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Pyroptosis is a form of programmed cell death, in which gasdermin E (GSDME) plays an
important role in cancer cells, which can be induced by activated caspase-3 on apoptotic
stimulation. Triclabendazole is a new type of imidazole in fluke resistance and has been
approved by the FDA for the treatment of fascioliasis and its functions partially acting
through apoptosis-related mechanisms. However, it remains unclear whether
triclabendazole has obvious anti-cancer effects on breast cancer cells. In this study, to
test the function of triclabendazole on breast cancer, we treated breast cancer cells with
triclabendazole and found that triclabendazole induced lytic cell death in MCF-7 and MDA-
MB-231, and the dying cells became swollen with evident large bubbles, a typical sign of
pyroptosis. Triclabendazole activates apoptosis by regulating the apoptoic protein levels
including Bax, Bcl-2, and enhanced cleavage of caspase-8/9/3/7 and PARP. In addition,
enhanced cleavage of GSDME was also observed, which indicates the secondary
necrosis/pyroptosis is further induced by active caspase-3. Consistent with this,
triclabendazole-induced GSDME-N-terminal fragment cleavage and pyroptosis were
reduced by caspase-3-specific inhibitor (Ac-DEVD-CHQO) treatment. Moreover,
triclabendazole induced reactive oxygen species (ROS) elevation and increased JNK
phosphorylation and lytic cell death, which could be rescued by the ROS scavenger (NAC),
suggesting that triclabendazole-induced GSDME-dependent pyroptosis is related to the
ROS/JNK/Bax-mitochondrial —apoptotic  pathway. Besides, we showed that
triclabendazole significantly reduced the tumor volume by promoting the cleavage of
caspase-3, PARP, and GSDME in the xenograft model. Altogether, our results revealed
that triclabendazole induces GSDME-dependent pyroptosis by caspase-3 activation at
least partly through augmenting the ROS/JNK/Bax-mitochondrial apoptotic pathway,
providing insights into this on-the-market drug in its potential new application in cancer
treatment.

Keywords: triclabendazole, pyroptosis, gasdermin E, caspase-3, breast cancer

Frontiers in Pharmacology | www.frontiersin.org 1

July 2021 | Volume 12 | Article 670081


http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.670081&domain=pdf&date_stamp=2021-07-08
https://www.frontiersin.org/articles/10.3389/fphar.2021.670081/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.670081/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.670081/full
http://creativecommons.org/licenses/by/4.0/
mailto:lhaiyanlily@163.com
mailto:fanjun@jnu.edu.cn
mailto:g.wu@acta.nl
https://doi.org/10.3389/fphar.2021.670081
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.670081

Yan et al.

INTRODUCTION

Breast cancer is the most frequent cancer among women
(Anastasiadi et al., 2017; Tong et al., 2018; Saneei Totmaj
et al,, 2019), affecting 2.1 million women each year. Breast
cancer causes the greatest number (approximately 15%) of
cancer-related deaths among women (Bray et al., 2018). In
addition to surgery, chemotherapy, which targets and destroys
breast cancer cells, is often used to control/shrink larger tumors
and prevent reoccurrence. Most of the anti-cancer therapies
trigger apoptosis—a type of programmed cell death (PCD)
(Ouyang et al, 2012)—and related cell death networks to
eliminate malignant cells. Although chemotherapy is the main
strategy for a variety of cancers, the overall response rate of
chemotherapy in breast cancer patients remains unsatisfactory.
One major mechanism accounting for such a drug resistance is
the development and activation of anti-apoptotic systems,
allowing cancer cells to escape drug-induced apoptosis (Takagi
et al,, 2015). One potential approach is to introduce novel drugs
that can trigger non-apoptotic PCD.

Pyroptosis, one form of non-apoptotic PCD (also named
programmed necrosis) (Robinson et al., 2019), has been
recently indicated to play an important role in chemotherapy
for cancers. Pyroptosis was initially regarded as a general
inflammation response for innate immunity in vertebrates (Shi
et al., 2017; Robinson et al., 2019). Recent studies indicated that
chemotherapy drug-activated caspase-3 can also induce
secondary necrosis/pyroptosis in both cancer and normal cells
with expression of gasdermin E (GSDME), a member of the
gasdermin family (Rogers et al, 2017; Wang et al, 2017).
Pyroptosis is featured by pore formation on the plasma
membrane, thereby causing disruption of cell osmotic barrier
and subsequent cell swelling (Robinson et al, 2019). When
apoptosis initiates, the active caspase-3 cleaves GSDME to
generate the N-terminal fragment of GSDME (GSDME-NT).
GSDME-NT will translocate to and perforate the plasma
membrane, leading to pyroptosis (Coleman et al., 2001; Rogers
et al., 2017; Wang et al., 2017). Consequently, drugs that cause
pyroptosis of cancer cells can be a good supplement to
conventional apoptotic PCD-based anti-cancer drugs.

Triclabendazole, a type of imidazole, has been the drug for
treating liver fluke infections in livestock for over 20 years and
used successfully to treat human cases of fascioliasis (Fairweather,
2005; Fairweather, 2009). Triclabendazole takes effect possibly by
making tubulin polymerization and mitotic activity interfere
(Robinson et al, 2002); it also inhibits adenylate cyclase
activity or the association of GTP-Ras with adenylate cyclase
(Lee etal., 2013) and induces DNA strand breaking and apoptosis
in the reproductive organs of flukes (Hanna et al, 2013).
Furthermore, triclabendazole and its metabolites can inhibit
ABCG2/BCRP, an ATP-binding cassette transporter that
extrudes compounds from cells in the intestine, liver, kidney,
and gland, affecting pharmacokinetics of anti-cancer drugs
(Barrera et al, 2012). In addition, triclabendazole possesses
similar chemical structures to chemotherapy drugs, including
BAY-1816032, fenbendazole, albendazole, and mebendazole
(Zhou et al., 2017; Dogra et al., 2018; Siemeister et al., 2019;
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Williamson et al., 2020). These properties confer triclabendazole
as a great potential to treat cancers. However, no study on its anti-
cancer effect and potential mechanisms has been reported yet.

In this study, we used breast cancer MCF-7 and MDA-MB-
231 cell lines as a cellular model, which have been shown to
express GSDME protein (Wang et al., 2017), to explore the effects
of triclabendazole on cancer by inducing GSDME-dependent
pyroptosis via activating caspase-3. Our data showed that
triclabendazole could induce apoptosis and secondary necrosis/
pyroptosis by caspase-3 activation at least partly through
augmenting the = ROS/JNK/Bax-mitochondrial  apoptotic
pathway, and it also reduced the tumor volume in breast
cancer cells by inducing apoptosis-to-pyroptosis. The finding
suggested that triclabendazole had a therapeutic potential to
treat cancer by inducing apoptosis-to-pyroptosis.

MATERIALS AND METHODS

Reagents

Triclabendazole, Hoechst 33342, propidium iodide (PI), and
dimethyl sulfoxide (DMSO) were purchased from Sigma-
Aldrich (St. Louis, MO, United States). Triclabendazole was
dissolved in DMSO at 100mM and stored at -20°C.
Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine
serum (FBS), streptomycin, and penicillin were obtained from
Thermo/Fisher/Invitrogen (Carlsbad, CA, United States). Ac-
DEVD-CHO (#HY-P1001) was purchased from
MedChemExpress (Princeton, NJ, United States). The antibody
against DFENA5/GSDME (#ab215191) was the product of Abcam
(Cambridge, United Kingdom). The antibodies against Bcl-2
(#4223), Bax (#2772), cleaved caspase-3 (#9661), cleaved
caspase-7 (#12827), cleaved caspase-8 (#9496), caspase-9
(#9508), PARP (#9542), P-actin (#8457), and horseradish
peroxidase (HRP)-conjugated goat anti-rabbit IgG (#7074)
were obtained from Cell Signaling Technology (Danvers, MA,
United States). The annexin V-FITC/PI apoptosis assay kit
(#BB4101) and mitochondrial membrane potential assay kit
with JC-1 (#BB-4105-2) were from BestBio (Shanghai, China).

Cell Culture

The human breast cancer cell lines (MCF-7 and MDA-MB-231)
were obtained from the Shanghai Cell Bank of Type Culture
Collection of Chinese Academy of Sciences (Shanghai, China).
The cells were cultured in complete DMEM (containing 10% FBS,
100 IU/ml penicillin, 100 ug/ml streptomycin, and 2 mM L-
glutamine) at 37°C in a humidified incubator with 5% CO,
and sub-cultured every 2-3 days.

Cell Viability Assay

Cell viability was detected by the CCK-8 assay. The cells were
seeded in 96-well plates and then treated with indicated
concentrations of triclabendazole for 24 h or 48 h. The cells
were co-incubated with CCK-8 solution for 1h at 37°C. The
optical density (OD) values were measured at 450 nm by using a
Varioskan Flash microplate reader (Thermo Fisher Scientific,
United States).
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Flow Cytometry

For annexin V-FITC/PI double staining, the cells were harvested
and washed twice with cold PBS, and then the cells were stained
with annexin V in binding buffer for 15 min at room temperature,
followed by staining with PI for 5 min without annexin V. The
cells were then analyzed by flow cytometry using the BD
FACSCanto 1II Flow Cytometer (FACSCanto; Becton
Dickinson). Data were acquired and analyzed by using the
CELLQuest software (Becton Dickinson).

Cell Death Assay

Lytic cell death was measured by PI incorporation as described
previously (Py et al., 2014; Li et al., 2017). The cells were seeded in
glass-bottomed dishes and then treated with indicated
concentrations of triclabendazole for 24h. The cells were
stained with PI solution (2pg/ml PI plus 5pg/ml Hoechst
33342) for 10 min at room temperature and were observed
immediately by live imaging using the Leica ATCSSP8
Confocal Microscope (Leica, Germany).

Mitochondrial Membrane Potential

Measurement

The mitochondrial membrane potential assay kit with JC-1 was
used to measure the mitochondrial membrane potential,
according to the manufacturer’s instructions. The cells were
stained with JC-1 working solution for 15min at 37°C,
washed twice with JC-1 staining buffer, and observed under
the Leica ATCSSP8 Confocal Microscope. The ratio of the JC-
1 aggregate to monomer was analyzed by the Leica software.

Measurement of ROS

The ROS levels were measured by an ROS Assay Kit with DCFH-
DA (BestBio, Shanghai, China) according to the manufacturer’s
instructions. The cells were stained with DCFH-DA working
solution for 20 min at 37°C and then washed three times with
PBS. Fluorescence images were captured by a Leica ATCSSP8
Confocal Microscope, and the relative fluorescence unit was
analyzed by the Leica software.

Western Blot Analysis

Western blotting was performed essentially as previously
described (Li et al., 2017). The proteins were dissolved with
1x loading buffer and separated by SDS-PAGE and then
electro-transferred to PVDF membranes (Hybond-P; GE
Healthcare Life Sciences, Piscataway, NJ, United States). The
membranes were blocked in blocking buffer and then incubated
with the primary antibody overnight at 4°C, followed by
incubation with the secondary antibody for 1h at room
temperature. The blot images were captured by the Molecular
Imager Gel Doc™ XR" imaging system (Bio-Rad, United States).

Nude Mouse Xenograft Assay

Female nude mice (BALB/c, 4 weeks old) were bought from the
Experimental Animal Center of Southern Medical University
(Guangzhou, China), and they were acclimatized under 12h
dark/12h light cycles for 1 week before experiments. All
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animal experiments were approved by the Animal Ethics
Committee of Southern Medical University (Resolution No.
L2018153).

The mouse xenograft model was established as previously
described (Aka et al., 2009). A total of 1 x 10° breast cancer MDA-
MB-231 cells were injected subcutaneously into the right flanks of
mice. The mice were maintained and housed under specific
pathogen—free conditions. When the tumor volumes reached
approximately 100 mm?, the mice were divided randomly into
three treatment groups (n = 6) and intraperitoneally injected
twice a week with triclabendazole solution (20 or 100 mg/ kg body
weight) or vehicle (5% ethanol in PBS). The length and width of
the tumor were monitored twice a week using calipers. The tumor
volume (V) was calculated as follows: V = [(length) x (width) x
(width)]/2. At the end of the experiment, the mice were sacrificed,
and the xenograft tumors were measured. The markers of
apoptosis and pyroptosis in the xenograft tumors were
detected by western blot.

Immunohistochemical Analysis

After routine deparaffinization and hydration, the tissue sections
from mouse tumor tissue specimens of each group were boiled in
a microwave oven for 10 min for antigen retrieval followed by
washing three times with PBS (pH 7.4). Then, they were treated
with 3% hydrogen peroxide for 25 min and washed three times
with PBS (pH 7.4). Subsequently, the tissue sections were blocked
in blocking buffer containing 3% BSA and incubated with anti-
cleaved caspase-3 antibodies overnight at 4°C followed by
incubating with the secondary antibody and DAB. The
sections were counterstained using hematoxylin for 3 min and
washed under tap water. The images were captured by the Leica
microscope.

Statistical Analysis

Each experiment was performed three times independently. Data
were presented as mean + SD. Statistical analysis was performed
using GraphPad Prism 5.0. One-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test and unpaired
Student’s t-test was used to analyze the statistical significance
among the groups. p < 0.05 was considered statistically significant
(ns, p > 0.05; *p < 0.05; **p < 0.01; **p < 0.001).

RESULTS

Triclabendazole Induced Apoptosis and
Lytic Cell Death in Breast Cancer Cells by
Reducing the Mitochondrial Membrane
Potential

To determine effects of triclabendazole on breast cancer, firstly,
we applied the CCK-8 assay to measure the cytotoxicity on MCEF-
7 and MDA-MB-231 cells. Our data showed that triclabendazole
(160 pM) could significantly decrease the metabolic activity of
breast cancer cells (Figures 1A,B). We further adopted the
annexin V-FITC/PI assay to analyze whether triclabendazole
induced apoptosis of breast cancer cells. Triclabendazole at
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FIGURE 1 | Triclabendazole induces apoptosis and lytic death in breast cancer cells. (A, B) The cell viability is measured by the CCK-8 assay. The MCF-7 (C) or
MDA-MB-231 (D) cells are treated with indicated concentrations of triclabendazole (TRI) for 24 h. The cells are stained with annexin V-FITC and Pl and then analyzed by
flow cytometry. The ratios of cells are shown in each quadrant of representative dot plots of flow cytometry (on the left), and quantitative analysis of the ratios of apoptotic
cells and necrotic/pyroptotic cells is shown on the right. Data are shown as mean + SD (n = 3). (E, F) The cells are treated as in (C, D), respectively, stained with PI
(Continued)
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triclabendazole.

FIGURE 1 | solution containing 2 g/ ml propidium iodide (PI; red, staining dying cells) plus 5 pg/ ml Hoechst 33342 (blue, staining all cells) for 10 min, and then observed
by the Leica confocal microscope; the black arrow indicates Iytic cells (necrotic or pyroptotic) with large bubbles blowing from the cellular membrane. Scale bars: 10 pm.
(G) The mitochondrial membrane potential is determined by the JC-1 assay. The cells are observed by the Leica confocal microscope, and representative images are
shown. Scale bars: 10 um. Statistical analysis is performed by one-way ANOVA with Tukey’s multiple comparisons test. **p < 0.01; **p < 0.001; ns, not significant; TRI,

160 uM induced significant apoptosis (annexin V*/PI") and lytic
death (annexin V*/PI") in both cells (Figures 1C,D).
Furthermore, the result of PI solution staining showed that
triclabendazole could induce significant lytic cell death of
about 40% in MCF-7 cells and 35% in MDA-MB-231 cells
(Figure 1E). Meanwhile, the cells treated with triclabendazole
became round and swollen with evident large bubbles extending
from the plasma membrane, which is regarded as a typical
characteristic of secondary necrosis/pyroptosis different from
apoptosis (Figure 1E). We further showed the triclabendazole-
induced lytic cell death could not be inhibited by the pre-
treatment of necrostatin-1, a necrosis inhibitor (Figure 1F),
which suggested that triclabendazole induced pyroptosis but
not necrosis in breast cancer cells.

Disrupting mitochondrial function is closely related to
apoptosis, and triclabendazole is a potent apoptotic anti-fluke
drug (Hanna et al.,, 2013). We sought to further explore whether
triclabendazole induced apoptosis in breast cancer cells through
disrupting mitochondrial function. The change of mitochondrial
membrane potential in MCF-7 and MB-MDA-231 cells after
triclabendazole treatment was examined using JC-1 staining, and
we observed that triclabendazole significantly decreased the ratio
of JC-1 aggregates (red) to monomers (green), indicating a
reduction of membrane potential in both cells after
triclabendazole treatment (Figure 1G).

Together, these results indicated that the reduction of the
mitochondrial membrane potential was involved in
triclabendazole-induced apoptosis and lytic cell death/
pyroptosis in breast cancer cells.

Apoptotic Pathways Mediate
Triclabendazole-Induced Pyroptosis in

Breast Cancer Cells

To further investigate the wunderlying mechanisms of
triclabendazole-induced apoptosis and lytic cell death in breast
cancer cells, we next analyzed the protein markers of apoptosis by
immunoblotting, including Bax, Bcl-2, cleaved caspase-9, cleaved
caspase-8, cleaved caspase-3, cleaved caspase-7, and cleaved PARP.
As expected, our results showed that triclabendazole treatment up-
regulated the expression of Bax and down-regulated the expression
of Bcl-2 in the cell lysates (Figure 2). Moreover, the apoptotic
initiator caspase-8 and caspase-9 were activated and cleaved in
triclabendazole-treated cells in a dose-dependent manner.
Consistent with this, the downstream executioner caspase-3 and
caspase-7 were correspondingly activated and processed to their
cleaved forms. Consequently, poly (ADP-ribose) polymerase
(PARP) was cleaved to produce the carboxy-terminal catalytic
domain (89 kDa) (Figure 2). The above results indicated both
intrinsic and extrinsic apoptotic pathways were initiated.

Recently, gasdermin E (GSDME) has been shown to execute
pyroptosis by forming pores in the cell membranes through the
GSDME-N domains (37 kDa), which are cleaved from GSDME
by cleaved caspase-3, assembling into polymers to bind to cell
membranes under intrinsic and extrinsic apoptotic pathways
(Rogers et al., 2017; Wang et al, 2017). Therefore, we next
explored whether GSDME was expressed and cleaved to form
GSDME-N domains in the triclabendazole-treated cells. Upon
triclabendazole treatment, GSDME was found to be cleaved in
both MCF-7 and MDA-MB-231 cells (Figure 2), which was
correlated with the activation levels of caspase-3 and the levels
of lytic cell death. These results suggested that triclabendazole
induced lytic cell death through GSDME activation.

Cleaved Caspase-3 Is the Key Switch for
GSDME-Mediated Cell Death in Breast

Cancer Cells Treated With Triclabendazole
Since cleaved caspase-3 is the key enzyme to process GSDME into
the GSDME-NT (37 kDa) fragment (Rogers et al., 2017; Wang
et al, 2017), we next explored whether blocking caspase-3
activation would attenuate triclabendazole-induced cell death.
MCF-7 and MDA-MB-231 cells were treated with triclabendazole
in the presence or absence of the caspase-3-specific inhibitor Ac-
DEVD-CHO (DEVD). As shown in Figure 3, DEVD pre-
treatment could attenuate triclabendazole-induced cell death.
Consistent with this, DEVD pre-treatment significantly
suppressed the levels of cleaved caspase-3 (17/19 kDa), cleaved
GSDME (37 kDa), and cleaved PARP (89 kDa) formation. In
addition, DEVD pre-treatment also inhibited triclabendazole-
induced apoptosis by flow cytometry detection and reduced lytic
cell death (Figure 3), even though inhibition of caspase-3 did not
reduce the levels of ROS and recover the mitochondrial
membrane potential (data not shown). Together, these results
indicated that caspase-3-mediated cleavage of GSDME
contributed to triclabendazole-induced lytic cell death and that
the levels of GSDME-NT were correlated with the lytic cell death.

Triclabendazole-Induced
GSDME-Dependent Pyroptosis Is
Downstream of the ROS/JNK/

Bax-Mitochondrial Apoptotic Pathway

In light of previous findings that ROS/JNK signaling was
important for the mitochondrial apoptotic pathway and the
above-mentioned results showing that triclabendazole up-
regulated Bax expression and initiated the intrinsic apoptotic
pathway, we next explored whether triclabendazole induced
pyroptosis through the ROS/JNK/Bax-mitochondrial apoptotic
pathway. We determined ROS levels in breast cancer cells treated
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FIGURE 2 | Western blot analysis of apoptotic and lytic cell death markers in breast cancer cells treated with triclabendazole. MCF-7 and MDA-MB-231 cells are
treated with indicated concentrations of triclabendazole for 24 h. (A, B) Markers of apoptosis and Iytic cell death are detected by western blotting. The B-actin is recruited
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FIGURE 3 | PARP, and GSDME-NT. The p-actin is recruited as a loading control. (C) The ratio of lytic cell death (necrosis or pyroptosis) in five randomly chosen fields with
each containing ~50 cells is quantified to (A). Data are shown as mean + SD (n = 5). (D) Histograms showing the relative gray values of cleaved PARP and GSDME-NT in
(B). (E) Cells are stained with annexin V-FITC and Pl and then analyzed by flow cytometry. Quantitative analysis of the ratios of apoptotic cells and necrotic/pyroptotic
cells is shown on the right. Statistical analysis is performed by one-way ANOVA with Tukey’s multiple comparisons test. **p < 0.001; ns, not significant; TRI,

with triclabendazole and found that the levels of ROS in MCE-7
and MDA-MB-231 increased after triclabendazole treatment
(Figures 4A,B). Meanwhile, we observed that the
phosphorylation of JNK increased significantly by
triclabendazole treatment but did not change the constitutive
expression of JNK (Figure 4C).

To further explore the role of ROS and JNK signaling in
pyroptosis upon triclabendazole treatment, we used NAC, a
reactive oxygen scavenger, to pre-treat breast cancer cells and
then co-incubated with triclabendazole. The results showed that
NAC markedly inhibited the ROS elevation induced by
triclabendazole (Figures 4A,B). We also found that the effects
of triclabendazole on the expression of Bax and Bcl-2 and the
phosphorylation of JNK were partly antagonized by NAC pre-
treatment (Figure 4C). Consistent with these results, we observed
that NAC could significantly reverse the decrease of
triclabendazole-induced ratio of JC-1 aggregates (red) to
monomers (green), and it also could improve the cell viability
(Figures 4D,E). In addition, flow cytometry and live imaging
assay analysis showed that triclabendazole-induced lytic cell
death was also significantly reduced by NAC treatment as
compared with control, in which the number of cells with
large bubbles blowing from the plasma membrane and
apoptotic morphology reduced (Figures 5A,B). Similarly, NAC
pre-treatment significantly suppressed the levels of cleaved
caspase-3 (17/19 kDa), cleaved GSDME (37 kDa), and cleaved
PARP (89 kDa) formation (Figure 5C). These results revealed
that triclabendazole induced pyroptosis at least partly through
augmenting the ROS/JNK/Bax-mitochondrial  apoptotic
pathway.

Triclabendazole Induces
Apoptosis-to-Pyroptosis in a Xenograft
Model

As the above-mentioned results showed that triclabendazole
induced pyroptosis by cleaved caspase-3 in vitro, we further
explored whether triclabendazole reduces the tumor volume in
vivo, MDA-MB-231 breast cancer cells were implanted
subcutaneously into the right flanks of BALB/C nude mice.
When the mouse xenograft tumors grew to ~100 mm’, nude
mice were treated with triclabendazole solution (20 or 100 mg/ kg
body weight) or vehicle twice a week by intraperitoneal injection.
The results showed that the volume of the xenograft tumors
treated with triclabendazole was significantly smaller than that
treated with vehicle (Figures 6A-C), but the body weight of mice
showed no difference between triclabendazole solution treatment
and vehicle (data not shown). Moreover, triclabendazole
administration significantly promoted formation of cleaved
caspase-3, cleaved PARP, and GSDME-NT (Figure 6D),

indicating  that triclabendazole induced apoptosis-to-
pyroptosis, which was consistent with the in vitro studies
showing the effects of triclabendazole on breast cancer cells. In
addition, the stronger staining of apoptotic protein cleaved
caspase-3 was also observed in the triclabendazole treatment
group by immunohistochemical analysis (Figure 6E).
Therefore, these results highlight that triclabendazole
treatment could reduce the tumor volume by inducing
apoptosis-to-pyroptosis in the mouse xenograft model.

DISCUSSION

Chemotherapy is the major strategy for cancer treatment.
Currently, multiple chemotherapy drugs were used in anti-
cancer activities, including platinum (Decatris et al., 2004),
nitrogen mustard (Lang et al., 2020), and triazole (Song et al.,
2020). Recent studies reveal that, apart from executing apoptosis,
chemotherapy drug-activated caspase-3 can also induce
secondary necrosis/pyroptosis in cancer cells. Benzimidazole
derivatives have multiple biological activities, such as anti-
parasitic, anti-viral, and anti-cancer, especially on various
cancer cells with high cytotoxicity (Barot et al, 2013;
Blaszczak- Swiz}tkiewicz and Mikiciuk-Olasik, 2015).
Trichlorobendazole is a benzimidazole compound, but it has
remained unclear whether triclabendazole has a certain
pharmacological effect on cancer therapy and its underlying
mechanism. Interestingly, in this study, we found that
triclabendazole significantly induces apoptosis in breast cancer
cells typically swollen with evident large bubbles, including
positive for annexin V staining, irregulation of Bax and Bcl-2,
activation of caspase-3/7/8/9, and cleavage of PARP. More
worthy of attention is that many triclabendazole-treated cells
became swollen with evident large bubbles extending from the
plasma membrane accompanied by the generation of the
GSDME-N fragment (37 kDa), suggestive of inducing
pyroptosis. The effects of triclabendazole on breast cancer cells
could partly reverse by a reactive oxygen scavenger NAC and
caspase-3-specific inhibitor Ac-DEVD-CHO, which suggests
triclabendazole induced pyroptosis through increasing the
levels of ROS and activating caspase-3. In line with the finding
that triclabendazole induced apoptosis-to-pyroptosis in vitro,
triclabendazole administration in vivo significantly reduced the
volume of xenograft tumors by active caspase-3-cleaving protein
of GSDME to produce the GSDME-NT fragment. These results
revealed that triclabendazole may have therapeutic potential for
breast cancer.

Breast cancer is the most common cancer. It is well known that
it is heterogeneous with different molecules and prognostic
substances, which poses many therapeutic challenges. The
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current treatment methods include surgery, chemotherapy,
radiotherapy, and targeted therapy, but chemotherapy plays a
role in anti-cancer activity (Kaufmann & Earnshaw, 2000a). The
previous studies revealed that the traditional anti-cancer drugs

mainly inhibit the growth and division of tumor cells by
interfering with the synthesis of tumor cell DNA and tumor
cell microtubule system, leading to tumor cell death (apoptosis
and autophagy) and ultimately exerting anti-cancer -effects
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FIGURE 6 | Anti-tumor effect of triclabendazole in the xenograft model. BALB/C nude mice are injected subcutaneously with 1 x 10° MDA-MB-231 breast cancer
cells into their right flanks and then injected intraperitoneally with triclabendazole (20 mg/kg or 100 mg/kg) or vehicle. (A) Tumor in BALB/C nude mice. (B) Image of MDA-
MB-231-derived xenograft tumors at the end of the study. The nude mice are sacrificed after 2 weeks of treatment with triclabendazole, and then the tumors are carefully
dissected and photographed (n = 6). (C) Curves of tumor size. Data are shown as mean + SD (n = 6); statistical analysis is performed by two-way ANOVA. (D)
Western blot analyzing protein expression of cleaved caspase-3, cleaved PARP, and GSDME in tumors derived from treatment with triclabendazole or vehicle. (E)
Immunohistochemical analysis of protein expression of cleaved caspase-3 in tumor sections (n = 3); images are captured by the Leica microscope, and representative
images are shown. Scale bars: 20 um. ***p < 0.001; TR, triclabendazole.

(Kaufmann & Earnshaw, 2000b; Jordan & Wilson, 2004). For
example, Taxol induces apoptosis by stabilizing microtubules
leading to G2/M cell cycle arrest depending on MAP kinase
pathways (ERK and p38) in breast cancer cells (Bacus et al., 2001).
Corilagin inhibits breast cancer cell proliferation through
inducing apoptosis and autophagy via ROS release (Tong
et al, 2018). And unfortunately, approximately only 20% of
triple-negative breast cancer responds well to standard
chemotherapy (Polyak, 2011). However, recent studies found
that inducing secondary necrosis/pyroptosis may be a more
effective way to treat cancer (Wang et al,, 2017).

Pyroptosis is a new type of programmed cell death, which is
mediated by cleaved GSDMD (Shi et al, 2015) and cleaved
GSDME (Wang et al, 2017). It has been reported that
multiple chemotherapy drugs could promote generation of the
active N-terminal fragment of GSDME by active caspase-3 to lead
to pyroptosis in cancer cells (Rogers et al., 2017; Wang et al., 2017;
Wangetal.,, 2018; Wuetal., 2019; Yu et al., 2019). Consistent with
these studies, we found that triclabendazole treatment induced
the GSDME-NT fragment generation and Iytic cell death in breast
cancer cells which could be partly reversed by caspase-3-specific
inhibitor Ac-DEVD-CHO treatment, indicating that the
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production of GSDME-NT was mediated by active caspase-3.
However, besides caspase-3-dependent pyroptosis, some studies
indicated that the apoptotic protein caspase-8 induces cleavage of
GSDME leading to pyroptosis (Orning et al., 2018; Sarhan et al.,
2018). Although we had shown that triclabendazole could induce
caspase-8 processing to cleaved caspase-8, our data do not explain
whether triclabendazole can directly regulate pyroptosis by
activated caspase-8, which indicated further investigation
should elucidate the potential pathway underlying the
transformation between pyroptosis and apoptosis. In support
of in vitro results, we also found that administration of
triclabendazole significantly induced formation of cleaved
caspase-3 and GSDME-N terminal fragment and reduced the
volume of the xenograft tumors in the BALB/C nude mice
xenograft model. Therefore, these results revealed that
triclabendazole induced lytic cell death by caspase-3-mediated
GSDME cleavage in breast cancer.

Previous studies have shown that apoptosis can be induced by
intrinsic and extrinsic signal pathways, and the active apoptotic
caspase will mediate pyroptosis (Zhang et al., 2019). It has also been
reported that the intracellular levels of ROS are closely related to
apoptosis (Li et al., 2016). When intracellular levels of ROS were
overly up-regulated, it could interfere with cellular signaling
pathways (Lage et al,, 2001). And JNK would play a pivotal role
during this process (Lage et al., 2001). Indeed, some studies displayed
that phosphorylation of JNK could recruit Bax to mitochondria,
leading to the release of cytochrome c followed by caspase-9 cleavage
(Lei & Davis, 2003). Concomitantly, the active caspase-9 cleaved
caspase-3 to generate the active caspase-3 and induced pyroptosis
(Zhou et al., 2018; Yu et al., 2019). Consistent with these studies, in
our study, we provided evidence that triclabendazole-induced
GSDME-dependent pyroptosis is downstream of the ROS/JNK/
Bax-mitochondrial apoptotic ~pathway. Triclabendazole up-
regulated the intracellular levels of ROS and increased the
phosphorylation of JNK; it could also up-regulate the expression
of Bax and reduce the mitochondrial membrane potential, but these
effects of triclabendazole could be counteracted by an ROS scavenger
NAC. In support of our findings, another study provided evidence
that ROS levels were increased (Zhou et al., 2018), which then
facilitates Bax recruitment to mitochondria and gives rise to caspase-
3/GSDME-mediated pyroptosis (Wu et al., 2019; Yang et al., 2020).
Our results also found that NAC could partly reverse
triclabendazole-induced  apoptosis-to-pyroptosis.  Collectively,
these data revealed that triclabendazole induced caspase-3/
GSDME-dependent pyroptosis partly at least via the ROS/INK/
Bax signaling pathway. But it is unknown whether there exists other
molecular mechanism of caspase-3/GSDME-mediated pyroptosis.
Therefore, further investigation is warranted to elucidate the precise
mechanism by which triclabendazole induced pyroptosis.

GSDME plays a key role in the pyroptosis process, and the
GSDME gene is silenced in many human cancer cells including
gastric, colorectal, hepatocellular carcinoma, and breast cells
(Akino et al.,, 2007; Wang et al., 2013; Wang et al., 2017). But
it is expressed in human breast cancer MCF-7 and MDA-MB-231
cells, indicating they can be targeted to induce secondary
necrosis/pyroptosis by drug treatment (Wang et al, 2017).
Deficiency of GSDME expression showed resistance to

Triclabendazole Induced GSDME-Mediated Pyroptosis

etoposide in melanoma cell lines, but transfecting an
expression vector encoding GSDME increased the sensitivity
to etoposide (Lage et al, 2001). In lung cancer, genetic
deletion of GSDME promoted drug resistance, while GSDME
over-expression led to enhanced drug sensitivity in vivo and
in vitro (Lu et al, 2018). Another study reported that
knocking out GSDME switches lobaplatin-induced cell death
from pyroptosis to apoptosis but does not affect the growth
and tumor formation of colon cancer cells treated with
lobaplatin (Yu et al, 2019). In our study, triclabendazole-
treated breast cells suffered secondary necrosis/pyroptosis with
generation of the GSDME-N fragment. Moreover, in vivo, we
found that triclabendazole administration significantly induced
formation of cleaved caspase-3, GSDME-N fragment, and cleaved
PARP. At the same time, it also effectively inhibited the growth of
the xenograft tumors in the BALB/C nude mice xenograft model.
Although we did not explore the effect of triclabendazole on lytic
cell death by using deficient GSDME cells, we found that
triclabendazole did not induce breast cancer 4T1 cells
(deficiency of GSDME expression) to go to secondary
necrosis/pyroptosis (without cell swelling and evident large
bubbles), which only went to apoptosis (data not shown),
thereby suggesting triclabendazole-induced lytic cell death was
secondary necrosis/pyroptosis. In addition, in primary gastric
cancer and colorectal cancer, GSDME can be suppressed by
methylation (Akino et al, 2007; Kim et al, 2008a). We
observed that GSDME has low expression in MDA-MB-231
breast cancer cells; at the same time, we also noticed that the
ratio of lytic death (annexin V*/PI*) was lower in MDA-MB-231
cells compared to MCF-7 cells, but we were unclear whether the
low expression level of GSDME due to GSDME methylation leads
to the lower ratio of lytic death. Some studies also showed that the
GSDME promoter was also methylated in primary breast cancer
cells (Kim et al., 2008b; Croes et al., 2017) and its expression may
be up-regulated by treatment of epigenetic drugs, and treatment
with DNA methyl-transferase inhibitor decitabine restored
GSDME/DFNAS5 expression in gastric cancer cell lines (Rogers
et al, 2017; Lu et al, 2018), indicating combination with
conventional chemotherapy drugs is more effective than each
alone, but GSDME expression is a prerequisite. Moreover,
GSDME is expressed in normal tissues including the lung,
kidney, esophagus, and intestinal epithelium (Wang et al,
2017). And GSDME™™ mice exhibited less adverse effects
compared to wild type mice, including tissue damage and
weight loss (Rogers et al., 2017). Therefore, in further research,
whether the combination therapy can enhance the effect of
triclabendazole is worth exploring, and underlying mechanisms
of secondary necrosis/pyroptosis require more investigation.

CONCLUSION

We found that triclabendazole induced GSDME-dependent
pyroptosis by caspase-3 activation at least partly through
augmenting the ROS/JNK/Bax-mitochondrial  apoptotic
pathway. Overall, these findings suggest that triclabendazole
promotes pyroptosis in breast cancer cells, representing a
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promising drug candidate for breast cancer therapy for patients
with higher expression of GSDME.
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