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China, 3J/'angxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science,
Nanchang, China, “Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Nanchang University,
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Background: The myocardium is susceptible to lipopolysaccharide (LPS)-induced
damage in sepsis, and cardiac dysfunction is a leading cause of mortality in patients
with sepsis. The changes in cardiomyocyte autophagy in sepsis and the effects and
mechanism of action of capsaicin (Cap) remain unclear.

Methods and Results: The potential pathway of 14-3-3y-dependent autophagy and the
effects and mechanisms of Cap were studied in LPS-induced injury to primary cultured
neonatal rat cardiomyocytes. The results showed that cardiomyocyte viability decreased,
lactate dehydrogenase and creatine kinase activities increased, 14-3-3y expression was
downregulated, and autophagy was inhibited after LPS challenge. Cap pretreatment
augmented autophagy by upregulating 14-3-3y expression and activating AMP-activated
protein kinase (AMPK) and unc-51 like autophagy-activating kinase 1 (ULK1), suppressing
mammalian target of rapamycin (MTOR), alleviating cardiac dysfunction and improving the
inflammation response, whereas pAD/14-3-3y-shRNA nullified the above effects. Cap
pretreatment also decreased the levels of IL-1B, TNF-a, IL-6, and IL-10; suppressed
intracellular oxidative stress; reduced the intracellular/mitochondrial reactive oxygen
species (ROS); balanced GSH/GSSG; increased GSH-Px, catalase, and SOD
activities; and decreased MDA contents. It also increased ATP content, activated
complex | and complex lll, stabilized the mitochondrial membrane potential, and
decreased the mitochondrial permeability transition pore opening, thereby improving
mitochondrial function.

Abbreviations: AMPK, AMP-activated protein kinase; BafA, Bafilomycin Al; Cap, Capsaicin; CK, creatine phosphate kinase;
DHE, dihydroethidium; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; MDC, dansylcadaverine; mTOR, mammalian
targets of rapamycin; MMP, mitochondrial membrane potential; mPTP, mitochondrial permeability transition pore; mtROS,
mitochondrial ROS; NDUFB8, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8; NRCMs, neonatal rat
cardiomyocytes; NS, nonsignificant; ROS, reactive oxygen species; ULK1, Unc-51 like- autophagy-activating kinase 1;
UQCRC?2, cytochrome b-c1 complex subunit 2.
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Capsaicin protects cardiomyocytes against LPS-injury

Conclusion: Pretreatment with Cap can regulate autophagy by upregulating 14-3-3y
expression, inhibiting oxidative stress and inflammation, maintaining mitochondrial
function, and protecting cardiomyocytes against LPS-induced injury.

Keywords: 14-3-3y, Autophagy, Cardiac dysfunction, Capsaicin, lipopolysaccharide, Mitochondria

INTRODUCTION

Sepsis is characterized by high mortality in intensive care units
(Angus et al., 2006; Schorr et al., 2014). Lipopolysaccharide (LPS),
an essential component of the gram-negative bacterial outer
membrane, is recognized as the leading cause of multi-organ
failure in sepsis (Tsiotou et al, 2005; Zanotti-Cavazzoni
Hollenberg, 2009). LPS-induced sepsis occurs due to excessive
release of inflammatory cytokines, overproduction of oxygen
radicals, and mitochondrial dysfunction, and it is a major
contributor to cardiac dysfunction (Li et al., 2016; Okuhara
et al, 2017; Liu et al, 2019). Mitochondria in cardiomyocytes
not only generate ATP but also modulate oxidative stress,
signaling, and cell fate (Kolwicz et al., 2013). Mitochondrial
impairment is correlated with overproducing intracellular/
mitochondrial  reactive  oxygen species (ROS) and
inflammatory responses during LPS-induced sepsis in
cardiomyocytes (Zang et al., 2007; Zang et al., 2010; Sun et al,
2018).

Accumulating studies indicated that organelles damaged by
LPS-induced sepsis (such as mitochondria) were cleared by the
activation of autophagy (Hsiao et al., 2012; Lin et al, 2014).
Autophagy protects cardiomyocytes during LPS-induced sepsis
by activating AMP-activated protein kinase (AMPK) pathways
(Nishida et al, 2009). AMPK is a central energy sensor in
eukaryotes that responds to disequilibrium of AMP/ADP (Lee
et al., 2010; Roach, 2011). Besides, 14-3-3 proteins are evidence
that it interacts directly or indirectly with multiple molecules,
including AMPK, mammalian targets of rapamycin (mTOR), and
Unc-51-like autophagy activating kinase 1 (ULK1), to regulate
the autophagy process (Ma et al., 2012). 14-3-3y, an isoform of
the 14-3-3 protein family, was demonstrated in our previous
studies to offer a cardioprotective role in response to LPS-induced
cardiotoxicity (He et al, 2006; Liu et al., 2014; Huang et al,
2018a). However, the specific mechanism of 14-3-3y-dependent
autophagy remained unclear and further exploration in in
cardiomyocyte LPS-induced sepsis was needed.

Several studies have confirmed many pharmacological agents
as potential preconditioning strategies to prevent myocardial
injury (Hausenloy and Yellon, 2011). Our previous studies
suggested that pretreatment with astragaloside IV or
tanshinone IlA could elicit similar protective effects as
ischemic preconditioning against anoxia/reoxygenation (A/R)-
induced cardiomyocyte injury (Zhang et al., 2018; Luo et al,
2019). Capsaicin (Cap) targets multiple pathways and possesses
many pharmacological properties, including antimicrobial,
analgesic, antiinflammation and antioxidant (Sun et al.,, 2015;
Fernandes et al., 2016; Gerber et al., 2019). In our previous study,
pretreatment with Cap improved cardiac function via 14-3-3n or
SIRT1/Bcl2 following A/R injury (He et al., 2017; Huang et al,,

2018a; Qiao et al., 2020). However, the effect of Cap pretreatment
on LPS-induced cardiotoxicity remains unclear. Here, we used
the LPS-induced sepsis model in neonatal rat cardiomyocytes
(NRCMs), to explore (1) the role of Cap during 14-3-3y-related
autophagy process via the AMPK-mTOR/ULK1 pathway in LPS-
challenged cardiomyocytes; (2) the effects of Cap in LPS-induced
cardiotoxicity via regulating inflammatory cytokine release,
oxidative stress, and mitochondrial dysfunction.

MATERIALS AND METHODS

Materials

The following reagents were purchased: LPS, from Sigma-Aldrich
(St. Louis, MO, USA); Cap (purity > 98%), from the National
Institutes for Food and Drug Control (Beijing, China); adenovirus
pAD/14-3-3y-shRNA, from Gene Chem Co., Ltd (Shanghai,
China); bafilomycin Al (BafAl) and compound C, from
Sigma-Aldrich (St. Louis, MO, USA); antibodies against 14-3-
3y, P62, NADH dehydrogenase [ubiquinone] 1 beta subcomplex
subunit 8 (NDUFB8) and cytochrome b-c1 complex subunit 2
(UQCRC2), from Abcam (Cambridge, UK). Anti-LC3, -AMPKa,
-phospho-AMPK  (phosphorylation at Serl72), -mTOR,
-phospho-mTOR  (phosphorylation at Ser2448), -ULKI,
-phospho-ULK1 (phosphorylation at Ser757) antibodies, from
Cell Signaling Technology (Beverly, MA, USA), and horseradish
peroxidase-conjugated IgG secondary antibody, from Zsbio
(Beijing, China).

Primary culture of neonatal rat
cardiomyocytes (NRCMs) and adenoviral

infection equations
All experimental procedures were performed according to the
Guide for the Care and Use of Laboratory Animals published by
the US National Institutes of Health (NIH Publication no. 85-23,
revised 1996) and approved by the Ethics Committee of
Nanchang University (No. 2019-0036). The NRCMs from
0-3 days-old Sprague-Dawley rats (the Animal Center of
Nanchang University, Nanchang, China) were prepared as
previously published (He et al., 2017). Cardiomyocytes were
cultured in high-glucose Dulbecco’s modified Eagle medium
(DMEM, Gibco-BRL, Grand Island, NY, USA) supplemented
with 20% fetal bovine serum (FBS, Gibco-BRL), 100 U/ml of
penicillin and streptomycin, and 1% bromodeoxyuridine (Brdu,
Solarbio Science & Technology, Beijing, China), and incubated in
a95% air and 5% CO, humidified atmosphere incubator at 37 °C.
Cardiomyocytes were infected by adenovirus pAD/14-3-3y-
shRNA and infection efficiency was approximately 85% after 48 h
(Qiao et al.,, 2020). Before conducting subsequent experiments,
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the transfected cardiomyocytes were cultured in 95% O, and 5%
CO, for 12h at 37°C.

Experimental grouping and reagent

treatment

Phase A

First, we investigated whether Cap could protect cardiomyocytes
against LPS-induced injury. Cardiomyocytes were randomly
distributed into four groups: LPS, Cap, pAD/14-3-3y-shRNA,
and control. Cells in the control group were cultured in a
complete medium throughout the experiments. LPS grouped-
cardiomyocytes were treated with 1 mg/L LPS for 24 h (Liu et al,,
2014; Huang et al., 2018a). Then, the cells in the Cap group were
pretreated with 5, 10, 20, 40, 80 uM Cap for 12 h, placed in the
fresh culture medium, and then exposed to 1 mg/L LPS for 24 h.
Cardiomyocytes in the pAD/14-3-3y-shRNA group were treated
with pAD/14-3-3y-shRNA for 12 h before Cap pretreatment. Cell
viability, LDH and CK activities, and 14-3-3y expression were
determined after processing.

Phase B

Next, we examined the changes in autophagy in LPS-induced
cardiomyocyte injury and the effects of Cap on these changes.
Cardiomyocytes were cotreated with or without 100 nM
BafAl, an autophagy inhibitor (Mauthe et al., 2018), and
LPS for 24h. The expression of LC3 and P62 were
determined after processing. After, cardiomyocytes were
pretreated with 10pM Cap for 12h according to the
method of phase A before LPS treatment. Cardiomyocytes
in the control, LPS, and pAD/14-3-3y-shRNA group were
treated according to phase A. The expressions of 14-3-3y,
LC3, and P62, along with autolysosome contents were
determined again after processing.

Phase C

Furthermore, we explored the role of the AMPKo/mTOR
signaling pathway in LPS-induced cardiomyocyte injury.
Cardiomyocytes were randomly distributed into four groups:
control, LPS, compound C, and Cap. Cardiomyocytes in the
control, LPS, and Cap groups were treated similarly as mentioned
above. Cardiomyocytes in the compound C group were
coincubated with 5uM compound C (AMPK inhibitor,
Dasgupta and Seibel, 2018) and 10 uM Cap for 12 h according
to phase A before LPS treatment. The expressions of 14-3-3y,
LC3, P62, AMPKa, AMPK phospho-Ser172, mTOR, mTOR
phospho-Ser2448, ULK1, and ULK1 phospho-Ser757 were
then determined .

Phase D

Finally, we studied how LPS disrupts intracellular redox
equilibrium and cytokines and impairs mitochondrial function.
In brief, the control, LPS, Cap, and pAD/14-3-3y-shRNA group
were treated as in phase A. Intracellular/mitochondrial ROS, the
activities of GSH-Px, SOD, catalase, MDA, and ATP levels, GSH/
GSSG ratio, cytokine (IL-1B, TNF-a, IL-6, IL-10) contents,
mitochondrial membrane potential (MMP), and mitochondrial
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permeability transition pore (mPTP) opening were determined at
the end of experiments.

Measurement of cell viability and

biochemical parameters

Cell viability was measured using a commercially available
kit (CCK-8, TransGen Biotech, Beijing, China). In brief, cells
were cultured in 96-well plates at a density of 3x 107 cells/
well and treated as in phase A. Then, we added the
tetrazolium salt WST-8 to the medium at a certain ratio
incubated for 1-2h at 37 °C, and measured the number of
viable cells using a microplate reader (Bio-Rad 680,
Hercules, CA, USA).

The culture medium was collected after LPS challenge to
examine lactate dehydrogenase (LDH) and creatine phosphate
kinase (CK) activities using commercially available kits
(Jiancheng, Nanjing, China, Qiao et al., 2020).

Measurements of inflammatory cytokines
The culture medium was collected after LPS challenge and
centrifuged for 10 min at 3000 rpm, and the inflammatory
cytokine (IL-1P, TNF-q, IL-6, and IL-10) levels were measured
by enzyme-linked immunosorbent assay (ELISA) (BestBio,
Shanghai, China).

Measurements of intracellular/
mitochondrial ROS

Intracellular/mitochondrial ROS levels were detected using the
oxidation-sensitive probe (DCFH-DA or Mito-SOX) as
previously described (Zuo et al, 2018). After treatment as in
phase A, cardiomyocytes were harvested and incubated with
DCFH-DA (Beyotime, Shanghai, China) or Mito-SOX
(Invitrogen™ Oregon, USA) in the dark at 37°C. Then,
fluorescence was detected by a flow cytometer (Beckman
Coulter, Brea, CA, USA).

Moreover, intracellular/mitochondrial ROS intensity was
observed wunder a fluorescence microscope (x100
magnification, Olympus, Japan). In brief, cells were
seeded in 24-well plates at a density of 1x10* cells/
coverslip, then washed with prewarmed PBS and
incubated with the fluorescence dye dihydroethidium
(DHE, BestBio, Shanghai, China) or Mito-SOX in the
dark at 37 °C.

Measurement of endogenous antioxidant
enzyme activities and glutathione (GSH) and
glutathione disulfide (GSSG)

The endogenous antioxidant enzyme activities, including
glutathione peroxidase (GSH-Px), superoxide dismutase
(SOD), and catalase; levels of malondialdehyde (MDA)
(Jiancheng, Nanjing, China); and contents of the
nonenzymatic antioxidant system (GSH, GSSG, and GSH/
GSSG ratio; Beyotime, Shanghai, China) were detected by
spectrophotometry, respectively (Chen et al., 2020; Qiao et al,
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2020). Cells were lysed after treatment as in phase A, and the
supernatant was collected and examined based on manufacturer
instructions of commercial kits.

Dansylcadaverine (MDC) and LysoTracker
Red Staining

Cells were seeded in 24-well plates at a density of 1x10* cells/
coverslip and treated as described in phase A. Then,
cardiomyocytes were washed with prewarmed PBS and
incubated with fluorescence dye MDC (Beyotime,
Shanghai, China) or LysoTracker Red DND-99
(Invitrogen™, Oregon, USA) in darkness for 30 min at
37 °C. After that, images were captured by a fluorescence
microscope (Olympus, Japan).

Western blotting

Proteins were extracted by a protein extraction kit
(Applygen Technologies Inc, Beijing, China), and
quantified by a bicinchoninic acid (BCA) protein assay
kit (Thermo Fisher, Massachusetts, USA). Equal amounts
of protein (30 ug) were separated by SDS-PAGE and later
transferred to a polyvinylidene fluoride (PVDF) membrane.
The PVDF membrane was then blocked with 5% bull serum
albumin, and subsequently incubated with primary
antibodies (14-3-3p, LC3, P62, AMPKa, p-AMPKa,
mTOR, p-mTOR, ULKI1, p-ULK1l, NDUFB8, UQCRC2,
and pP-actin) overnight at 4°C. The membranes were
blotted with horseradish peroxidase conjugated secondary
antibody and  immersed with an  enhanced-
chemiluminescence substrate. Finally, protein bands were
imaged and analyzed with the Quantity One software (Bio-
Rad, USA, Qiao et al., 2020).

ATP production

Intercellular ATP levels were measured using an Enhanced
ATP Assay Kit (Beyotime, Shanghai, China). Cells were
lysed and the supernatant was collected. It was then
added to a detecting solution in a lightproof 96-well plate
and incubated for 5 min at 25 °C. Total cellular ATP levels
were determined from real-time luminescence signals and
were normalized to the protein concentrations (Li et al.,
2017).

Measurement of MMP and mPTPs

openness
MMP was detected by Fluorescent probe JC-1 (BestBio, Shanghai,
China). Briefly, cells were harvested by trypsin without EDTA
and incubated with JC-1 in the dark for 30 min at 37 °C. Then,
cells were suspended in an incubation buffer and MMP measured
by flow cytometer (Beckman Coulter, Brea, CA, USA) at 530/
580 nm (red) and 485/530 nm (green). The ratio of Red:green
fluorescence intensity represents the MMP level (Qiao et al,
2020).

The mPTP opening was examined as described previously
(He et al., 2020). The carmidiocyte mitochondria were isolated

Capsaicin protects cardiomyocytes against LPS-injury

using a mitochondrial isolation kit (Thermo Fisher,
Massachusetts, USA). Afterward, fractions were resuspended
in 160 pul swelling buffer (KCl 120 mM, Tris-HCl 10 mM,
MOPS 20 mM, KH,PO, 5mM), the suspensions plated onto
a 96-well microtiter plate and florescence measured at 520 nm.
Then, we added a 40-pl CaCl, solution (200 nM) to stimulate
the mPTP openings. The absorbance values were calculated per
minute at 520 nm until the trends stabilized. The degree of
mPTP openness were determined by the extent of changes at
520 nm.

Statistical Analysis

All experiments values were represented as Mean + S.E.M., and
tested by one-way ANOVA, the differences of biochemical data
between each group were further tested by Tukey’s honestly
significant difference test. P < 0.05 was considered to be
statistically significant.

RESULTS

Cap protects cardiomyocytes by
upregulating 14-3-3y expression against
LPS challenge

Cardiomyocytes were pretreated with Cap (0 uM-80 uM) for 12 h
and again coincubated with 1 mg/L LPS for 24 h. Cap caused a
concentration-dependent increase in cell viability and decrease in
LDH activity; the optimal concentration of Cap was 10 uM
(Figures 1A,B). Cap increased cell viability and inhibited the
leakage of LDH and CK in response to LPS-induced injury
significantly (P < 0.01); however, these positive effects were
nullified by pAD/14-3-3y-shRNA (P < 0.01, Figures 1C-E).
Besides, 14-3-3y expression was significantly decreased in the
LPS group compared to that in the control group (P < 0.01),
whereas Cap upregulated 14-3-3y expression (P < 0.01,
Figure 1F).

Together, these data indicated that LPS toxicity could
downregulate 14-3-3y expression and trigger cardiomyocyte
injury, but pretreatment with Cap could upregulate the 14-3-
3y protein and alter the cell viability plus LDH and CK activities
to protect cardiomyocytes.

Cap activates cardiomyocyte autophagy
against LPS-induced injury

Previous studies documented the role of autophagy in LPS-
induced cardiac injury (Sun et al., 2018; Huang et al., 2020).
The levels of LC3ll, an indicator of autophagy levels, and the
expression of P62, an autophagic substrate protein (Ma et al.,
2012), were increased (P < 0.01) and decreased (P < 0.01),
respectively, after LPS challenge (Figure 2A). To identify
LC3Il changes, which reflected as the increase in autophagy
levels rather than the impairment of autophagic flux,
cardiomyocytes were treated with BafAl-an inhibitor that
blocks the alternation of autophagosomes to autolysosomes
(Yamamoto et al., 1998). Figure 2A showed that BafAl
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FIGURE 1| Cap protects cardiomyocytes by upregulating 14-3-3y levels after LPS challenge. (A) and (B) Cap presented a concentration-dependent effect on cell
viability and LDH activity against LPS-induced cardiomyocyte injury. (C) Cap increased cell viability, and cotreatment with pAD/14-3-3y-shRNA nullified Cap effects after
LPS challenge. (D) and (E) LDH and CK activity in culture medium. (F) The representative western blot bands and the relative band intensity of 14-3-3y expression in
cardiomyocytes. Values are presented as mean + SEM. For five individual experiments, a: P<0.01 vs. the control group; b: P<0.01 vs. the LPS group; c: P<0.01 vs.
the Cap+LPS group.

induced an increase in LC3Il and P62 levels in the control and
LPS group.

Unlike in the LPS group, pretreatment with Cap led to
significant LC3Il accumulation (P < 0.01) and P62 (P < 0.05)
led to the reverse; however, these responses were nullified by
pAD/14-3-3y-shRNA (Figures-E).

Furthermore, the acidotropic dyes can stain intracellular acid
compartments. MDC is used in labeling early autophagosomes

(Bampton et al., 2005; Wang et al., 2020) and Lyso Tracker Red is
a marker for the later stages of autophagy (Scott et al., 2004). As
illustrated in Figure 2F, MDC-specific dots (green) and
autolysosome signals (red) were detected after LPS challenge,
and both fluorescence intensities were significantly enhanced
with Cap pretreatment. Moreover, coincubation with pAD/14-
3-3y-shRNA reduced the green and red dots. These results
corroborate the above the data on LC3Il and P62 expression.
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FIGURE 4 | Cap inhibits the activation of inflammatory cytokines in LPS- challenged cardiomyocytes. (A-D) IL-1p, TNF-a, IL-6, and IL-10 were measured in the
culture supernatant of cardiomyocytes by diversiform ELISA assays. Values are presented as mean + SEM. For five individual experiments, a: P<0.01 vs. the control

Taken together, these results indicated that LPS induced an
accumulation of LC3Il to active autophagy; pretreatment with
Cap could further enhance the autophagic flux to scavenge the
misfolded proteins and dysfunctional cellular components.
Conversely, these protective effects were nullified by
coincubation with pAD/14-3-3y-shRNA.

Cap upregulates 14-3-3y and integrates
AMPKa/mTOR pathway against
LPS-induced injury
The 14-3-3 protein influences the autophagy process (Lee et al.,
2020). We investigated the underlying molecular pathway
involved in 14-3-3y regulation of autophagic levels. As shown
in Figures 3A-D, compared with the LPS group, pretreatment
with Cap significantly increased 14-3-3y (P < 0.01) and LC3Il (P <
0.01) expression, but decreased P62 (P < 0.05) expression.
Interestingly, cotreatment with Cap and Compound C, an
inhibitor of AMPK, upregulated 14-3-3y (NS, nonsignificant
vs. Cap+LPS), increased P62 expression (P < 0.01 vs.
Cap+LPS), but reduced LC3Il (P < 0.01 vs. Cap+LPS) after
LPS challenge, indicating that the effects of 14-3-3y
upregulation by Cap during LPS-mediated autophagy might be
related to AMPK.

Then, we examined changes in the expressions of AMPKa,
mTOR, a common negative factor of autophagy (Kim and Guan,

2015), and ULK1. The p-AMPK/AMPKa and p-ULK1/ULK1
ratio in the Cap-pretreated cardiomyocytes were higher than in
the LPS group (P < 0.01, Figures 3E,F,H), while p-mTOR
expression was lower than that in the LPS group (P < 0.01,
Figures 3E,G). Conversely, active phosphorylation sites of
AMPK and ULKI, plus mTOR levels were reversed by
Compound C addition.

These results demonstrated that Cap pretreatment involved a
positive adjustment in autophagy level by upregulating 14-3-3y,
AMPK, and ULK1 levels, and suppressing mTOR expression. The
results also demonstrated that the underlying mechanism of 14-
3-3y-dependent autophagy might be related with AMPK activity
after LPS-induced cardiomyocyte injury.

Cap inhibits the activation of inflammatory
cytokines in LPS-challenged

cardiomyocytes

As an important index of LPS-induced damage (Schwerd et al.,
2017), cytokine activities in cardiomyocytes were measured by
ELISA (Figure 4). Contrasted with normal cardiomyocytes, IL-
1B, TNF-a, IL-6, and IL-10 levels were significantly increased
after LPS-induced injury (P < 0.01), but this index levels declined
significantly with Cap pretreatment (P < 0.01). In contrast, the
protective effects of Cap were weakened by adding pAD/14-3-3y-
shRNA (P < 0.01).
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FIGURE 5 | Cap decreases Intracellular/mitochondrial ROS generation in cardiomyocytes injured after LPS challenge. (A) DCF-DA indicated intracellular ROS
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These results were consistent with Cap protecting
cardiomyocytes from LPS-induced sepsis by upregulating 14-3-
3y expression.

Cap inhibits oxidative stress in injured

cardiomyocytes after LPS challenge

Accumulating studies demonstrated that excessive ROS
generation could induce cardiac inflammation following LPS
challenge (Suzuki et al., 2012; Zhao et al., 2016). Intracellular/
mitochondrial ROS were detected by flow cytometry and
fluorescence microscopy. As shown in Figures 5A,B, after
adding LPS 24 h, the intracellular/ mitochondrial ROS curve
moved significantly toward the right and the peak value was
progressively enhanced (P < 0.01), while the change was inverted
with Cap pretreatment (P < 0.01). The addition of pAD/14-3-3y-
shRNA nullified the protective effect of Cap (P < 0.01). Consistent
with the results above, in LPS-challenged cardiomycetes, intense
fluorescent dots were observed under fluorescence microscopy

using DHE or Mito-SOX, but pretreatment with Cap reduced the
fluorescence intensity (Figures 5C-E).

To confirm the change of oxidative status in cardiomyocytes,
we examined the activities of endogenous antioxidant enzymes
(GSH-Px, SOD, and catalase), lipid metabolite content (MDA),
and non-enzymatic antioxidant system levels (GSH, GSSG and
GSH/GSSG). Contrasted with the control group, the activities of
GSH-Px, SOD and catalase exhibited a sharp decline while
MDA contentshowed a progressive increase in the LPS-
treated group (P < 0.01, FiguresA-D). Pretreatment with
Cap reversed these indices to scavenge oxygen radicals in the
cardiomyocytes, but the mentioned beneficial effects on the
cardiomyocytes were offset after deregulating 14-3-3y
expression. Moreover, GSH and GSH/GSSG decreased, while
GSSG exhibited the reverse trend after LPS-induced toxic effects
(P < 0.01, Figure 6E). Pretreatment with Cap could protect the
cardiomyocytes from LPS-induced damage by excessive oxygen
species, but pAD/14-3-3y-shRNA addition could aggravate the
damage induced by LPS.
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These data demonstrated that LPS generated excessive ROS
and decreased the scavenging of oxygen radicals. However,
pretreatment with Cap could protect the cardiomyocytes from
reducing oxidative stress by upregulating 14-3-3y expression.

Cap maintains mitochondrial function by
regulating mitochondrial bioenergetics in

cardiomyocytes after LPS challenge

Studies have suggested that mitochondrial dysfunction via LPS
toxicity triggers cardiomyocytes damage (Zhou et al, 2011; Liu
et al,, 2018). The expression of NDUFB8 and UQCRC2 can reflect
mt complex l/Ill activities. Comparison of NDUFB8 or UQCRC2
expression between the control and LPS groups (Figures 7A-C)
revealed that NDUFB8 (P < 0.05) and UQCRC2 (P < 0.01)
expressions were decreased after LPS challenge, indicating an
impairment of the mitochondrial electron transport chain (ETC)
following LPS-induced injury. Meanwhile, LPS induced a significant
decrease in ATP levels (P < 0.01, Figure 7D). Pretreatment with Cap
upregulated NDUFB8 and UQCRC2 (P < 0.01, Figures 7B,C), and
restored ATP levels (P < 0.01), but these positive effects were
nullified by adding pAD/14-3-3y- shRNA.

The alternation of MMP and mPTP opening served as
biological markers for the mitochondrial function (Dai et al,
2020; Kinnally et al., 2011). The ratio of red/green fluorescence
represents the degree of MMP oscillation in cells. Compared with
the control group, the decline in the red/green ratio reflected a
loss of MMP in the LPS group, whereas Cap-pretreatment
restored the cardiomyocytes from MMP loss (P < 0.01,
Figure 7E). Additionally, Figure 7F shows that the mPTP
opening was activated following LPS challenge unlike in the
control group (P < 0.01); however, pretreatment with Cap
presented a steady downward trend (P < 0.05). The above
protective effects could be blunted when 14-3-3y expression
was significantly reduced using pAD/14-3-3y-shRNA.

From these results, we discovered that LPS-induced

toxicity could trigger mitochondrial damage in the
cardiomyocytes. Nevertheless, pretreatment with Cap
effectively improved the mitochondrial function by

upregulating the 14-3-3y protein.

DISCUSSION

The study explored whether (i) upregulating 14-3-3y via Cap
pretreatment contributed to autophagy via the AMPK-mTOR/
ULK1 pathway against LPS-induced sepsis to myocardial injury (ii)
Cap protected cardiomyocytes from LPS-induced inflammation,
excessive oxidative stress, and mitochondrial dysfunction.
Accumulating studies indicated that LPS triggered cellular damage,
especially in cardiomyocytes (Drosatos et al., 2013; Beesley et al., 2018).
Here, we found that cell viability was significantly decreased and the
LDH and CK activities were increased following LPS stimulation
(Figures 1C-E). Interestingly, Cap presented a concentration-
dependent increase to protect cardiomyocytes in response to LPS-
induced cardiotoxicity (Figures 1A,B), indicating a beneficial role in
cardiomyocytes following damage.

Capsaicin protects cardiomyocytes against LPS-injury

Our previous studies have demonstrated that Cap has multiple
targets, including 14-3-3n and SIRT1, by which it protects
cardiomyocytes against anoxia/reoxygenation-induced damage
(Qiao et al,, 2020; Huang et al., 2018a; He et al., 2017). In the
study, Cap-mediated positive effects on cardiomyocytes were
related to 14-3-3y expression after LPS-induced injury
(Figures 1-7). 14-3-3y (an isoform of the 14-3-3 family
proteins in mammals) was evidenced by its involvement in
variable cellular processes, for example cell proliferation
(Kumar et al, 2003), survival (Masters et al., 2002) and
apoptosis (Zha et al., 1996). In the previously published work,
we focused on 14-3-3y/Bcl-2-mediated apoptotic pathway
regulation in cardiomyocytes or human umbilical vein
endothelial cells (HUVECs) against LPS or doxorubicin toxicity
(He et al., 2006; Liu et al., 2014; Huang et al., 2018b; Yang et al.,
2019). The specific mechanism of 14-3-3y upregulation via Cap
pretreatment remained unclear, as well as the effects by other
programmed cell death pathways in cardiomyocytes after LPS-
induced injury were also worth studying.

Autophagy-dependent cell death, which is driven by
autophagy-related genes, significantly affects LPS-induced
cardiotoxicity and  ischemia/reperfusion-induced injury in
cardiomyocytes (Ma et al, 2012; Tang et al, 2019; Di et al,
2020). In this study, the level of LC3Il increased and P62
presented reversed trend in cardiomyocytes following the LPS
challenge. Besides, after coincubation with BafAl, LC3Il and P62
levels were significantly improved, indicating that LPS treatment
could trigger a low level of autophagy instead of impairment in
autophagic flux (Figure 2A). Previous studies have suggested that
activation of autophagy could contribute to suppressing LPS-
induced cell toxicity (Sun et al, 2018; Quach et al, 2019; Wu
et al, 2020), autophagy influences the clearance of damaged
proteins and organelles (Yang and Klionsky, 2010). After
pretreatment with Cap, LC3Il was significantly increased and P62
degradation was declined (Figures 2B-E). Furthermore,
autophagosomes, autolysosomes, and lysosomes were increased in
Cap-pretreated cardiomyocytes (Figure 2F). These results correlated
with the above data and suggested that Cap-mediated protection
effects on cardiomyocytes might be related to activating autophagy.

AMPK is a well-known energy sensor in eukaryotes (de Pablos
et al, 2019; Mihaylova and Shaw, 2011), and is also a key
regulator in multiple cellular processes, such as ferroptosis
(Lee et al., 2020), pyroptosis (He et al., 2016), and autophagy
(Wang et al, 2018). Interestingly, our study showed that
upregulating 14-3-3y by Cap pretreatment could accumulate
the markers of autophagy, however, the level of autophagy was
significantly reduced when AMPK was inhibited by cotreatment
with Compound C (Figures 3A-D). These results indicated that
the effect of Cap in activating autophagy might be mediated via
the AMPK pathway in cardiomyocytes following LPS challenge.
AMPXK-caused induction of autophagy may be partially related to
mTOR and ULK1 (Ghavami et al., 2014). In detail, AMPK could
promote 14-3-3 protein binding to Raptor (an effector of mTOR),
which is needed for inhibiting mTOR activity (Meijer and
Codogno, 2007). Moreover, evidence showed that the 14-3-3
protein was recruited to interfere with ULK1-mTOR binding by
activating AMPK (Gwinn et al., 2008; Lee et al., 2010). Our results
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FIGURE 8 | Diagram showing the possible mechanism by which Cap
alleviates LPS-induced cardiotoxicity. LPS-induced cardiotoxicity was
manifested in activating inflammatory cytokines, producing excess oxygen
radicals, and causing mitochondrial damage. The negative effects of

LPS on cardiomyocytes are reversed by Cap, and the underlying mechanism
may be involved in Cap-mediated 14-3-3y expression and autophagy
regulation via the AMPK-mTOR/ULK1 pathway.

showed that AMPK and ULKI1 were activated, but mTOR
activation was suppressed in the pretreatment with the Cap
group after LPS-induced toxicity. Conversely, these beneficial
effects of Cap-pretreatment were offset by adding Compound C
(Figures 3E-H). These data suggested that the potential
mechanism of 14-3-3y action on AMPK involves suppression
of mTOR and activation of ULK1. Thus, these consistent results
indicated a positive feedback during the autophagy process in
LPS-damaged cardiomyocytes by Cap pretreatment.

LPS is a known stimulator in the systemic inflammatory
mechanism of sepsis (Fu et al, 2015), LPS-triggered ROS
generation, and the release of inflammatory cytokines, such as
IL-1B, TNF-q, IL-6, and IL-10 (Ceni et al., 2014). Some studies
have confirmed that 14-3-3 proteins could regulate the
inflammatory response at the genetic, molecular, and cellular
levels (Munier et al., 2021; McGowan et al., 2020). Cap could also
inhibit inflammatory process though TRPVI1-dependent or
TRPV1-independent mechanisms (Fernandes et al, 2016;
Braga Ferreira, et al., 2020; Ilie et al, 2019). Here, cytokine
release was significantly increased in cardiomyocytes after LPS
stimulation, while the high levels of IL-1p, TNF-q, IL-6, and IL-10
in the LPS group were reversed by Cap pretreatment; however,
these positive changes were nullified after adding pAD/14-3-3y-
shRNA (Figure 4). Hence, our results suggested that pretreatment
with Cap could alleviate inflammation by upregulating 14-3-3y in
LPS-stimulated cardiomyocytes. Moreover, autophagy plays a key
role in controlling inflammation and maintaining cardiomyocyte
homeostasis (Turdi et al., 2012; Zhou et al., 2018). Our findings

Capsaicin protects cardiomyocytes against LPS-injury

were consistent with the above alternations of autophagy, likely
because temperate activation of autophagy could scavenge
damaged organelles of cardiomyocytes, which might be related
to the generation of inflammatory signals. Certainly, the specific
mechanism needs to be explored further.

Sepsis-induced cardiac inflammation is regulated via ROS-
dependent activation (Chen et al., 2015). Our previous studies
have proven that excessive ROS generation was responsible for
doxorubicin-induced endotheliotoxicity and cardiotoxicity (He
etal., 2020; Qiao et al., 2020). In this study, we explored the role
of intracellular ROS in the LPS-stimulated cardiomyocytes. We
found that intracellular ROS generation was enhanced in the
LPS group (Figure 5A). Moreover, DHE, a common fluorescent
probe was used to detect oxygen radicals in cardiovascular
systems (Griendling et al., 2016): strong fluorescent dots were
observed in the LPS group (Figures 5C,D). These changes
coincided with the above results. Additionally, the
endogenous antioxidant enzyme system including GSH-Px,
SOD, catalase, and MDA, is the mechanism of defense
against internal oxidative stress (Prasai et al., 2018). Our
results showed that GSH-Px, SOD, and catalase activities
were inhibited, and MDA content was increased in the
cardiomyocytes after LPS injury (Figures 6A-D). The GSH/
GSSG ratio maintains the redox equilibrium in cardiomyocytes
by decreasing excessive ROS production (Quintana-Cabrera
et al.,, 2012; Giustarini et al., 2016). The GSH content and
GSH/GSSG ratio were reduced, while the GSSG content was
significantly increased by LPS-induced cardiomyocyte injury
(Figure 6E). Cap-pretreatment besides reducing intracellular
ROS concentrations, also improved the activities of the
endogenous antioxidant system and the abilities of the
nonenzymatic antioxidant system in the cardiomyocytes after
LPS-induced injury, and its protective effects were inextricably
linked to the expression of 14-3-3y (Figures 5, 6).

Mitochondria are the sites where molecules that impact the
inflammation, especially the overwhelming mitochondrial ROS
(mtROS), are generated (Zorov et al., 2014). We showed that
mtROS generation was stimulated in LPS-treated cardiomyocytes.
As expected, the curve of mtROS was significantly skewed to the left
in the Cap pretreatment group (Figures 5B,C,E). Combined with
prior results, we confirmed that pretreatment with Cap could protect
cardiomyocytes from LPS-induced inflammation by reducing the
degree of intracellular/mitochondrial ROS. Moreover, LPS triggered
excessive mtROS generation, resulting in severe mitochondrial
dysfunction, an overflow of the mtDNA fragment (Zhang et al,
2010) and mtROS (Brealey et al., 2002), ATP loss (Schwiebert and
Zsembery, 2003) and so on. Complex I/I1l on mitochondria are the
major sites of ROS generation. In our study, NDUFBS8 (a subunit of
mt complex I) and UQCRC2 (a subunit of mt complex [lI)
expression were inhibited by LPS-induced toxicity, but Cap
pretreatment could promote NDUFB8 and UQCRC2 expression
by upregulating 14-3-3y levels (Figures 7A-C). These findings
indicated that LPS stimulated intracellular/mitochondrial ROS by
inhibiting Complex I/II activities in the cardiomyocytes, but these
negative effects could be weakened by Cap pretreatment.
Mitochondria are also essential organelles in modulating energy
generation (Wang et al.,, 2018). The decline in ATP production is
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closely relevant to the impairment of mitochondrial respiration in
cardiomyocytes (Makrecka-Kuka et al., 2019). Our results showed a
decrease in ATP levels in the LPS-treated group, but counter outcomes
were presented in the Cap pretreatment group (Figure 7D). These
series of results demonstrated that pretreatment with Cap alleviated
mitochondrial damage in LPS-challenged cardiomyocytes by
maintaining  mitochondrial metabolism, and subsequently
reinforced the key role of mitochondrial function as an essential
component against LPS-induced cardiotoxicity.

Mitochondrial dysfunction is sensed by a decline in MMP (De
Biasi et al., 2015); simultaneously, damaged mitochondria release
mitophagy-related factors such as Parkin and BNIP3 to
modulate the mitophagy pathway (Sun et al, 2018) and
promote the opening of mPTPs (Hamacher-Brady et al,
2007; Zhang et al, 2008). In LPS-induced cardiomyocyte
injury, pretreatment with Cap could sustain MMP and
inhibit mPTP opening, while the downregulation of 14-3-3y
presented an opposite trend (Figures 7E,F). These results
suggested that mitochondria were the major organelles of
LPS-induced cardiotoxicity, and might also be the targets for
Cap in protecting cardiomyocytes against LPS-induced injury
via 14-3-3y expression upregulation.

LIMITATION OF THE STUDY

Mitophagy significantly influences LPS-induced cardiotoxicity
(Sun et al, 2018). Further studies are needed to explore the
potential mechanism of Cap-upregulated 14-3-3y expression,
and how the AMPK-mTOR/ULK1 pathway regulates IL-1,
TNF-a, IL-6, and IL-10 in LPS-stimulated cardiotoxicity
during the mitophagy process.

CONCLUSIONS

In this study, we investigated the possible mechanism of Cap-
upregulated 14-3-3y expression in cardioprotection against LPS-
induced injury. LPS-induced cardiotoxicity was manifested in
activating inflammatory cytokines, producing excess oxygen
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