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Chronic Myeloid Leukemia (CML) is a hematological disorder characterized by the clonal
expansion of a hematopoietic stem cell carrying the Philadelphia chromosome that
juxtaposes the BCR and ABL1 genes. The ensuing BCR-ABL1 chimeric oncogene is
characterized by a breakpoint region that generally involves exons 1, 13 or 14 in BCR and
exon 2 in ABL1. Additional breakpoint regions, generating uncommon BCR-ABL1 fusion
transcripts, have been detected in various CML patients. However, to date, the impact of
these infrequent transcripts on BCR-ABL1-dependent leukemogenesis and sensitivity to
tyrosine kinase inhibitors (TKIs) remain unclear. We analyzed the transforming potential and
TKIs responsiveness of three atypical BCR-ABL1 fusions identified in CML patients, and of
two additional BCR-ABL1 constructs with lab-engineered breakpoints. We observed that
modifications in the DC2 domain of BCR and SH3 region of ABL1 affect BCR-ABL1
catalytic efficiency and leukemogenic ability. Moreover, employing immortalized cell lines
and primary CD34-positive progenitors, we demonstrate that these modifications lead to
reduced BCR-ABL1 sensitivity to imatinib, dasatinib and ponatinib but not nilotinib. We
conclude that BCR-ABL1 oncoproteins displaying uncommon breakpoints involving the
DC2 and SH3 domains are successfully inhibited by nilotinib treatment.
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INTRODUCTION

The BCR-ABL1 oncoprotein is the molecular hallmark of chronic myeloid leukemia (CML) and
transforms the hematopoietic stem cell by modulating several intracellular mediators involved in
survival and proliferation (Cilloni and Saglio, 2012; Ishii et al., 2015; Manzella et al., 2016). BCR-
ABL1 is a fusion gene derived from the t (9; 22) reciprocal translocation that joins part of the BCR
(Breakpoint Cluster Region on chromosome 22) and of the ABL1 (Abelson murine leukemia viral
oncogene homolog 1 on chromosome 9) messenger RNAs. The regions generally involved in this
rearrangement are exons 1, 13 or 14 of BCR (e) and exon 2 of ABL1 (a). Fusions involving one of the
aforementioned exons give rise to the more common BCR-ABL1 transcripts e1a2 (expressed in ∼20%
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of acute lymphoblastic leukemia), and e13a2 or e14a2 (generally
detected in CML) (Laurent et al., 2001). These common BCR-
ABL1 isoforms can be expressed at different times - or
simultaneously - in the same patient during the course of the
disease (Gong et al., 2017; Massimino et al., 2019a; Stella et al.,
2019b). However, published data demonstrates that the t (9:22)
reciprocal translocation can involve additional BCR and ABL1
exons, thus generating several uncommon BCR-ABL1 fusion
transcripts such as e6a2, e8a2, e19a2, e1a3, e13a3 or e14a3
(Burmeister and Reinhardt, 2008; Gong et al., 2017). The
ensuing variations in the BCR and ABL1 functional domains
encompassing the breakpoint region affect the oncoproteins
structural organization and may influence its leukemogenic
potential. Published data show that BCR-ABL1 fusion
transcripts characterized by a shorter BCR contribution -
i.e., lacking both the DH-GEF and PH domains (BCR-
ABL1e1a2 and BCR-ABL1e1a3) or only the DH-GEF region
(BCR-ABL1e6a2 and BCR-ABL1e8a2) - trigger different signaling
networks despite a kinase activity similar to that of conventional
(e1a2, e13a2 and e14a2) BCR-ABL1 isoforms (Reckel et al., 2017).
Furthermore, the response to the tyrosine kinase inhibitor (TKI)
imatinib depends - at least in part - on the size of the DC2 domain
as individuals expressing e13a2 BCR-ABL1 (i.e., with a shorter
DC2 region) display an inferior outcome compared to those with
e14a2 (which comprises a longer DC2 domain) (Jain et al., 2016;
Ercaliskan and Eskazan, 2018). It should also be noted that the
SH3 and SH2 regions of ABL1 (encoded by exons 2 and 3),
interact intramolecularly with the ABL1 kinase domain, thus
playing a critical role in BCR-ABL1-mediated cell survival and
leukemogenesis as well as TKI responsiveness (Sherbenou et al.,
2010; Grebien et al., 2011).

Although different reports have described the clinical history
of CML patients displaying uncommon BCR-ABL1 transcripts
(Gui et al., 2015; Ha et al., 2016; Cai et al., 2018; Chisti and
Sanders, 2018; Qin et al., 2018), to date, the specific contribution
of each different BCR and ABL1 domains modified in infrequent
BCR-ABL1 fusions remain unclear. We therefore analyzed
the effect of uncommon BCR-ABL1 breakpoints on the
oncoprotein’s kinase efficiency, signal transduction,
leukemogeneic potential and TKI sensitivity. To this end, we
generated five different BCR-ABL1 transcripts: three previously
identified in CML patients (BCR-ABL1INS/Del, BCR-ABL1e13a3

and BCR-ABL1e14a3), and two (BCR-ABL1ΔDC2 and BCR-
ABL1ΔSH3) artificially engineered to investigate the role of the
DC2 (in BCR) and SH3 (in ABL1) domains. Using in-vitro and
ex-vivo models, we demonstrate that modifications in the DC2
and SH3 domains affect BCR-ABL1 signal transduction,
leukemogenic potential and TKI response.

METHODS

Identification of Atypical BCR-ABL1
Transcripts
Total RNA extracted from primary CML cells was subjected to
RT-PCR using the indicated primers as previously described
(Massimino et al., 2019b): Fw BCR-10: 5′-TATGACTGCAAA

TGGTACATTCC-3′ and Rv ABL1-4: 5′-TCGTAGTTGGGG
GACACACC-3′. Atypical breakpoint regions corresponding to
BCR-ABL1INS/Del, BCR-ABL1e13a3 and BCR-ABL1e14a3 fusions
were confirmed by Sanger sequencing. For BCR-ABL1INS/Del,
cDNA sequencing identified the lack of exons 13 and 14 of
BCR and the partial deletion of exon 2 in ABL1 with a 39 bp
insert that matched a genomic region from 29534693 to 29534732
(GRCh38) corresponding to chromosome 20. The insertion/
deletion produced a breakpoint between exon 12 in BCR and
exon 2 in ABL1, generating the BCR-ABL1e12a2 transcript that we
refer to as BCR-ABL1INS/Del.

Cell Lines and Drugs
Ba/F3 (mouse pro-B cells) cell lines were purchased by DSMZ
(German Collection of microorganisms and Cell Cultures
GmbH) and cultivated in RPMI (Sigma) plus 10% WEHI3B
conditioned medium. Rat1 cells (a gift of J.Y.J. Wang,
University of California, San Diego School of Medicine,
United States) were cultivated in D-MEM high glucose
(Sigma). All growth media were supplemented with 10%
fetal bovine serum (FBS) (Euroclone), 2 mM glutamine,
50 µg/ml streptomycin and 100 µg/ml penicillin (All from
Sigma). For drug treatments, imatinib (IM) and nilotinib
(NIL) were provided by Novartis, dasatinib (DAS) by Bristol
Myers Squibb while ponatinib (PON) was purchased by
Selleckchem.

Isolation and Expansion of CD34-Positive
Progenitors
Immunomagnetic separation of bone marrow leukemic CD34-
positive progenitors expressing the e14a3 BCR-ABL1 fusion was
performed as previously described (Massimino et al., 2014).
CD34-positive cells derived from healthy donors were
obtained from ALLCELLS. CD34-positive cells were
maintained in Stem Span SFEM supplemented with cytokines
at low concentrations (Flt-3 ligand: 5 ng/ml, stem cell factor: 5 ng/
ml, interleukin 3: 1 ng/ml, interleukin 6: 1 ng/ml) (all from Stem
Cell Technologies).

Generation of Lentiviral Vectors
The pLEX empty vector (EV) (Dharmacon) was used as a
backbone to obtain all lentiviral vectors described below.

FLAG- and 6xHIS-BCR-ABL1WT(e14a2) were obtained as
previously reported (Massimino et al., 2014) and used as a
template to generate all BCR-ABL1 deletion mutants.

To obtain the pLEX-FLAG-BCR-ABL1ΔDC2 and pLEX-FLAG-
BCR-ABL1ΔSH3 constructs, the BCR and ABL1 sequences were
separately amplified using the primers reported in Table 1.

All BCR portions were cloned in the pLEX-EV using Spe-I and
Not-I restriction sites and each construct was subsequently
subjected to ligation with his respective ABL1 counterpart
using the Not-I and Mlu-I enzymes.

To generate the pLEX-FLAG-BCR-ABL1INS/Del, pLEX-FLAG-
BCR-ABL1e13a3 and pLEX-FLAG-BCR-ABL1e14a3 we employed
the Q5 site-direct mutagenesis kit according to the
manufacturer’s protocol (NEB) using the following primers:
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FwINS/Del: 5′-ATATTCAGAGTTTCATGTTCTGAAGCC
GCTCGTTGGAA-3′
RvINS/Del: 5′-TTGGCCATTATTCTGGCAATTGTTCTCCCT
CCACTCTGC-3′
Fwe13a3: 5′-TTCCTTATTGATGGTCAGCGGA-3′
Rve13a3: 5′-GGTGAAAAGCTCCGGGTCTTAG-3′
Fwe14a3: 5′-AAGTGAAAAGCTCCGGGT-3′
Rve14a3: 5′-GAACTCTGCTTAAATCCAGTG-3′

Each FLAG-tagged BCR-ABL1 deletion construct was used as
a template to obtain the respective 6xHIS-tagged-derivative
employing the primers indicated below:

Fw6xHIS-BCR: 5′-ACTAGTGCCACCATGCATCACCATCAC
CATCACATGGTGGACCCGGTGGGC-3’
RvABL1: 5′-ACGCGTCTACCTCTGCACTATGTCACT-3′

PCR products were ligated using the Spe-I andMlu-I enzymes.
The pLEX-Myc-FLAG vector was generated amplifying

human c-Myc by RT-PCR using total RNA extracted from
HL-60 cells. The following primers were used:

FwMyc: 5′-ACCGGTGCCACCATGCCCCTCAACGTTAGC
TTCA-3’.
RvFLAG-Myc: 5′-GCGGCCGCTTACTTATCGTCGTCATCC
TTGTAATCCGCACAAGAGTTCCGTAGCTG-3′.

The PCR product was then cloned in pLEX-EV using the Age-
I and Not-I restriction sites.

Lentivirus Production, Titering and
Transduction
Recombinant lentiviral production, titration and transduction
were performed as previously reported (Tirro et al., 2019a).
Lentiviral particles were obtained according to the Dharmacon
protocol as previously described (Jiang et al., 2015) and then
titrated using the Lenti-X p24 Rapid Titer Kit (TakaraBio)
according to the manufacturer’s protocol.

All cell lines were transduced by two rounds of spinoculation
at 1,200 x g for 90 min at 32°C in the presence of 8 µg/ml of
polybrene (Sigma) for Ba/F3 and Rat1 and 4 µg/ml of polybrene
for CD34-positive cells. Primary CD34-positive progenitors were
maintained in Stem Span SFEM supplemented with 100 ng/ml
Flt-3 ligand, 100 ng/ml stem cell factor, 20 ng/ml interleukin-3
(IL-3) and interleukin-6 (IL-6). Rat1 cells were lentivirally

transduced (MOI � 5) with pLEX-Myc-FLAG while Ba/F3
(MOI � 10) were exposed to the pLEX-EV and FLAG-tagged
BCR-ABL1 constructs reported above. All transduced cells
received 3.5 µg/ml puromycin to select resistant clones.
Rat1Myc (MOI � 10) and CD34-positive cells (MOI � 70) were
lentivirally infected with BCR-ABL1WT and deletion mutants and
used for the indicated experiments.

Transformation Assays
To assess BCR-ABL1-mediated growth factor-independent
transformation, lentivirally transduced Ba/F3 cells were deprived
of IL-3 for 24 h. At this time, 1 × 104/ml were cultivated in the
absence of IL-3 and counted every 24 h for three days. 1 × 104/
100 µL CD34-positive progenitors ectopically expressing native and
atypical BCR-ABL1 fusion transcripts, were exposed to IM, NIL,
DAS or PON and counted after three days. For both immortalized
and primary cell populations, their number was obtained by trypan
blue exclusion assays using a 0.4% trypan blue solution.

Colony Forming Units Assay
Lentivirally infected CD34-positive cells were either grown in the
absence of drugs or exposed to IM, NIL, DAS or PON for 24 h. At
this time, 1 × 103 cells were dispersed in TKI-additioned
methylcellulose (Stem Cell Technologies) and 15 days later the
resulting colonies were counted under an optical microscope
(IX71; Olympus). Only colonies with >20–30 cells were
considered (Aloisi et al., 2006).

LTC-IC
Bone marrow leukemic CD34-positive cells obtained from CML
patients at diagnosis and expressing the e14a3 fusion transcript, were
exposed to IM, NIL, DAS or PON. After 24 h, cells were seeded on
an M2-10B4 mouse fibroblasts feeder in 96 well-plates replacing the
LTC-IC medium (MyeloCult H5100, Stem Cell Techonologies)
weekly. After 5 weeks of culture, each well was overlaid with
methylcellulose (H4435, Stem Cell Theconologies) supplemented
with 10% of conditioned medium derived from 5,637 cells (Konig
et al., 2008). Colonies were scored under an optical microscope after
12 additional days and the LTC-IC frequency calculated using the
L-Calc software (Stem Cell Tecnologies).

Protein Purification and In Vitro Kinase
Assay
To purify 6xHIS-tagged BCR-ABL1WT, BCR-ABL1ΔDC2, BCR-
ABL1ΔSH3, BCR-ABL1INS/Del, BCR-ABL1e13a3 and BCR-ABL1e14a3,

TABLE 1 | BCR and ABL1 primer sequences to generate ΔDC2 and ΔSH3 FLAG-BCR-ABL1 deletion constructs.

pLEX-FLAG-BCR-ABL1ΔDC2 pLEX-FLAG-BCR-ABL1ΔSH3

BCR
portion

Fw 5′-ACTAGTGCCACCATGGATTACAAGGATGACGACGATAAGATGGTG
GACCCGGTGGGC-3′

5′-ACTAGTGCCACCATGGATTACAAGGATGACGACGATAAGATGGTG
GACCCGGTGGGC-3′

Rv 5′-CGGCCGCCTCTGAAACACTTCTTCTG-3′ 5′-CGGCCGCCTTCACTGGGTCCAGCGAGAA-3′

ABL1
portion

Fw 5′-GCGCCGCGAAGCCCTTCAGCGGCCAG-3′ 5′-GCGGCCGCCTGGAGAAACACTCCTGGTAC-3′

Rv 5′-ACGCGTCTACCTCTGCACTATGTCACT-3′ 5′-ACGCGTCTACCTCTGCACTATGTCACT-3′

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6694693

Massimino et al. BCR-ABL1 Breakpoint Predicts TKIs Efficacy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


each lentiviral vector was transiently transfected by calcium
phosphate in HEK293 cells. Forty-eight hours post-transfection, a
purification step was performed employing the Ni-NTA purification
system (Thermo Fisher Scientific). In vitro kinase assays were
performed as previously reported (Massimino et al., 2014)
employing ADP-GLO (Promega), using approximately 8 nM of
each BCR-ABL1 construct and concentrations of the ABLTIDE
peptide [EAIYAAPFAKKK] (SignalChem) ranging from 0.78 to
100 µM. The resulting data was then used to calculate the ADP-ATP
conversion rate thus obtaining the Km and Vmax values (analyses
were performed with the Prism software). The constant catalytic rate
(Kcat) was obtained from the equation Kcat � Vmax/[enzyme] and
Kcat/Km ratio defining catalytic efficiency.

Immunoblots
Whole cell lysates were prepared by resuspending Ba/F3 or Rat1
cells in Laemmli buffer. Cell pellets were then sonicated,
denatured and protein lysates separated by SDS-PAGE.
Antibodies used were as follow: anti-phosphotyrosine
(4G10; Millipore, 2138006), anti-actin (AC-15, 121M4846)
and anti-FLAG-M2-F3165 (both from Sigma, SLBN8915V),
anti-MYC (9E10; Santa Cruz, (H1314), anti-AKT rabbit (9272,
28), anti-p44-42 mitogen-activated protein kinase rabbit (ERK1/2,
9102, 27), anti-STAT5 rabbit (D206Y- 9363, 1), anti-CRKL mouse
(32H4, 3182, 5) and phospho-specific anti-bodies anti-pAKT-
Ser473 rabbit (S473, 9271, 14), anti-p44-42 mitogen-activated
protein kinase rabbit (ERK1/2, Thr202-Tyr204, 9101, 30),
pSTAT5-Y694 rabbit (9351 9) and pCRKL-Y207 rabbit
(3181,5), all from Cell Signaling. Appropriate horseradish
peroxidase-conjugated secondary antibodies were used to detect
the indicated proteins using the LiteAblot enhanced
chemiluminescence reagent (EuroClone, MI, Italy) and signals
were acquired using the C-DIGIT system (Licor).

MTS and IC50 Calculation
Infected Ba/F3 cells were deprived of IL-3 for 24 h. At this time,
4 × 103/100 µL cells in 96 well-plates were exposed to logarithmic
dilutions of IM, NIL, DAS or PON. Three days later, the CellTiter
96® AQueous One Solution Cell Proliferation Assay (Promega)
was used to quantify cell viability according to the manufacturer’s
protocol. The absorbance obtained was used to calculate IC50

values employing the Prism software (GraphPad Software).

Growth Competition Assay Experiments
Ba/F3 cells expressing BCR-ABL1WT were individually mixed in a
1:1 ratio with those transduced with BCR-ABL1ΔDC2, BCR-
ABL1ΔSH3, BCR-ABL1INS/Del, BCR-ABL1e13a3 and BCR-
ABL1e14a3 (Griswold et al., 2006). Each individual cell mixture
was then exposed to IM, NIL, DAS or PON replacing fresh
medium additioned with drugs every three days and re-
implanting cells at the same confluence. Each cell mixture was
then harvested and used for total RNA extraction as reported in
Figure 3F.

RNA Extraction and One-Step RT-PCR
For transduced Ba/F3 cells, total RNA was extracted using the
Trizol reagent following the manufacturer’s protocol

(Termofisher Scientific). For plucked CD34-derived CFUs,
RNA was extracted as previously described (Tirro et al., 2019c).

The following primers were used to amplify the BCR-ABL1
oncogene:

FwBCR10: 5′-TATGACTGCAAATGGTACATTCC-3′
RvABL4: 5′-TCG TAG TTG GGG GAC ACA CC-3′.

Primers recognize exons 10 and 4 of BCR and ABL1
(Massimino et al., 2019a; Massimino et al., 2019b).

To assess the integrity of the RNA derived fromCD34-positive
cells, CD45 was used and amplified employing the following
primers:

FwCD45: 5′-ACAGCCAGCACCTTTCCTAC-3′
RvCD45: 5′-GTGCAGGTAAGGCAGCAG-3′.

Anchorage-Independent Growth
Anchorage-independent assays were performed as previously
reported (Lugo and Witte, 1989; Sahay et al., 2008; Sears et al.,
2010) with the following modifications. 20 × 103/cm2 transduced
Rat1 cells were cultivated to achieve their confluence and
subsequently over-grown for additional 10 days until foci
formation was visible under an optical microscope. Cells were
then trypsinized and re-implanted to repeat the over-growth
process to obtain more than 80% cells showing foci formation.
At this time, adherent and non-adherent cells were either left
untreated or exposed to IM, NIL, DAS or PON. Two days later,
15 × 103 cells for each condition were dispersed in soft-agar
medium (D-MEM high glucose added of TKIs, 10% FBS, 2 mM
glutamine and containing 0.3% agar) and stratified on a soft-agar
bottom phase (soft-agar medium containing 0.6% agar). Each
well was overlaid with growth medium to feed cells every 7 days.
Twenty days later, each well was covered with an MTT (Sigma)
solution (5 mg/ml in D-MEM high glucose) and placed in a CO2

incubator for 4 h. Images were acquired and colony numbers
counted using the Image-J software.

Statistical Analyses
The Prism Software was used to perform analysis of variance
(One-way ANOVA).

RESULTS

The BCR-ABL1 Breakpoint Region
Modulates the Oncoproteins Catalytic
Efficiency
Previous evidence has demonstrated autoinhibition of ABL1
kinase activity by the SH3 domain (Smith et al., 2003;
Hantschel, 2012). Furthermore, an inverse correlation has been
reported between the size of the BCR portion retained in the
oncogenic fusion and CML outcome (Yao et al., 2017). These
findings suggest a direct involvement of the BCR-ABL1
breakpoint region in modulating the oncoproteins catalytic
activity. To assess the role of the DC2 and SH3 domains in
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regulating kinase efficiency, we generated five different BCR-
ABL1 fusion transcripts (Figure 1A) and employed an in vitro
kinase assay to define their catalytic activity as compared to native
BCR-ABL1. Using a preferential ABL1 substrate we analyzed the

effects of varying substrate concentration on each enzymatic
reaction. Applying the nonlinear regression fits, we calculated
theMichaelis-Menten constant (Km), the maximum reaction rate
(Vmax), the catalytic constant rate (Kcat) and the catalytic

FIGURE 1 | BCR-ABL1 catalytic efficiency is modulated by its breakpoint region. (A) Schematic representation of the BCR-ABL1 constructs used in this study.
Numbers indicate the amino acid positions involved in the deleted region. (B) Curves show the results of an in vitro kinase assay plotting velocity versus substrate
concentration using the indicated 6xHIS constructs. Assays were performed in triplicates with the standard deviation of the velocities shown as error bars. (C) Panel
reporting the enzymatic values of substrate-binding rates expressed as the Michaelis-Menten constant (Km), maximum reaction rate (Vmax), the catalytic constant
rate (Kcat) and the Kcat/Km ratio defining catalytic efficiency. OD: Oligomerization Domain; S/T_KD: Serine Threonine Kinase Domain; DH-GEF (Dbl Homology Domain-
Guanine Nucleotide Exchange Factor); PH (Pleckstrin Homology Domain); DC2: C2 domain; SH3-SH2: Src homology domains; KD: kinase domain, ABD: Actin Binding
Domain.
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efficiency (Kcat/Km) of each mutant (Figures 1B,C). Compared
to BCR-ABL1WT, we found that BCR-ABL1ΔSH3 and BCR-
ABL1e13a3 displayed a 1.4-fold and a 1.9-fold higher Km value,
suggesting reduced substrate binding to the active site. On the
contrary, we observed lower Km values (1.34, 1.79 and 2.2-fold)
for BCR-ABL1ΔDC2, BCR-ABL1INS/Del and BCR-ABL1e14a3,
indicating higher substrate affinity. Analyzing the maximum
rate of the enzymatic reaction (Vmax), we found lower
saturation concentrations (1.76, 1.70, 2.63 and 1.80-fold) for
BCR-ABL1ΔDC2, BCR-ABL1ΔSH3, BCR-ABL1INS/Del and BCR-
ABL1e14a3. On the contrary, BCR-ABL1e13a3 presented a 1.57-
fold higher Vmax than BCR-ABL1WT. To establish the catalytic
rate of each atypical BCR-ABL1 isoform we divided the detected
Vmax for the enzyme concentration employed in the assay, thus
calculating the Kcat value. We found that BCR-ABL1e13a3 showed
a 1.57-fold higher Kcat value, while all the remaining constructs
presented values lower than BCR-ABL1WT. Finally, to establish if
the BCR-ABL1 breakpoint region modifies the oncoprotein’s
catalytic efficiency, we divided the Kcat of each isoform for its
Km determining that BCR-ABL1ΔDC2, BCR-ABL1ΔSH3, BCR-
ABL1INS/Del and BCR-ABL1e13a3 were less catalytically
efficient than BCR-ABL1WT. Unlike the aforementioned
isoforms, BCR-ABL1e14a3 displayed a Kcat/Km ratio 1.23-
fold higher than the native construct. These findings
strongly suggest that the BCR-ABL1 breakpoint region
modulates the oncoproteins substrate binding, substrate
affinity and kinase activity.

Alterations of the BCR-ABL1 Breakpoint
Region Modify Its Transforming Potential
and the Activation of Its Downstream
Targets
It has been previously reported that different BCR-ABL1 fusion
proteins lead to different disease phenotypes (Hur et al., 2002;
Hanfstein et al., 2014; Jain et al., 2016). To better investigate the
impact of alterations in the BCR-ABL1 breakpoint region on cell
transformation and intracellular signaling, we lentivirally
expressed BCR-ABL1WT and five atypical fusion transcripts in
Ba/F3 cells. We initially evaluated the ability of native and
atypical transcripts to mediate IL3-independent growth. We
observed that BCR-ABL1WT was more proficient in inducing
cytokine-independent growth than BCR-ABL1INS/Del, BCR-
ABL1e13a3 and BCR-ABL1e14a3, while BCR-ABL1ΔDC2 and
BCR-ABL1ΔSH3 showed comparable transforming activity
(Figure 2A). We subsequently investigated if these differences
were dependent on modifications of the intracellular tyrosine
phosphorylation pattern. To this end, we first performed a total
anti-phosphotyrosine immunoblot and found that—compared to
the empty vector condition—all BCR-ABL1 constructs induced
higher phosphorylation levels. However, we did not observe
visible differences in the immunoreactivity of Ba/F3 cells
expressing BCR-ABL1WT or the various deletion mutants.
These results indicate that uncommon breakpoints do not
majorly affect BCR-ABL1-dependent intracellular tyrosine
phosphorylation (Figure 2B). We therefore investigated if
atypical breakpoint regions can modulate BCR-ABL1-

dependent phosphorylation of its direct (CRKL, STAT5) and
indirect (AKT, ERK1/2) substrates (Figure 2C). Compared to
native BCR-ABL1, densitometric analyses revealed that only
BCR-ABL1ΔDC2 and BCR-ABL1e13a3 preserved CRKL
phosphorylation (pCRKL) while the remaining atypical
transcripts showed a reduced ability to phosphorylate this
protein (Figure 2D). Furthermore, although all BCR-ABL1
deletion mutants increased STAT5 phosphorylation, we
observed that BCR-ABL1e14a3 and BCR-ABL1e13a3 were more
effective than native BCR-ABL1 (Figure 2E). We subsequently
investigated the activation of BCR-ABL1-indirect downstream
targets and found that pAKT levels were increased in Ba/F3 cells
expressing BCR-ABL1ΔDC2 and BCR-ABL1e13a3 (Figure 2F)
while no variations were observed for the remaining deletion
mutants. No statistically significant differences were detected in
ERK1/2 phosphorylation (Figure 2G). These data indicate that
the BCR-ABL1 breakpoint region plays a critical role in
modulating the activation of intracellular transducers involved
in cell survival (STAT5) and anti-apoptotic signaling (AKT).

Ba/F3 Cells Expressing Uncommon
BCR-ABL1 Transcripts are More Sensitive
to Nilotinib
To establish if atypical breakpoints affect BCR-ABL1
responsiveness to different TKIs, we exposed Ba/F3 cells
expressing BCR-ABL1WT and the five deletion mutants to
logarithmic concentrations of IM, NIL, DAS and PON and
calculated their IC50 values (Figures 3A–D). We observed that
cells expressing uncommon BCR-ABL1 transcripts required
higher concentrations of IM, DAS and PON to inhibit their
proliferative activity. Strikingly, this was not the case after NIL
exposure. In detail, after NIL treatment BCR-ABL1WT and BCR-
ABL1ΔDC2 showed comparable IC50 values, while BCR-
ABL1ΔSH3, BCR-ABL1INS/Del BCR-ABL1e13a3 and BCR-
ABL1e14a3 displayed IC50 values that were 1.37, 1.95, 6.3 and
2.16-fold lower than the common oncoprotein (Figure 3E).
Subsequently we wanted to determine the clonal growth
advantage of Ba/F3 cells expressing BCR-ABL1 mutants
comparing them to BA/F3 cells expressing native BCR-ABL1
after a long time TKIs exposure. To this end we used the native
BCR-ABL1 IC50 values to establish if selectively reduces clonal
growth when different deletion mutants were mixed with each
other in a cell growth competition assay. We mixed an equal
number of Ba/F3 cell expressing BCR-ABL1WT with each of the
uncommon fusion transcripts obtaining a series of co-cultures.
Each co-culture was then individually exposed to the BCR-
ABL1WT IC50 value for each TKI, as reported in Figure 3F.
We found that after 10 days of co-culture, Ba/F3 cells expressing
BCR-ABL1ΔDC2, BCR-ABL1ΔSH3, BCR-ABL1INS/Del and BCR-
ABL1e13a3 successfully outgrew their BCR-ABL1WT

counterpart in the presence of IM, DAS and PON
(Figure 3G). We obtained the same results for BCR-ABL1e14a3

with the exception of DAS, which showed comparable efficacy on
this mutant and on BCR-ABL1WT. Interestingly, when we
exposed each co-culture to NIL, we found that native BCR-
ABL1 and the atypical transcripts BCR-ABL1ΔDC2, BCR-
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FIGURE 2 | Alterations in the breakpoint regionmodify BCR-ABL1-dependent transforming ability and downstream target phosphorylation. (A)Curves indicate the
number of viable Ba/F3 cells transduced with the specified constructs as determined by the Trypan blue exclusion assay. Bars indicate standard deviation derived from
three independent experiments performed in triplicates. (B,C) Immunoblots of protein lysates obtained from transduced Ba/F3 cells. Protein lysates were separated by
SDS-PAGE, transferred to nitrocellulose membranes and hybridized with anti-FLAG, anti-posphtyrosine (B) or other antibodies recognizing the indicated total or
phosphorylated protein (C). For all immunoblots actin was used as loading control. (D–G) Histograms reporting the densitometric analysis for each indicated
phosphorylated protein derived from the immunoblot showed in (B) employing the Image J software and arbitrarily setting the densitometric value of BCR-ABL1WT at 1.
The densitometric value of each total and phospho-protein was initially normalized to actin. The final relative densitometric units were obtained by calculating the ratio
between phosphorylated versus total protein fractions. Bars indicate standard deviations derived from two independent experiments.
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ABL1ΔSH3, BCR-ABL1INS/Del and BCR-ABL1e14a3, were equally
sensitive to this TKI. Furthermore, BCR-ABL1e13a3 was more
susceptible to NIL than BCR-ABL1WT. These results imply that
modifications in the BCR-ABL1 breakpoint region are critical for
the activity of most ABL1 inhibitors with the exception of NIL.

The BCR-ABL1 Breakpoint Region is
Critical for the Anchorage-Independent
Growth of Rat1Myc Cells
Jongen-Lavrencic and others have previously shown that BCR-ABL1
induces defective cell adhesion and impaired migration (Jongen-
Lavrencic et al., 2005). These findings are in keeping with available

evidence indicating that the oncoprotein induces fibroblasts
transformation by promoting anchorage-independent growth
(Smith et al., 2003). To establish if the BCR-ABL1 breakpoint
region modulates this effect, we lentivirally expressed BCR-
ABL1WT and the five atypical fusion transcripts in Rat1Myc cells.
These cells represent a helpful tool to investigate BCR-ABL1-
dependent adhesion since, when overexpressing the human cMyc
gene, they can be transformed by BCR-ABL1 (Lugo andWitte, 1989;
Sahay et al., 2008; Gong et al., 2017). After confirming the correct
expression of both MYC and BCR-ABL1 (Figure 4A), Rat1
transduced cells were exposed to the equivalent plasma
concentration of each TKI (Bradeen et al., 2006) and employed
to perform an anchorage-independent assay (Figure 4B). As

FIGURE 3 | Ba/F3 cells transformed by atypical BCR-ABL1 fusion transcripts are more sensitive to NIL than IM, DAS and PON. (A–D)MTS assay to define the IC50

values of Ba/F3 cells expressing the indicated BCR-ABL1 constructs after exposure to logarithmic dilutions of the specified TKIs for 72 h. Bars indicate the standard
deviations obtained from three independent experiments performed in triplicates. (E) IC50 values for each cell line were calculated using the Prism Software

®
. (F)

Schematic representation of the TKI treatment in the growth competition experiment reported in (G). (G) RT-PCR on total RNA extracted from Ba/F3 cell co-
cultures collected after 10 days (IM, DAS and PON) or 4 days (NIL).
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FIGURE 4 | Uncommon breakpoint regions influence BCR-ABL1-dependent defective adhesion and show high sensitivity to NIL in Rat1 cells. (A) Immunoblots of
Rat1 cells transduced with the indicated constructs. Protein lysates were obtained and processed as detailed in Figure 2. Actin was used as loading control. (B) Image
showing colony formation in soft-agar of Rat1 cells expressing the indicated constructs. Bars report the standard deviations obtained from two independent
experiments.
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expected, Rat1Myc-EV cells were unable to grow in the absence of
adhesionwhile Rat1Myc expressing BCR-ABL1WT or the five deletion
mutants acquired this ability. Specifically, BCR-ABL1WT was more
proficient in promoting anchorage-independent growth than BCR-
ABL1ΔDC2, BCR-ABL1ΔSH3, BCR-ABL1INS/Del, BCR-ABL1e13a3 and
BCR-ABL1e14a3. Interestingly, all TKIs reduced the colony-forming
ability of both native BCR-ABL1 and the five tested constructs.
However, DAS and PON failed to inhibit anchorage-independent
growth mediated by uncommon BCR-ABL1 transcripts. These
observations implicate the BCR-ABL1 breakpoint region in the
modulation of cell adhesion.

The BCR-ABL1 Breakpoint Region
Contributes to the Transforming and
Clonogenic Properties of the Oncoprotein in
Human CD34-Positive Progenitors
To investigate if the BCR-ABL1 breakpoint region influences the
transformation of CD34-positive cells, we lentivirally expressed
BCR-ABL1WT and the five uncommon fusion transcripts in
human CD34-positive progenitors and evaluated both BCR-
ABL1-dependent transformation and cell clonogenicity. For
transformation assays, cells were cultivated in presence of low
cytokines concentrations to avoid impairing BCR-ABL1-
dependent growth (Modi et al., 2007). We found that all BCR-
ABL1 constructs maintained their transforming ability. However,
BCR-ABL1WT was more effective than any deletion mutant in
transforming CD34-positive cells (Figure 5Ai). We then
investigated if modifications in the breakpoint region can alter
BCR-ABL1-mediated clonogenicity. We observed that all BCR-
ABL1 constructs increased colony numbers compared to the
vector control but CD34 cells expressing BCR-ABL1ΔSH3 and
BCR-ABL1e14a3 were less clonogenic (Figure 5Aii). Successful

lentiviral infection was confirmed by performing RT-PCR on five
individual colonies selected from each condition (Figure 5B)
(Aloisi et al., 2006). These results suggest that the BCR-ABL1
breakpoint region is also implicated in the oncoproteins ability to
transform CD34-positive hematopoietic progenitors and
modulates its clonogenic potential.

Nilotinib Inhibits Both the Transforming
Potential and Clonogenic Ability of Atypical
BCR-ABL1 Transcripts in CD34-Positive
Cells
We finally wanted to investigate the impact of different BCR-
ABL1 breakpoints on the oncoproteins TKI responsiveness. To
this end, we exposed lentivirally transduced CD34-positive cells
to IM, NIL, DAS and PON using doses corresponding to their
achievable plasmatic concentration (Bradeen et al., 2006).

We observed that, while all TKIs inhibited the BCR-ABL1-
mediated cell transformation and clonogenicity, NIL was more
potent than IM, DAS and PON (Figures 6A,B). To confirm these
results, we performed LTC-IC assays by LDA analysis on CD34-
positive cells derived from a CML patient expressing the e14a3
variant. We confirmed that although IM, DAS and PON all
reduced LTC-IC frequency, NIL was the more effective drug
on these cells (Figure 6C). These findings support our previous
results indicating NIL as the most potent TKI for the uncommon
BCR-ABL1 fusions included in our experimental models.

DISCUSSION

In the current study we investigated the impact of five different
breakpoint regions on BCR-ABL1 leukemogenic potential and

FIGURE 5 | Uncommon fusion transcripts modify BCR-ABL1 transforming ability and clonogenic potential. (A) Histograms show the percentage of transforming
ability (I) and clonogenic potential (II) of the indicated constructs lentivirally expressed in human CD34-positive cells compared to the empty vector condition arbitrarily set
at 100%. Bars indicate the standard deviation of two experiments performed in duplicates. (B) RT-PCR performed on total RNA extracted from five single colonies
plucked after 15 days of growth in methylcellulose. CD45 was used as an RNA integrity control.
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TKI responsiveness. Three of the five breakpoints were previously
identified in CML patients (BCR-ABL1INS/Del, BCR-ABL1e13a3

and BCR-ABL1e14a3) while two were purposefully engineered
in our laboratory (BCR-ABL1ΔDC2 and BCR-ABL1ΔSH3). We
found that these modifications affected BCR-ABL1 catalytic
efficiency, signal transduction, transforming activity and
reduced response to IM, DAS and PON but not NIL. Our
work follows that of several other groups that have
investigated the specific biological contributions of different
functional domains within the BCR and ABL1 portions of the
BCR-ABL1 chimeric oncoprotein. Nieborowska-Skorska and
others have shown that a BCR-ABL1 construct devoid of
either the SH2 or the SH3 domains retained the ability to
activate STAT5, while STAT5 phosphorylation was lost after
the simultaneous deletion of both domains (Nieborowska-

Skorska et al., 1999). Accordingly, we found that total ablation
of the SH3 domain (BCR-ABL1ΔSH3) did not affect STAT5
phosphorylation, while partial removal of the domain (as in
BCR-ABL1e13a3 and BCR-ABL1e14a3) resulted in increased levels
of phosphorylated STAT5. This unexpected finding suggests that
alterations in the SH3-SH2 structure affect BCR-ABL1 substrate
affinity and catalytic activity. Furthermore, as STAT5
phosphorylation was comparable between native BCR-ABL1 and
mutants carrying deletions in BCR domains (BCR-ABL1ΔDC2 and
BCR-ABL1INS/Del), our results indicate that—within the breakpoint
region—only ABL1 functional domains are required for STAT5
activation. On the contrary, BCR domains seem critical inhibitors of
AKT activation as AKT phosphorylation increased in cells
transduced with BCR-ABL1 constructs displaying a reduced BCR
contribution (BCR-ABL1ΔDC2 and BCR-ABL1e13a3), supporting an

FIGURE 6 |CD34-positive cells expressing atypicalBCR-ABL1 transcripts are highly sensitive to NIL. (A,B)Histograms indicating the percentage of transformation
(A) and clonogenic (B) inhibition of CD34-positive cells expressing the indicated BCR-ABL1 constructs and exposed to different TKIs. Percentage values were obtained
setting untreated cells for each condition to 100%. Bars indicate the standard deviation of two experiments performed in duplicates. (C) Dot plot showing the LTC-IC
frequency of CD34-positive cells derived from a CML patient expressing e14a3 BCR-ABL1 after no treatment or exposure to TKIs at the indicated concentrations.
All experiments were performed in duplicates.
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inverse correlation between BCR size and activation of anti-
apoptotic signaling. It should also be noted that, for the first
time, our findings implicate the BCR-ABL1 breakpoint region in
the regulation of cell adhesion as all five mutants included in the
study were less proficient than native BCR-ABL1 in promoting
anchorage-independent growth of Rat1Myc cells.

Griswold and others have previously reported that mutations in
the BCR-ABL1 kinase domain modify its substrate utilization
and kinase activity (Griswold et al., 2006). These enzymatic
characteristics were modified in all the mutants tested in this
study, indicating that the functional domains encompassed in the
BCR-ABL1 breakpoint region modulate the oncoproteins catalytic
activity. Our results also demonstrate that, with the exception of the
ABL1 SH3 domain, the remaining regions included in the BCR-
ABL1 breakpoint all contribute to the cytokine-independent
transformation of Ba/F3 cells. Furthermore, while we confirm
that STAT5 phosphorylation is required for BCR-ABL1-mediated
growth factor independence (Maru et al., 1996; Skorski et al., 1998),
we find that this event per se is insufficient to transform
cytokine-dependent cells, as Ba/F3 expressing BCR-ABL1e13a3 and
BCR-ABL1e14a3 showed high STAT5 phosphorylation while
displaying reduced IL-3 independence. Interestingly, our results
reiterate that BCR-ABL1 transforming potential and clonogenic
ability are biologically and functionally distinct as the latter were
mostly unaffected in the uncommon transcripts investigated in our
experiments with the exception of BCR-ABL1ΔSH3.

Finally, we wanted to define the TKI responsiveness of the atypical
BCR-ABL1 transcripts included in this work. The introduction of
ABL1-directed TKIs has dramatically improved the hematological,
cytogenetic andmolecular responses of leukemia patients displaying a
BCR-ABL1 chimeric fusion (Hochhaus et al., 2017; Ottmann et al.,
2018; Saglio et al., 2018). Despite these excellent results, an ever-
growing number of patients will either fail to achieve or loose a
previously attained optimal response. TKI failure is driven by both
BCR-ABL1-dependent and -independent mechanisms (Jordanides
et al., 2006; White et al., 2007; Wu et al., 2008; Stagno et al., 2012;
Castagnetti et al., 2017; Vigneri et al., 2017; Stella et al., 2019c; Soverini
et al., 2020) often requiring additional therapeutic strategies (Buffa
et al., 2014; Massimino et al., 2018). Published evidence proposes an
inverse correlation between the size of the BCR contribution in the
chimeric oncogene and TKI response (Jain et al., 2016; Short et al.,
2016; Yao et al., 2017). Moreover, it has been shown that the ABL1
SH3 and SH2 domains exercise an important role in regulating the
oncoprotein kinase activity (Filippakopoulos et al., 2009; Sherbenou
et al., 2010; Grebien et al., 2011). These results suggest that
modifications in the BCR and ABL1 domains encompassed in the
BCR-ABL1 breakpoint may affect TKI response. Our data indicate
that NIL was the most effective TKI in reducing the leukemogenic
potential of all tested BCR-ABL1 mutants. These data are in
agreement with our previous results where we demonstrated that
CML patients with different BCR-ABL1 variants were successfully
treatedwithNIL (Massimino et al., 2019a; Tirro et al., 2019b;Manzella
et al., 2020) but failed to respond to DAS (Massimino et al., 2019b).
Accordingly, CML patients expressing BCR-ABL1INS/Del failed to
obtain a good molecular response when exposed to IM or DAS
but benefited from NIL treatment (Stella et al., 2019a). While the

reasons underlying NIL superior efficacy remain unclear, we
hypothesize that the drug’s prolonged intracellular accumulation
and residence time when bound to the BCR-ABL1 kinase domain
may contribute to the observed effect (Manley et al., 2010; Wagner
et al., 2013). It should also be noted that, unlikeDAS, IMandNIL fit in
the ATP-binding site when a hydrophobic portion defined as the
adenine binding-site region displays the Aspartate-Phenylalanine-
Glycine motif (DFG) is in an out conformation (DFG-out, ABL
kinase inactive conformation). However, despite this similarity, the
different molecular structure of each compound explains their distinct
structure-activity relationship. Indeed, IM requires stringent
interactions by Van der Waals (VdW) forces and six highly
energetic hydrogen bonds (H-bs) in order to dock to the adenine
region, while NIL needs an increased number of VdW forces with a
lower energetic contribution byH-bs (Rossari et al., 2018). Interestingly,
although PON binds the adenine region in an IM/NIL-like mode
(i.e., with the DFG-out), its interaction with the ABL1 kinase domain
requires different amino acidic residues. These structural differences
may explain why PON can overcome most mutation-dependent TKI
resistance (Reddy and Aggarwal, 2012; Buffa et al., 2014).

Overall, these observations promote the hypothesis that the
breakpoint region influences the structural conformation of the
adenine region rendering NIL more effective than IM, DAS and
PON against atypical BCR-ABL1 fusion transcripts.

In summary, our findings demonstrate that the BCR-ABL1
breakpoint region critically regulates the oncoproteins catalytic
activity, transforming efficiency and TKI sensitivity and that the
variations investigated in this work can reduce IM, DAS and
PON sensitivity but not NIL responsiveness. Taken together our
results suggest that CML patients expressing uncommon BCR-
ABL1 fusions may derive greater clinical benefit from NIL
treatment.
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