 2013; Abel et al., 2020).

Since the size of SV can exceed 1,000 bp, SV detection will be limited by the size of DNA fragments
in sequencing. Furthermore, if SVs occur in repetitive regions with highmutation rate, it will be more
difficult for detection (Hills et al., 2007; Hastings et al., 2009; Hodgkinson et al., 2012).

In view of the above problems, short-read data may have some difficulties while long-read data
can be a good solution (Pollard et al., 2018; Liu et al., 2019). In recent years, long-read technologies
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have been developed rapidly Amarasinghe et al. (2020) and used
in the discovery of SVs with complex forms (Aneichyk et al., 2018;
Song et al., 2018; Ishiura et al., 2019; Zeng et al., 2019; Logsdon
et al., 2020). The size of DNA fragment sequenced by long-read
technologies is usually larger than 1,000 bp, which can cover the
range of large SV and contain much context information
(Chaisson et al., 2015). It ensures the advantages of long-read
technologies in SV detection, especially in the complex repetitive
regions of the genome. Characterized by high incidence rate of
SVs and high complexity, repetitive regions are an important and
challenging problem in SV detection (Sudmant et al., 2015; Zook
et al., 2020). However, the performance of SV detection pipelines
based on long-read data applied in repetitive regions still need to
be analyzed.

Therefore, in this study, we selected three commonly used
long-read-based pipelines Kosugi et al. (2019); Logsdon et al.
(2020), namely PBSV Wenger et al. (2019), Sniffles Sedlazeck
et al. (2018) and PBHoney English et al. (2014), and
comprehensively evaluated their performance on SV detection.
Using the benchmark established by the Genome in a Bottle
(GIAB) Consortium Zook et al. (2020) as the gold standard, we
evaluated the precision, recall and F1 score of these pipelines. The
comparison included the comparison between insertions and
deletions, the comparison among four size ranges of SVs and
the comparison between SVs in TRRs and SVs outside TRRs. The
F1 scores of Sniffles were 0.60 in TRRs and 0.76 outside TRRs.
Similarly, The F1 scores of PBSV were 0.59 and 0.74 in and
outside TRRs, respectively. The performances of the two pipelines
were generally higher than that of PBHoney. For the three
pipelines, the performances in TRRs were lower than those
outside TRRs, which indicated that SV detection in TRRs was
more difficult than that outside TRRs. Concerning the type of
SVs, it was found that large insertions (> 1,000 bp) were the most
difficult to detect while large deletions were easy to precisely
detect, especially in TRRs. In addition, we also analyzed the
potential performance of three pipelines on detecting de novo
SVs. The results suggested that long-read technologies and the SV
detection pipelines still need further development for the precise
detection of de novo SVs.

MATERIALS AND METHODS

Datasets
The long-read sequencing data of an Ashkenazim Jewish trio
Zook et al. (2016) were used in our study. Subreads datasets of the
son (HG002), the father (HG003) and the mother (HG004) were
downloaded from GIAB (https://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/). The average coverages of the trio are
approximately 69X, 32X and 30X, and their N50 subread lengths
are 11,087, 10,728, and 10,629 bp.

Benchmark
The benchmark is established by GIAB for HG002 on GRCh37,
which was downloaded from GIAB FTP site (https://ftp-trace.
ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/
analysis/NIST_SVs_Integration_v0.6/). The benchmark dataset

contains close to 100% of true insertions and deletions in the
specific regions. According to the guidance of the benchmark, we
used the SVs with the FILTER field “PASS” in the Tier 1 vcf,
including 12,745 isolated, sequence-resolved insertion (7,281)
and deletion (5,464) calls. The benchmark regions include
34,830 large regions, of which 15% are within 1,000–10,000 bp
and 82% are over 10,000 bp. Through the manual inspection in
the benchmark work, it was found that approximately 5% of true
insertions in the benchmark regions might be missing. Therefore,
when comparing callsets (especially from long-read data) with the
benchmark, it is possible to misjudge some true insertions. When
making the comparison, we first selected the SVs in the
benchmark regions, and then compared these SVs with the
benchmark SVs.

Structural Variation Detection Pipelines
In this study, we used three long-read-based pipelines named
PBSV (version 2.2.2; https://github.com/PacificBiosciences/
pbsv), Sniffles (version 1.0.11; https://github.com/
fritzsedlazeck/Sniffles) and PBHoney (in PBSuite-15.8.24;
http://sourceforge.net/projects/pb-jelly/). For PBSV and
Sniffles, subreads were aligned to reference genomes GRCh37
by PBMM2 and NGMLR, respectively. After the help of
SAMtools, SVs were called by PBSV and Sniffles. PBHoney
includes two parts of results, namely Tails (based on interrupted
mapping) and Spots (based on intra-read discordance). There
were too few results in the Tails part to compare with other
pipelines, thus the result of the Tails part was separately shown
in Supplementary Figure S1. Because of the complexity of
parameter optimization in Spots and the time-consume of
recommended aligner BLASR, following a previous work
Kosugi et al. (2019), we used NGMLR to align the subreads
and detected SVs with custom-made parameters for insertions
and deletions. SVs with < 0.2 of the value, which was calculated
by dividing the szCount tag with the coverage tag, were
filtered out.

In these callsets, we only summarized the variations ≥ 50 bp.
SVs with the type “BND” (breakpoint end) were excluded. In this
study, we only focused on the SVs on the autosomes and sex
chromosomes.

The Metrics for Comparison
During comparison, we mainly considered the type consistency,
the distance between breakpoints and the proportion of the
reciprocal overlap. For compared insertions, if the distance of
breakpoints was within 200 bp, they were considered the same.
For compared deletions, the called SV needed to exhibit ≥ 50%
reciprocal overlap with the reference SV. When comparing the
callset with regions (i.e. the benchmark regions and tandem
repeat regions), it was only required that breakpoints
overlapped with these regions. When comparing the overlap
among pipelines, the callset with more SVs was chosen as the
comparison benchmark. The code used for comparison are
available at GitHub (https://github.com/cic-gmk/DNSV).

When comparing the callsets with the benchmark, the
precision, recall and F1 score were calculated via the following
equations:
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Precision � TP
TP + FP

Recall � TP
TP + FN

F1 score � 2 × Precision × Recall
Precision + Recall

where TP, FP and FN are the numbers of true positives, false
positives and false negatives. TP + FP is equal to the number of
the called SVs. TP + FN is equal to the number of the
benchmark SVs.

Tandem Repeat Regions
The repeats used in our study were annotated in the annotation
file of hg19, which can be obtained at the download site of UCSC
Genome Browser (Fernandes et al., 2020; Navarro Gonzalez et al.,
2020) (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/

database/rmsk.txt.gz). “Simple repeats” and “Satellites” were
selected as the TRRs from the file. “Simple repeats” are short
pattern tandem repeats and “Satellites” are medium to long
pattern tandem repeats. SVs were divided into two parts
according to whether they were in TRRs or not.

RESULTS

The Landscape of Structural Variation
Callsets
The numbers of SVs detected by the three pipelines are shown in
Figure 1A. Among the three pipelines, PBSV detected the largest
number of SVs and Sniffles detected the least number of SVs. For
all the pipelines, the numbers of detected SVs of the son were
more than those of the parents mainly due to the higher coverage
of the sequencing data of the son. For Sniffles, largest difference in

FIGURE 1 | (A) The number of SVs in the callsets of the parents and the son (F, Father; M, Mother; S, Son) detected by PBSV, Sniffles and PBHoney. (B) The type
distribution of the whole callsets of the trio detected by three pipelines in/outside TRRs.
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the numbers of detected SVs existed between the son and the
parents. Because of the high mutation rate of TRRs Hills et al.
(2007); Hastings et al. (2009), although the abundance of TRRs
accounts for only about 10% of the human genome Benson,

(1999), a number of SVs were still detected in TRRs in the callsets
of the trio by three pipelines (PBSV 35%, Sniffles 32%, PBHoney
21%). Figure 1B shows the type distribution of all SVs detected by
each of the three pipelines. Although insertions are more difficult

FIGURE 2 | (A) The overlap among callsets detected by three pipelines divided by the type and the location relation with TRRs of SVs. (B) The overlap rate of three
pipelines. The gray part in Figure 2A shows the overlap SVs.
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to detect Zook et al. (2020), the proportions of insertions detected
by three pipelines were higher than those of deletions, except for
PBHoney in TRRs. The size distribution of SVs detected by each
of the three pipelines is provided in Supplementary Figure S2. It
was found that the number of detected SVs decreased fast as the
size of SVs increased. Insertions were generally in the majority
when the size < 1,000 bp, but the proportion of deletions
increased with the increase of size. In addition, we also
investigated the distribution of the percentage of SVs across
chromosomes for pipelines (Supplementary Figure S3).

We summed the overlap among the callsets of each person
detected by three pipelines for comparison (Figure 2). For the
SVs outside TRRs, the overlap proportion of SVs detected by
Sniffles was the highest, and close to 42% (5,643/13,419) of
insertions and 55% (6,267/11,440) of deletions can be detected
by the other two pipelines. For SVs in TRRs, when comparing
Sniffles with PBSV, about 72% ((3,846 + 628)/6,182) of insertions
and 70% ((1,786 + 1,677)/4,959) of deletions identified by Sniffles
can be detected by PBSV. However, only 628 insertions detected
by PBHoney in TRRs were involved in the callsets of PBSV and
Sniffles due to the insufficient ability of PBHoney for detecting
insertion in TRRs. It can be seen from Figure 2B that, except for
PBHoney in TRRs, the overlap rates of insertions were lower than
those of deletions. For the three pipelines, the overlap rates in
TRRs were lower than those outside TRRs, suggesting that the
difference among the callsets from different pipelines in TRRs
was large.

Evaluation on the Performance of Pipelines
The benchmark used in our study defines the comparing regions,
in which the benchmark contains close to 100% of true insertions
and deletions. Therefore, we compared the callsets detected by
three pipelines with the benchmark callset in the comparing
regions.

Figure 3 shows the proportion of benchmark SVs
concurrently detected by different number of pipelines. In the

whole benchmark callset, close to 25% of benchmark SVs outside
TRRs and 51% of benchmark SVs in TRRs cannot be discovered
by any pipeline (the bar of “0”). It suggested that SVs in TRRs
were more difficult to detect. Similarly, the proportion of
benchmark SVs concurrently detected by three pipelines in
TRRs was obviously lower than that outside TRRs (the bar of
“3”), which agreed with the overlap results among three pipelines
(Figure 2).

Using the benchmark as the golden standard, the precision,
recall and F1 score of three pipelines are shown in Figure 4. The
precisions achieved by PBSV and Sniffles were higher than 80%
both in and outside TRRs, indicating that the SVs detected by
these two pipelines were relatively precise. The precision of
PBHoney was the lowest, suggesting that more false positives
existed in the callset of PBHoney. For all the pipelines, the recalls
were under 80 and 50% outside and in TRRs, respectively. It
suggested that there were still a number of SVs omitted by the
three pipelines. The recall of insertions detected by PBHoney in
TRRs was especially low (8%), suggesting that its detection ability
of insertions in TRRs was suboptimal. For all the three pipelines,
the F1 scores in TRRs were obviously lower than those outside
TRRs, indicating the detection of SVs in TRRs was more
challenging. In addition, because the son’s SVs are inherited
from the parents, we also made comparison between the
callsets of the parents and the benchmark (Supplementary
Figure S4). The nominal precisions of the callsets of the
parents were clearly lower than those of the son mainly
because the benchmark was constructed only based on the
sequencing data of the son. It suggested that the benchmark
construction in future need to consider the diversity of the
population.

Figure 5 shows the impact of the size of SVs on the detection
ability of three pipeline. The F1 scores of PBSV and Sniffles were
relatively stable with the increase of the size of SVs. However, the
size of SVs induced a clear impact on PBHoney. Especially when
the size of SVs was more than 1,000 bp, PBHoney can hardly
detect true insertions. For all the three pipelines, the F1 scores of
large insertion detection (>1,000 bp) were obviously lower than
those of large deletion detection, suggesting that the detection for
large insertions were more challenging.

Potential Performance of Three Pipelines on
Detecting de novo Structural Variations
The mutations that only occurred in the child rather than the
parents are generally called de novo mutations (Conrad et al.,
2011; Veltman and Brunner, 2012). We calculated the rate of “de
novo” SVs by dividing the number of the SVs only detected from
the son by the number of all SVs detected from the son. As shown
in Figure 6, the “de novo” rate of Sniffles was 32%, which was
higher than that of PBSV (18%) and PBHoney (14%). These rates
were much higher than the actual de novo rate (Veltman and
Brunner, 2012). It indicated that a large number of false positive
de novo SVs existed in the callsets, which may also be attributed to
Mendelian inheritance errors Pilipenko et al. (2014); Kothiyal
et al. (2019), the false positive SVs of the son and the false negative
SVs of the parents. Our results suggested that long-read

FIGURE 3 | The proportion of benchmark SVs concurrently detected by
different number of pipelines.
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FIGURE 4 | The precision, recall and F1 of three pipelines in detecting insertions and deletions in/outside TRRs.

FIGURE 5 | The F1 of insertions and deletions divided by the size and the location relation with TRRs of SVs. The size ranges included 50–100 bp, 100–300 bp,
300–1,000 bp and > 1,000 bp.
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technologies and the detection pipelines still need further
improvement for detecting de novo SVs when applying to the
exploration of mechanisms of rare diseases. It is a considerable
challenge to reduce the false positives and false negatives in SV
detection in future study.

DISCUSSION

The relatively large size of SVs and the complex repetitive context
make SV detection challenging. Because long-read sequencing
data contain abundant context information, it can performwell in
SV detection. Therefore, we comprehensively analyzed the
performance of three commonly used long-read SV detection
pipelines. Our results showed that the overlap proportion among
the callsets of the pipelines in TRRs was generally lower than that
outside TRRs. Comparing callsets with the benchmark, the
precisions, recalls and F1 scores of these pipelines in TRRs
were obviously lower than those outside TRRs. These results
suggested that the detection of SVs in TRRs was more difficult
than that outside TRRs.

As shown in Figure 4, the F1 scores of PBSV and Sniffles were
similar, and higher than that of PBHoney. With the default
recommended parameter, preferable results can be obtained by
PBSV and Sniffles. As shown in Figure 5, the F1 scores of PBSV
and Sniffles did not change a lot with the increase of the size of
SVs except for the detection of insertions larger than 1,000 bp.
But the detection of both insertions and deletions with PBHoney
was clearly influenced by the size of SVs. In fact, as shown in
Supplementary Figure S2, it was difficult for PBHoney to detect
SVs above 4,000 bp. For PBHoney, it was necessary to make
proper settings and filter process for SVs with different types. In
addition, there were 3% of the son’s callset of PBSV and 45% of
the son’s callset of Sniffles marked with the label “IMPRECISE”,
which indicated the probably insufficient precision of SVs. These

SVs were mainly composed of insertions (95% for PBSV and 71%
for Sniffles). Interestingly, the precision of SVs tagged
“IMPRECISE” in PBSV was really low (15%), but for Sniffles,
the precision was still high (81%), which meant there was no need
to filter these SVs in Sniffles.

In our study, we selected SVs (≥ 50 bp) from the benchmark
for comparison. If more variations was selected, such as using the
cutoff of variations ≥ 30 bp, it would lead to higher precision and
lower recall (Kosugi et al., 2019). Our results showed that, even
with high precision, no pipeline can achieve very high recall in SV
detection. Therefore, it is necessary to integrate different pipelines
for generating a comprehensive callset. Integrating Sniffles and
PBHoney, NextSV Fang et al. (2018) had been developed to detect
SVs from low-coverage long-read sequencing data and achieved
better performance than a single pipeline. In addition, a pipeline
with multiple algorithms can be developed to optimize and
simplify the procession of SV detection.

Previous studies have found that long-read sequencing can
identify pathogenic SVs of rare genetic diseases which cannot be
identified by short-read sequencing, such as the pathogenic SVs
of Carney complex Merker et al. (2018) and progressive
myoclonic epilepsy (Mizuguchi et al., 2019). In the study of
Carney complex, the pathogenic SV was identified by pipeline
detection followed by manual screening and analysis. Since the
SV was not detected from the parents, the pathogenic SV was also
proved to be a de novo SV. However, it was difficult to identify
pathogenic SVs from “de novo” SVs using long-read sequencing.
It is known that the number of de novo mutations in heredity is
very small (Conrad et al., 2011; Veltman and Brunner, 2012). But
compared with the number of de novo single-nucleotide
variations detected from short-read data Liang et al. (2019),
the number of “de novo” SVs detected from long-read data
was too large. And the precision was too high when
comparing the “de novo” SVs with the benchmark
(Supplementary Figure S5). Therefore, these SVs cannot be
simply regarded as true de novo SVs. In order to analyze true
de novo SVs, more true SVs need to be detected from parents. As
shown in Figure 1A, in each pipeline, the numbers of SVs of the
parents were obviously smaller than that of the son due to the
lower coverages of the parents. It suggested that the sequencing
coverages of the trio need to be ensured. Also, for high precision
and recall of the detection of de novo SVs, the precision and recall
of SV detection pipelines still need to be improved.

CONCLUSION

In this study, we thoroughly compared three commonly used SV
detection pipelines and found that the precisions of PBSV and
Sniffles were generally similar, and higher than PBHoney. The
recalls of the three pipelines were still suboptimal. The
performances of PBSV and Sniffles were relatively stable with
the increase of the size of SVs, while the performance of PBHoney
varied largely. The performances of the three pipelines in TRRs
were obviously lower than those outside TRRs, indicating that SV
detection in TRRs was more difficult. Comparing insertions with
deletions, the detection of large insertions was obviously more

FIGURE 6 | The “de novo” rate in the callsets of three pipelines in and
outside TRRs.
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difficult than that of large deletions. Our findings can be helpful
for conducting the SV detection in the mechanism exploration of
rare diseases.
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