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Kun-Dan Decoction Ameliorates
Insulin Resistance by Activating
AMPK/mTOR-Mediated Autophagy in
High-Fat Diet-Fed Rats

Zuging Su’, Kexue Zeng', Bing Feng, Lipeng Tang, Chaoyue Sun, Xieqi Wang, Caiyun Li,
Guangjuan Zheng * and Ying Zhu*

Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine,
Guangzhou, China

Background: Metabolic syndrome is characterized by central obesity, hyperglycemia and
hyperlipidemia. Insulin resistance is the leading risk factor for metabolic syndrome. Kun-
Dan decoction (KD), a traditional Chinese medicine, has been applied to treat patients with
metabolic syndrome for over ten years. It is increasingly recognized that autophagy
deficiency is the key cause of metabolic syndrome. Therefore, we aimed to explore
whether KD can activate autophagy to improve metabolic syndrome.

Methods: Network pharmacology was used to explore the underlying mechanism of KD in
the treatment of metabolic syndrome. The high-fat diet-fed rats and oleic acid-induced LO2
cells were employed in our study. Oral glucose tolerance test and insulin tolerance test, obesity
and histological examination, serum cholesterol, triglyceride, low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), homeostasis model
assessment of insulin resistance (HOMA-IR) and insulin sensitivity in high-fat diet-fed rats
were analyzed. Furthermore, the protein expressions of adenosine 5’-monophosphate (AMP)-
activated protein kinase (AMPK), phospho-AMPK, mammalian target of rapamycin (mTOR),
phospho-mTOR, p62, autophagy related protein (Atg) 5, Atg7, Atg12, Atg13, Atg16L1 and
microtubule-associated protein 1A/1B-light chain 3 (LC3)-11/1 were examined in rats and LO2
cells. Moreover, autophagy activator rapamycin and inhibitor 3-methyladenine, and small
interfering RNA against Atg7 were utilized to verify the role of autophagy in the treatment of
metabolic syndrome by KD in oleic acid-induced LO2 cells.

Results: Results from network pharmacology indicated that targeted insulin resistance
might be the critical mechanism of KD in the treatment of metabolic syndrome. We found
that KD significantly suppressed obesity, serum cholesteral, triglyceride and LDL-C levels
and increased serum HDL-C level in high-fat diet-fed rats. Furthermore, KD enhanced
insulin sensitivity and attenuated HOMA-IR in high-fat diet-fed rats. Western blot showed
that KD could enhance autophagy to increase the insulin sensitivity of high-fat diet-fed rats
and oleic acid-induced LO2 cells. Furthermore, 3-methyladenine and small interfering RNA
against Atg7 could reverse the protective effect of KD on LO2 cells. However, rapamycin
could cooperate with KD to enhance autophagic activation to increase insulin sensitivity in
LO2 cells.
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Conclusion: The induction of autophagy may be the major mechanism for KD to improve
insulin resistance and metabolic syndrome.

Keywords: metabolic syndrome, insulin resistance, Kun-Dan decoction, AMPK/mTOR-mediated autophagy,

network pharmacology

INTRODUCTION

Metabolic syndrome is characterized by hyperglycemia,
hyperlipidemia and central obesity, which increases the risk
of various diseases including cardiovascular disease, diabetes,
non-alcoholic fatty liver and cancer (Lent-Schochet et al,
2019). Latest epidemiological data show that the global
prevalence of metabolic syndrome exceeds 20% (Tahereh
et al., 2020). Due to the lack of potent pharmacotherapy,
the rising prevalence of metabolic syndrome poses a huge
threat to human health worldwide. Nowadays, it is commonly
accepted that unhealthy eating habits, physical inactivity and
sedentariness play pivotal roles in the pathogenesis of
metabolic syndrome (Liu et al., 2015). Of note, there is a
consensus that insulin resistance is the leading cause of
metabolic syndrome. Unhealthy eating habits, especially
high-fat diets, initially induce hepatic insulin resistance,
followed by adipose and muscle insulin resistance (Gao
et al., 2010). Moreover, clinically, insulin resistance has
occurred many vyears before the diagnosis of metabolic
syndrome. Therefore, targeting insulin resistance is
conducive to the prevention and treatment of metabolic
syndrome (Shaodong, 2013).

Autophagy, a conservative catabolic process, can degrade
excessive fatty acids, damaged cell structures and organelles in
the lysosome to maintain cellular energy homeostasis (Vargas
et al, 2017; Su et al, 2019). Amino acids and other small
molecules produced by autophagic degradation are sent back
to the cytoplasm for energy production (Noboru et al., 2010; Cerri
and Blandini, 2018; Su et al., 2019). Accumulating evidence has
shown that autophagy is involved in many physiological and
pathological ~ processes including metabolic syndrome,
cardiovascular, respiratory, neurodegenerative and metabolic
diseases (Hyejin et al., 2018; Pierzynowska et al, 2018;
Racanelli et al., 2018; Ren and Zhang, 2018). Accordingly,
these evidences suggest that the activation of autophagy may
be beneficial for the prevention and treatment of metabolic
syndrome.

Recently, given the relative safety and multiple beneficial
effects, more and more researchers are searching for medicinal

and edible herbs as complementary and alternative medicines.
More and more medicinal and edible herbs have shown benefits
to insulin resistance and metabolic syndrome. Kun-Dan (KD)
consists of Atractylodes macrocephala Koidz., Crataegus
pinnatifida Ege., Citrus medica L. var. Sarcodactylis Swingle,
Cassia obtusifolia L. and Ecklonia kurome Okam. (Table 1)
and has been used to treat patients with metabolic syndrome
for over ten years. Our previous studies have shown that KD can
significantly inhibit the levels of serum leptin, free fatty acids,
tumor necrosis factor (TNF)-a and plasminogen activator
inhibitor-1, and increase the expression of serum adiponectin
in rats with metabolic syndrome (Guangjuan et al., 2014). Reports
have demonstrated that TNF-a can inhibit the activation of
phosphoinositide 3-kinases (PI3K)-AKT signaling pathway to
induce insulin resistance (Khodabandehloo et al., 2015). Whereas
adiponectin can enhance the activation of PI3K-AKT signaling
pathway to increase insulin sensitivity (Kobashi et al., 2005).
However, the molecular mechanism of KD against metabolic
syndrome is not clearly elucidated. Latest evidence indicates that
targeting autophagy is a promising treatment for metabolic
syndrome (Hyejin et al, 2018). Accordingly, we seek to
explore the role of autophagy in the treatment of metabolic
syndrome by KD.

In this study, we have found that KD can inhibit insulin
resistance, obesity, hyperglycemia and hyperlipidemia of high-
fat diet-fed rats. KD is also available to enhance insulin
sensitivity of insulin-resistant LO2 cells. Mechanistically, the
induction of autophagy is associated with the treatment of
insulin resistance and metabolic syndrome by KD. This
research allows us to better understand the role of autophagy
in the treatment of metabolic syndrome by herbal medicine, and
also provides theoretical support for dietary therapy.

MATERIALS AND METHODS

KD Chemical Compounds and Metabolic

Syndrome-Related Target Screening
The Traditional Chinese Medicine Systems Pharmacology (TCMSP)
database and Traditional Chinese Medicine Integrative database

TABLE 1 | Components of Kun-Dan.

Species name Medicinal part Weight (g) Voucher number
Asteraceae; Atractylodes macrocephala Koidz. Rhizome 12 KDO1AMK
Rosaceae; Crataegus pinnatifida Ege. Fruit 12 KDO2CPE
Rutaceae; Citrus medica L. var. Sarcodactylis Swingle Fruit 9 KDO3CSS
Leguminosae; Cassia obtusifolia L. Seed 15 KD04COL
Laminariaceae; Ecklonia kurome Okam. Thallus 12 KDO5EKO
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(TCMID) were applied to collect the chemical ingredients of KD
(Wei et al,, 2019). Finally, 65 chemical ingredients were obtained,
and ingredient-related targets were predicted using Drugbank and
SwissTargetprediction databases (Wei et al,, 2019; Liu et al,, 2020).

The metabolic syndrome-related targets were screened by
Therapeutic Target Database (TTD), Online Mendelian
Inheritance in Man (OMIM) and DisGeNET databases (Liu
et al, 2020). Eventually, coexistent targets between chemical
ingredients and disease were screened as KD-related targets
for metabolic syndrome.

Network Construction

Based on the identified ingredients and targets of KD, the
interaction network between compounds and targets was
established by Cytoscape 3.7.2 software. The protein-protein
interactions (PPI) were analyzed by String (https://string-db.
org/, version 11.0). The protein’s topology analysis was
executed by Cytoscape 3.7.2 with the plugin tool “CytoNCA”
(Li et al., 2021).

Gene Ontology and KEGG Enrichment
Analysis

For the better understanding of underlying biological process, the
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were carried out with
R/Bioconductor statistical analysis language and software
(Haberman et al., 2013).

Preparation of KD

The medicine herbals in KD were purchased from Guangdong
Provincial Hospital of Chinese Medicine (Guangdong, China),
and authenticated by Prof. Guangjuan Zheng. Voucher
specimens were deposited in the research laboratory of herbal
pharmacology of Guangdong Provincial Hospital of Chinese
Medicine (Table 1). Briefly, Atractylodes macrocephala Koidz.,
Crataegus pinnatifida Ege., Citrus medica L. var. Sarcodactylis
Swingle, Cassia obtusifolia L. and Ecklonia kurome Okam. were
extracted twice in boiling water for 30 min each time. The
extraction was filtered and concentrated in a rotary evaporator
under reduced pressure. Ultimately, dry powder was
manufactured by a freeze dryer at a relatively low temperature
condition (-80°C).

High Performance Liquid Chromatography
Analysis

Qualitative analysis of KD was carried out by an Agilent 1260
high performance liquid chromatography with a G1315C DAD
detector, a G1311B pump, a G1313A automatic sampler and a
G1316A thermostatic column compartment (Agilent, California,
United States). The working conditions were optimized and
established as follows: column: ZORBAX SB-C18 (4.6 x 250
mm, 5pum); mobile phase: water (A) and acetonitrile (B), a
gradient mode (0-8 min, 95% A; 8-19 min, 95% A — 60% A;
19-25min, 60% A — 24% A; 25-36 min, 24% A — 21% A);
detection: UV, 220 nm; flow-rate: 0.8 ml/min. 0.3 g KD powder
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was dissolved in 25 ml of 10% acetonitrile (Merck, Germany) and
was filtered with a 0.45 um filter for high performance liquid
chromatography analysis.

Cell Culture and Treatments

Human hepatocytes LO2 cells were purchased from the cell
bank of the Chinese Academy of Sciences (Shanghai, China)
and cultured in high-glucose Dulbecco’s modified Eagle’s
medium (Gibco, United States) supplemented with 10%
fetal bovine serum (FBS) at 37°C in 5% CO,. After reaching
50% confluence, the cells were exposed to 0.25 mM oleic acid
(Aladdin, Shanghai, China) for 24h to induce insulin
resistance in a culture medium containing 2% fetal bovine
serum. The oleic acid was dissolved in a culture medium
containing 0.5% fatty acid-free bovine serum albumin (BSA)
(Nagaoka et al, 2015). And the control cells
administrated with 0.5% fatty acid-free BSA.

were

Glucose Consumption Assay

LO2 cells were seeded into 96-well plates in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% FBS and divided into control group and model
group. When cell confluence reached 50%, the control group
was administrated with 0.5% fatty acid-free BSA, whereas
0.25mM oleic acid was added to the model groups. After
incubation for 24 h, the control group were incubated with
DMEM containing 10% FBS, whereas the model groups were
pretreated with or without 3-methyladenine (3-MA)
(Selleckchem, Houston, TX, USA) and rapamycin (RAP)
(Selleckchem, Houston, TX, United States) for 1h, and then
treated with KD (100, 200 and 400 pg/ml) or metformin (5 mM)
(Sino American Shanghai Squibb Pharmaceutical Co., Ltd) for
24 h. And all groups were incubated with 7.8 x 10”7 mol/L insulin
for 4 h. And then the glucose concentrations in cell supernatant
were determined by the glucose oxidase method according to
manufacturers’ instruction (Nanjing Jian cheng, Nanjing, China).
And we also analyzed cell viability by 3-(4, 5-dimethylthiazol-2-
yl)-2, 5-diphenyltetrazolium bromide (MTT) assay to normalize
glucose consumption (Ding et al., 2019).

Glucose Uptake Assay

LO2 cells were seeded into 24-well plates in DMEM
supplemented with 10% FBS and divided into control group
and model group. When cell confluence reached 50%, the
control group was administrated with 0.5% fatty acid-free
BSA, whereas 0.25 mM oleic acid was added to the model
groups. After incubation for 24 h, the control group was
incubated with DMEM containing 10% FBS, whereas the
model groups were treated with KD (100, 200 and 400 ug/
ml) or metformin (5 mM) for 24 h. All groups were incubated
with 0.5 mM 2-deoxy-2-[(7-nitro-2, 1, 3-benzoxadiazol-4-yl)
amino]-D-glucose (2-NBDG) for 30 min and 7.8 x 1077 mol/L
insulin for 4h. Next, cells were washed three times with
I1xphosphate buffered saline (PBS) to remove the
unabsorbed 2-NBDG. Then, relative fluorescence images
were observed under a fluorescence microscope (Nikon,
Japan) (Reddy et al., 2019).
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Intracellular Triglyceride and Cholesterol

Levels Assay

LO2 cells were seeded into 60 mm dishes in DMEM
supplemented with 10% FBS and divided into control group
and model groups. When cell confluence reached 50%, the
control group was administrated with 0.5% fatty acid-free
BSA, whereas 0.25mM oleic acid was added to the model
groups. After incubation for 24h, the control group was
incubated with DMEM containing 10% FBS, whereas the
model groups were pretreated with or without 3-MA and RAP
for 1h, and then treated with KD (100, 200 and 400 pg/ml) or

metformin (5mM) for 24h. Subsequently, intracellular
triglyceride, HDL-C and LDL-C levels were analyzed
according to the manufacturer’s instructions (Nanjing
Jiancheng, Nanjing, China).
Oil Red O Staining
LO2 cells were seeded into 12-well plates in DMEM

supplemented with 10% FBS and divided into control group
and model groups. When cell confluence reached 50%, the
control group was administrated with 0.5% fatty acid-free
BSA, whereas 0.25mM oleic acid was added to the model
groups. After incubation for 24h, the control group was
incubated with DMEM containing 10% FBS, whereas the
model groups were pretreated with or without 3-MA and RAP
for 1h, and then treated with KD (100, 200 and 400 pg/ml) or
metformin (5 mM) for 24 h. Then cells were fixed with 4%
paraformaldehyde for 30 min and stained with oil red O
solution for 10 min. Subsequently, cells were washed with
1xPBS, and then observed with a light microscope (Nikon,
Japan) (Tan et al., 2019).

To quantify the lipid accumulation, isopropanol was used to
dissolve stained lipid droplets and the absorbance was
determined at 510nm by a microplate reader (BioTek)
(Romacho et al., 2015).

Adenovirus Infection

To analyze autophagic flux, LO2 cells were seeded into confocal
dishes, and treated with experimental conditions as indicated.
Then LO2 cells were infected with adenoviruses expressing
mRFP-GFP-tagged LC3 (HANBIO, Shanghai, China). All
images were acquired by a LSM 710 confocal laser microscope
(Zeiss, Germany). Autophagy flux was evaluated by the number
of mRFP*/GFP" (yellow) and mRFP*/GFP" (red) puncta in cells.
Yellow puncta indicated autophagosomes and red puncta
represented autolysosomes (Sun et al., 2020). To quantify
autophagic flux, GFP-LC3 and mRFP-LC3 punctate dots were
counted by Image Pro plus 6.0 software (Media Cybernetics,
Silver Spring, MD, United States) (Wang et al., 2019).

Small Interfering RNA-Mediated

Knockdown of Atg7

Small interfering RNA (siRNA) specific to human Atg7 and
negative control siRNA were designed and synthesized by
RiboBio (Guangzhou, China). In brief, cells were transfected

Kun-Dan Alleviates Insulin Resistance

with 10 nM Atg7 siRNA and a negative control siRNA using
riboFECT™ CP transfection kit according to manufacturer’s
instructions  (RiboBio, Guangzhou, China). After 48h,
0.25 mM oleic acid was added to LO2 cells for 24 h and then
KD treatment was performed for 24 h.

Animals

Male Sprague-Dawley rats (weighing 180-220 g), were purchased
from the Medical Laboratory Animal Center of Guangdong
Province (Foshan, China). All rats were maintained in a
controlled environment of 23-25°C, with a 12h light/dark
cycle, relative humidity of 45-65%, and had free access to
regular chow and water. All animal experiments were
approved by the Institutional Animal Care and Use
Committee of Guangdong Provincial Academy of Chinese
Medical Sciences in Guangzhou University of Chinese
Medicine (SYXK Guangdong 2013-0094).

Experimental Design

A total of 72 male rats were randomly divided into two groups:
control group (n = 12) and high-fat diet group (n = 60). The rats
in the control group were fed with a normal diet (67% of total
calories from carbohydrates, 21% from proteins, and 12% from
fat (Soybean Oil), total calories: 3.5 Kcal/g). The rats in the high-
fat diet group were fed a high-fat diet (18% of total calories from
carbohydrates, 21% from proteins, and 61% from fat (Soybean
Oil and Lard), total calories: 5.24 Kcal/g). After six weeks, the
body weight, body length, serum LDL-C, HDL-C, glucose and
insulin levels in each rat were detected to evaluate whether
metabolic syndrome was established. A total of 50 rats in the
high-fat diet group were identified as developing metabolic
syndrome. Then the rats with metabolic syndrome were
randomly assigned into five groups: model group, metformin
group (100 mg/kg) and KD groups (0.75, 1.5 and 3.0 g/kg) (n =
10). Subsequently, the rats in the model group, metformin group
and KD groups were administrated with vehicle, metformin and
KD daily for 6 weeks, respectively. However, the rats in the
control group were administrated with distilled water instead
of drug. 6weeks later, all rats were euthanized by inhaling
isoflurane and the serum, liver, spleen, kidney and abdominal
adipose tissues were collected for the mechanism study.

Oral Glucose Tolerance Test

At the 4th week following treatment, an oral glucose tolerance test
(OGTT) was performed after 16 h fasting as described previously
(Sacramento et al., 2018). Briefly, fasted rats were orally
administered with glucose solution at a dose of 2 g/kg. Blood
samples were collected at 0, 30, 60, 90 and 120 min. The blood
glucose levels were determined by glucose test kit.

Insulin Tolerance Test

At the 5th week following treatment, insulin tolerance test (ITT)
was performed after 5h fasting by intraperitoneally injecting
insulin at 0.75 U/kg (Rached et al., 2010; Jurowich et al., 2015).
Blood samples were collected at 0, 30, 60, 90 and 120 min. The
blood glucose levels were determined by glucose test kit.
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TABLE 2 | Primers for gPCR of gens used in this study.

Kun-Dan Alleviates Insulin Resistance

Gene Forward sequence (5’-3’) Reverse sequence (5’-3’)
AMPK ACTATACCAGGTGATCAGCACTC TTCCATCTCTTCAACCCGTC
Atg13 CATGTCTACCAGGCAATTTGAG CCAGTGTCCTCACCAGCAG

Atg7 CAAGACTGCAGATAAGAAGCTC GAGGAGGAACTTGTTGAGGAG
ULK1 TCGGCACCATCGTCTACCA GGGACCAACGTCTTGTTCTTC
mTOR TGAATAAAGTTCTGGTGCGACA CGATGCTGGTAAATCAAAGGA
ATG5 ATCTCCTCAAAGAAGTTTGTCCTTC GCTCAGATGTTCACTCAGCCACT
MAP1LC3A ATGGTGAGTGTGTCCACGCC TCAGAAGCCGAAGGTTTCCT
ATG16L1 CTTTGCCGTGAATGGGATTT CCCAAGTGAGGTATGGAAGGTC
ATG12 AGTGAGAAAGCCTTAGGTGTTGAA CCTGTAGCTGGCTTCCTTAGTGC

Measurement of Body Weight and Obesity
During drug treatment, the body weight and body length (nasal-anal
length) of each rat were recorded weekly. Lee’s index was examined
to evaluate the magnitude of obesity. The greater Lee’s index means
more serious obesity. Lee’s index was calculated according to the
following formula (Bernardis and Patterson, 1968; Lei et al., 2007):

Lee’s index = body weight (g)"”* x 10° / body length (cm).

After drug treatment for 6 weeks, all rats were sacrificed, and
the liver, spleen, kidney and abdominal adipose tissues were
excised and weighed. The coefficient of tissue to body weight
was also investigated to estimate the magnitude of obesity
according to the following formula (Zhu et al., 2019):

Organ coefficient = organ weight (mg)/body weight (g).

Measurement of Insulin Sensitivity and
Serum Cholesterol, Triglyceride, LDL-C and
HDL-C Levels

The blood samples from all rats were collected and centrifuged
(4°C, 900 x g, 10 min) to obtain serum. The levels of cholesterol,
triglyceride, LDL-C, HDL-C, insulin and glucose in serum were
measured according to the manufacturers’ instructions.

The insulin sensitivity index (ISI) and homeostasis model
assessment-insulin resistance (HOMA-IR) were calculated
according to the following formula (Xiaohong and Wei, 2004):

ISI = Ln(glucose x insulin)~*
HOMA-IR = glucose x insulin/22.5

Histological Examination

After rats were sacrificed, the liver tissues from all rats were cut into
small pieces, fixed with 10% buffered formalin overnight and then
imbedded in paraffin. After deparaffinization and dehydration, the
liver tissue was sectioned at 3 um thickness and stained with
hematoxylin and eosin for histological examination.

Western Blot Assay of Liver Tissues and
LO2 Cells

The total protein of liver tissue and LO2 cells was extracted by
radioimmunoprecipitation assay buffer (RIPA) lysis buffer according

to the manufacturers’ instructions. After the protein concentration
was measured by the BCA protein assay kit (Thermo Fisher,
Massachusetts, United States), equal amounts of protein were
loaded onto 10% sodium dodecyl sulphate—polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinylidene
difluoride (PVDF) membranes by an electrophoresis system (Bio-
Rad Laboratory, California, United States). PVDF membranes were
blocked with tris-buffered saline containing 5% non-fat milk for 1.5 h
at room temperature. Then the membranes were probed with
primary antibodies against AMPK, p-AMPK (Thrl172), mTOR,
p-mTOR (Ser2448), p62, Atg7, Atg5, Atgl2, Atgl3, Atgl6Ll and
LC3-1l/l at 4°C overnight and incubated with horseradish peroxidase-
conjugated secondary antibody for 1h at room temperature. The
immunoreactive bands were developed by using enhanced
chemiluminescence Western blotting detection reagent.

Quantitative Real-Time PCR Assay of LO2

Cells
The total RNA was isolated from LO2 cells by RNAiso Plus
(Takara, Shiga, Japan) and dissolved in RN Aase-free water. Then
mRNA was reverse transcribed to cDNA according to the
manufacturers’ instructions: 42°C for 15 min, 95°C for 3 min
and held at 4°C. Then cDNA was used for real-time polymer
chain reaction (PCR) by 7500 Real-Time PCR Detection System
(ABI, United States). The real-time PCR conditions: 95°C for
3 min, followed by 40 cycles of 95°C for 5 sec and 60°C for 32 sec.
The following primers used in this study were listed in Table 2.
Relative quantification of mRNA level was calculated by using
the comparative Ct method with B-actin as the reference gene.

Statistical Analysis

All data were expressed as mean + standard deviation (SD).
Statistical analysis was performed by SPSS 17.0 statistical
software. One-way analysis of variance (ANOVA) and
Dunnett’s post hoc test were used for multiple comparisons.
P-values less than 0.05 were considered as statistically significant.

RESULTS
KD-Compound-Target Network Analysis

The compound-target network was constructed by using
Cytoscape 3.7.2. In the network, the gray nodes represent the
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FIGURE 1 | Network pharmacology analysis of KD in the treatment of metabolic syndrome. (A) Compound-target network of KD. The network included 52
compounds and 145 proteins, and contained 197 nodes and 554 edges. (B) PPl network of the identified targets. (C) The hub target of KD in the treatment of metabolic
syndrome.
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TABLE 3 | The ingredients in KD-compound-target network.
Drug Mol ID

MOL022222
MOL000033
MOL000049
MOL000072
MOL000028
MOL013253
MOL002881
MOL002917
MOL001506
MOL002268
MOL002281
MOL000449
MOL000471
MOL006472
MOL006475
MOL006481
MOL006482
MOL006486
MOL006489
MOL005043
MOL006465
MOL006466

Atractylodes macrocephala Koidz.

Citrus mediica L. var. Sarcodactylis Swingle

Cassia obtusifolia L.

Ecklonia kurome Okam.

MOLO10615
MOLO10616
MOL010617
MOLO10625
MOL001439
MOL009622
MOLO00001
MOL000002
MOL000003
MOL000004
MOLO00005
MOLO00006
MOLO000007
MOLO00008
MOLO00009
MOLO00012
MOL000013
MOL000414
MOLO00015
MOLO00016
MOLO00017
MOLO00019
MOLO000022
MOL000023
MOL000025
MOL000026
MOL000029
MOLO00030
MOLO000031
MOL000020

Crataegus pinnatifida Ege.

chemical compound of Atractylodes macrocephala Koidz., the
pink nodes represent the chemical compound of Cassia
obtusifolia L., the yellow nodes represent the chemical
compound of Ecklonia kurome Okam., the green nodes
represent the chemical compound of Crataegus pinnatifida
Ege., the blue nodes represent the chemical compound of
Citrus medica L. var. Sarcodactylis Swingle, and the light blue
nodes represent the target protein. The compound-target

Kun-Dan Alleviates Insulin Resistance

Ingredients

14-acetyl-12-senecioyl-2E,8Z,10E-atractylentriol
(248)-24-Propylcholesta-5-ene-3beta-ol
3B-Acetoxy-atractylone

8B-Ethoxy atractylenolide IlI

a-Amyrin
5,2’,5’-Trihydroxy-6,7,8-trimethoxyflavone
Diosmetin
5,2’,6’-Trihydroxy-7,8-dimethoxyflavone
Supraene

Rhein

Toralactone

Stigmasterol

Aloe-emodin

Aurantio-obtusin
1,7-Dihydroxy-2,3,8-trimethoxy-6-methylanthracene-9,10-dione
Gluco-obtusifolin

isotoralactone

Obtusin

Quinizarin

Campest-5-en-3beta-ol
Rubrofusarin-6-beta-gentiobioside
Rubrofusarin

Saringosterol

Eckol

Eicosapentaenoic acid
24-Methylenecholesterol

Arachidonic acid

Fucosterol
1,3,4-trimethyl-3-cyclohexene-1-carboxaldehyde
1-ethyl-4,8-dimethoxy-beta-carboline
2-heptanol

2-methylcyclopentanone
3,7,11-trimethyldodeca-1,7,10-trien-3-0l-9-one
3-methyl-1,2-cyclopentanediol
3-methylhistidin
4-methylcyclohexanone
4-p-menthane-1,7,8-triol

Ascorbic acid

Caffeic acid dimethyl ether

Caffeic acid

Chlorogenin

Citronellal

Crataequinones A

Dimethyl camphorate

Ethylnotopterol
Gamma-decanolactone
Methyl-n-nonylketone
Methylheptenone

Proscillaridin a

Succinic acid

Suchilactone

Epicatechin

network includes 52 compounds and 145 proteins, and also
contains 197 nodes and 554 edges (Figure 1, Table 3).

Hub Target Identification

The PPI network of KD is shown in Figure 1B, including 145
nodes and 1538 edges. Three topological features of each node in
the network were calculated to find the major nodes. Therefore,
29 nodes with an average value of degree >30, node betweenness
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FIGURE 2 | GO functional enrichment analysis and KEGG pathway analysis. (A) GO enrichment analysis for biological process; (B) GO enrichment analysis for
molecular function; (C) GO enrichment analysis for cellular component; (D) KEGG pathway analysis of these targets.

>100, and closeness >0.4 were considered as major nodes
(Figure 1C and Table 4).

GO Enrichment Analysis and KEGG
Pathway Analysis

To explore the underlying mechanism of KD in the treatment of
metabolic syndrome, we performed a GO enrichment analysis for
biological process, molecular function, and cellular component. As
shown in Figure. 2A, the top 10 enrichment results of biological
process include response to nutrient levels (GO:0031667), steroid
metabolic process (GO:0008202), regulation of inflammatory
response (GO:0050727), response to lipopolysaccharide (GO:

0032496), response to molecule of bacterial origin (GO:0002237),
lipid localization (GO:0010876), fatty acid metabolic process (GO:
0006631), response to steroid hormone (GO:0048545), reactive
oxygen species metabolic process (GO:0072593) and multicellular
organismal homeostasis (GO:0048871). As shown in Figure 2B, the
top 10 enrichment results of molecular function include nuclear
receptor activity (GO:0004879), ligand-activated transcription factor
activity (GO:0098531), steroid hormone receptor activity (GO:
0003707), steroid binding (GO:0005496), phosphatase binding
(GO:0019902), oxidoreductase activity (GO:0016705), hormone
binding (GO:0042562), protein phosphatase binding (GO:
0019903), RNA polymerase II-specific DNA-binding transcription
factor binding (GO:0061629) and catecholamine binding (GO:
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TABLE 4 | Topological features of major nodes.

Major nodes

L6
AKT1
TNF
PPARG
PTGS2
STAT3
NOS3
CCND1
ACE
NR3C1
CASP3
HPGDS
AR
CCL2
MMP9
HSP90AA1
MAPK14
REN
IL1B
JUN
ESR1
JAK2
MAPK8
RELA
MTOR
IGF1R
VCAM1
PGR
ICAM1

89
81
72
56
62
55
52
46
43
38
62
34
39
50
52
44
44
37
50
58
49
35
54
42
42
31
40
30
42

Degree

Betweenness

2278.7522
1855.6619
854.31415
749.75684
728.0817
635.48035
570.5138
566.0214
535.50684
509.63333
500.67346
485.54797
401.8193
374.3773
372.92267
351.3244
351.1595
349.07602
347.06134
342.99088
333.72092
299.31857
256.67966
255.89087
243.29268
207.61827
174.15485
138.3102
120.25023

Closeness

0.72
0.6956522
0.6635945
0.6180258

0.62608695
0.6
0.6075949
0.5714286
0.566916994
0.5647059
0.62882096
0.55172414
0.55813956
0.5925926
0.5877551
0.5714286
0.56692916
0.5475285
0.5925926
0.61538464
0.5925926
0.5475285
0.60504204
0.5625
0.5714286
0.53333336
0.55598456
0.53136533
0.5625

1901338). As shown in Figure 2C, the top 10 enrichment results of
cellular component include membrane raft (GO:0045121),
membrane microdomain (GO:0098857), membrane region (GO:

Kun-Dan Alleviates Insulin Resistance

0098589), external side of plasma membrane (GO:0009897), RNA
polymerase II transcription regulator complex (GO:0090575),
caveola (GO:0005901), ficolin-1-rich granule (GO:0101002),
ficolin-1-rich granule lumen (GO:1904813), neuronal cell body
(G0:0043025) and cytoplasmic vesicle lumen (GO:0060205).

140 target-enriched KEGG pathways were analyzed in our
study. And the top 20 pathways are demonstrated in Figure 2D.
Some pathways are closely related to metabolic syndrome,
including advanced glycation end products (AGE)-receptor of
AGE (RAGE) signaling pathway in diabetic complications
(hsa04933), fluid shear stress and atherosclerosis (hsa05418),
TNF signaling pathway (hsa04668), adipocytokine signaling
pathway (hsa04920), insulin resistance (hsa04931) and non-
alcoholic fatty liver disease (hsa04932).

HPLC Analysis of KD

Chromatogram of KD is depicted in Figure 3. Hyperoside, hesperidin,
scoparone, atractylenolide |1, atractylenolide | and chrysophanic acid
are identified in KD by comparing the retention time and UV spectra
of reference standards. Hyperoside is derived from Crataegi Fructus.
Hesperidin and scoparone are derived from Fructus Citri
Sarcodactylis. Atractylenolide Il and atractylenolide | are derived
from Rhizoma Atractylodis Macrocephalae, and chrysophanic acid
is derived from Semen Cassiae.

KD Enhances Insulin Sensitivity in

Insulin-Resistant LO2 Cells

Impaired glucose tolerance is a key characteristic of insulin
resistance. Therefore, the glucose uptake and consumption of
LO2 cells were determined in our study. Compared with the
control group, glucose uptake was remarkably inhibited in

OH
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FIGURE 3 | HPLC analysis of main components in KD.
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FIGURE 4 | KD activates hepatic autophagy to improve the glucose and lipid metabolism in LO2 cells. LO2 cells were incubated in DMEM with 0.5% fatty acid-free BSA or
oleic acid (0.25 mM) in the presence of KD (100, 200 and 400 pg/mi) or metformin (5 mM) for 24 h. 2-NBDG and glucose oxidase and peroxidase assay were used to analyze the
glucose uptake (A) and consumption (B) of oleic acid-induced LO2 cells. Oil red O staining was performed to evaluate the lipid accumulation of insulin-resistant cells (C,D).
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in each group). #P < 0.01 compared with the control group, *P < 0.05, P < 0.01 compared with the model group.
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FIGURE 6 | 3-MA weakens the therapeutic effect of KD on insulin resistance in LO2 cells. LO2 cells were incubated in DMEM with 0.5% fatty acid-free BSA or oleic
acid (0.25 mM) for 24 h, and then were pretreated with 3-MA (5 mM) for 1 h and were treated with or without KD (200 and 400 pg/ml) for 24 h. The glucose consumption
of hepatocytes (A); The intercellular triglyceride (B), LDL-C (C) and HDL-C (D) contents of oleic acid-induced hepatocytes; The autophagy flux of hepatocyte (E and O);
the oil red O staining of oleic acid-induced hepatocytes (M,N); Western blot analysis for p62 (F), Atg5 (G), Atg7 (H), Atg13 (I), LC3-1I/1 (J), AMPK, p-AMPK (Thr172)
(K), mTOR and p-mTOR (Ser2448) (L) (P,Q). Data were presented as mean + SD (n = 3in each group). “P < 0.01 compared with the control group, *P < 0.05, **P < 0.01
compared with the model group.

insulin-resistant cells, which were manifested by significantly
reduced fluorescence density and area (Figure 4A). However, we
found that KD treatment concentration-dependently enhanced the
glucose uptake in oleic acid-induced cells (Figure 4A). As shown in
Figure 4B, the glucose consumption of insulin-resistant LO2 cells is
also lower than LO2 cells without insulin resistance. As we expected,
KD at doses of 200 and 400 pg/ml significantly enhanced the glucose
consumption of insulin-resistant LO2 cells and showed a dose-
dependent manner (Figure 4B). Taken together, these results
suggest that KD possesses the ability to enhance insulin
sensitivity in insulin-resistant LO2 cells.

KD Prevents Lipid Accumulation in

Insulin-Resistant Cells
Growing evidence has shown that lipid accumulation in
hepatocytes is the principal risk of insulin resistance.

Therefore, we analyzed intercellular triglyceride, LDL-C and
HDL-C contents to evaluate the inhibitory effect of KD on
lipid accumulation in insulin-resistant LO2 cells. The results of
oil red o staining showed that KD at doses of 200 and 400 pg/ml
dramatically prevented the lipid accumulation in insulin-resistant
cells (Figures 4C-D). Intercellular triglyceride (Figure 4E) and
LDL-C (Figure 4F) contents were also inhibited by KD, whereas
HDL-C (Figure 4G) expression was significantly increased by
KD. In a word, KD can prevent the lipid accumulation in
hepatocytes, which may contribute to the treatment of insulin
resistance.

KD Activates Autophagy to Improve Insulin

Resistance in Hepatocytes
Growing evidence shows that impaired autophagy is
responsible for hepatic insulin resistance (Shiwei et al,,
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2014). To elucidate the
autophagy in the treatment of insulin resistance by KD, we
determined the autophagic flux and related protein
expressions of hepatocytes by adenoviruses expressing
mRFP-GFP-tagged LC3 and western blot assay. Consistent
with previous studies, autolysosomes (red puncta) were
significantly increased by KD, indicating that KD could

underlying mechanism of

effectively enhance the autophagy flux of insulin-resistant
LO2 cells (Figures 4H,I). We also observed that KD
dramatically increased the gene expressions of ULKI1
(Figure 5C), Atg5 (Figure 5D), Atg7 (Figure 5E), Atgl3
(Figure 5F) and LC3 (Figure 5G) in hepatocytes. The
western blot results also showed that KD observably
increased the protein expressions of p-AMPK (Figure 5J),
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FIGURE 7 | Rapamycin strengthens the therapeutic effect of KD on insulin resistance in hepatocytes. LO2 cells were incubated in DMEM with 0.5% fatty acid-free

BSA or oleic acid (0.25 mM) for 24 h, and then were pretreated with RAP (100 nM) for 1 h and were treated with or without KD (200 and 400 pg/ml) for 24 h. (A) The
glucose consumption of hepatocytes; (B-D) The intercellular triglyceride, LDL-C and HDL-C contents of oleic acid-induced hepatocytes; (E-F) The oil red O staining of
oleic acid-induced hepatocytes; (G-H) The autophagy flux of hepatocytes; (I-Q) Western blot analysis for p62 (I), Atg5 (J), Atg7 (K), Atg13 (L), LC3-11/1 (M), AMPK,
p-AMPK (Thr172) (N), mTOR and p-mTOR (Ser2448) (0). Data were presented as mean + SD (n = 3 in each group). #P < 0.01 compared with the control group, *P <
0.05, *P < 0.01 compared with the model group.

Atg5 (Figure 5M), Atg7 (Figure 5N), Atgl3 (Figure 50) and  Taken together, we speculate that autophagy may play
LC3-1l/l (Figure 5P), and inhibited p-mTOR (Figure 5K) and  an important role in the treatment of insulin resistance
p62 (Figure 5L) expressions in hepatocytes (Figures 5H-I). by KD.
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Figure 7. | (Continued).

3-Methyladenine Reverses the Effect of KD

on Insulin Resistance

To confirm the role of autophagy in the treatment of insulin
resistance by KD, autophagy inhibitor 3-MA was used to verify
the molecular mechanism. As exhibited in Figure 6A, 3-MA
significantly inhibits KD-promoted glucose consumption in
insulin-resistant hepatocytes. And 3-MA also increased
intercellular  triglyceride (Figure 6B) and LDL-C
(Figure 6C), inhibited intercellular HDL-C (Figure 6D) and
deteriorated the lipid accumulation in hepatocytes (Figures
6M,N) in the presence of KD. Mechanistically, 3-MA
remarkably prevented KD-promoted autophagy flux
(Figures 6E,O), and inhibited the protein expressions of

Atg5 (Figure 6G), Atg7 (Figure 6H), Atgl3 (Figure 6I) and
LC3-1l/I (Figure 6]), and increased p62 protein expression
(Figure 6F) (Figures 6P,Q). However, the protein expressions
of p-AMPK and p-mTOR were not affected by 3-MA (Figures
6K,L,P,Q). These results confirm the key role of autophagy in
the therapeutic effect of KD on insulin resistance.

Rapamycin Enhances the Therapeutic
Effect of KD on Insulin Resistance

Autophagy activator rapamycin (RAP) was also used to verify the
therapeutic effect of KD on insulin resistance in our study. As
demonstrated in Figure 7A, RAP (100 nM) further heightens
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KD-promoted glucose consumption in insulin-resistant
hepatocytes. And RAP also further inhibited intercellular
triglyceride (Figure 7B) and LDL-C (Figure 7C) expressions,
promoted intercellular HDL-C content (Figure 7D), and
attenuated the lipid accumulation in hepatocytes (Figures
7E-F) in the presence of KD. Mechanistically, rapamycin
could cooperate with KD to further enhance autophagic
activation (Figures 7G,H). The western blot analysis also
revealed that RAP could further promote the protein
expressions of Atg5 (Figure 7J), Atg7 (Figure 7k), Atgl3
(Figure 7L), LC3-Il/I (Figure 7M) and p-AMPK (Figure 7N),

and inhibit p-mTOR (Figure 70) and p62 (Figure 7I)
expressions (Figures 7I-Q). These results indicate that
autophagy should be the critical mechanism of KD in the
treatment of insulin resistance.

Atg7 Deficiency Impairs the Therapeutic
Effect of KD on Insulin Resistance

To further elucidate the vital role of autophagy in the therapeutic
effect of KD on insulin resistance, we down-regulated the autophagy
gene Atg7 in hepatocytes using small interfering RNA (siRNA). As
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shown in Figure 8, Atg7 siRNA dramatically inhibits KD-promoted
glucose consumption in insulin-resistant hepatocytes (Figure 8A),
increases intercellular triglyceride (Figure 8B) and LDL-C levels
(Figure 8C), and inhibits intercellular HDL-C (Figure 8D) contents
and deteriorates the lipid accumulation in hepatocytes in the
presence of KD (Figures 8L]J). Mechanistically, Atg7 siRNA
remarkably prevented KD-promoted autophagy flux (Figures
8P,Q), and inhibited the gene expressions of Atgl2 (Figure 8E),
Atgl6Ll (Figure 8F) and LC3 (Figure 8G), and suppressed the
protein expressions of Atg5 (Figure 8H), Atg7 (Figure 8K), Atgl2
(Figure 8L), Atgl6L1 (Figure 8M) and LC3-I//I (Figures 8N,0). In

conclusion, these results further confirm the key role of autophagy in
the therapeutic effect of KD on insulin resistance.

KD Inhibits Obesity in High-Fat Diet-Fed
Rats

Obesity is a prominent characteristic of metabolic syndrome. In high-
fat diet-fed rats, excessive fat accumulates in the abdomen, kidney,
spleen and liver tissues resulting in an increased weight of these tissues.
Therefore, we attempted to examine the body weight, Lee’s index,
abdominal fat indexes, renal indexes, spleen indexes and liver indexes
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FIGURE 9 | KD improves the obesity and insulin sensitivity of high-fat diet-fed rats. (A) Effect of KD on the body weights of rats. (B) Effect of KD on the Lee’s indexes
of rats. (C) The abdominal fat indexes of rats. (D) The liver indexes of rats. (E) The renal indexes of rats. (F) The spleen indexes of rats. (G) Fasting glucose in blood. (H)
Fasting insulin in blood. (I) Effect of KD on the oral glucose tolerance in rats. (J) Effect of KD on the insulin tolerance in rats. (K) Insulin sensitivity index. (L) HOMA-IR. (M)
The serum triglyceride levels of rats. (N) The serum cholesterol levels of rats. (O) The serum LDL-C levels of rats. (P) The serum HDL-C levels of rats. Data were
presented as mean + SD (n = 7-10 in each group). #P < 0.01 compared with the control group, *P < 0.05, **P < 0.01 compared with the model group.

of high-fat diet-fed rats to assess the therapeutic effect of KD on
obesity. As shown in Figure 9A, at the beginning of treatment, the
body weight of rats in the control group is significantly lower than that
of the model group, metformin group and KD groups, suggesting that
a high-fat diet successfully induces obesity in rats in our study.
After 6 weeks of pharmacotherapy, the body weight of rats in
the metformin group and the KD group (3.0 g/kg) were
obviously attenuated compared with that in the model
group (Figure 9A). Furthermore, we observed that KD at

doses of 1.5 g/kg and 3.0 g/kg could markedly attenuate the
Lee’s indexes of high-fat diet-fed rats (Figure 9B).

We also found that KD (1.5 and 3.0 g/kg) significantly
suppressed the abdominal fat indexes (Figure 9C), liver
indexes (Figure 9D), and renal indexes (Figure 9E) of high-
fat diet-fed rats. However, no significant difference was observed
in the spleen indexes (Figure 9F) between each group. In a word,
these results suggest that KD can effectively suppress the obesity
of high-fat diet-fed rats.
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KD Enhances Insulin Sensitivity in High-Fat
Diet-Fed Rats

Insulin resistance is the pathobiologic basis of metabolic
syndrome. There is a growing consensus that enhancing
insulin sensitivity is an important therapeutic strategy for
metabolic syndrome. Therefore, fasting insulin and glucose,
OGTT and ITT were examined to investigate the effect of KD
on the insulin sensitivity of high-fat diet-fed rats. As shown in
Figures 9G-H, the fasting glucose and insulin are prominently

increased in the model group (Figures 9G-H). After 6 weeks of
pharmacotherapy, the fasting glucose and insulin of rats in KD
groups (1.5 g/kg and 3.0 g/kg) were significantly inhibited and
showed a dose-dependent manner (Figures 9G-H). In OGTT,
the impaired glucose tolerance of high-fat diet-fed rats in the
model group was recorded (Figure 91I). However, compared with
the model group, KD obviously reduced the blood glucose levels
of high-fat diet-fed rats, indicating improved glucose tolerance
(Figure 91). In addition, KD dramatically improved the glucose
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utilization capacity, indicating that improved insulin tolerance when
compared with the model group (Figure 9J). Furthermore, we
investigated the insulin sensitivity index and HOMA-IR of high-
fat diet-fed rats to evaluate the effect of KD on insulin sensitivity.
Compared with the control group, the insulin sensitivity index
(Figure 9K) of rats in the model group was prominently
inhibited and the increased HOMA-IR (Figure 9L) was also
found in the model group. These results indicated that a high-fat
diet successfully induced insulin resistance in rats in our study.
Interestingly, after 6 weeks of pharmacotherapy, KD effectively
enhanced the insulin sensitivity index (Figure 9K) and inhibited
the HOMA-IR (Figure 9L) in high-fat diet-fed rats. Taken together,
these findings indicate that KD exerts an enhancing effect on insulin
sensitivity in high-fat diet-fed rats, which might be beneficial to the
treatment of metabolic syndrome.

KD Inhibits Hyperlipidemia in High-Fat
Diet-Fed Rats

Increasing evidence shows that increased serum cholesterol,
triglyceride and LDL-C content and reduced serum HDL-C level
are found in metabolic syndrome patients. Considering that KD can
significantly attenuate the obesity of high-fat diet-fed rats, we further
investigated the effect of KD on the serum cholesterol, triglyceride,
LDL-C and HDL-C concentrations of high-fat diet-fed rats. As
depicted in Figure 9, compared with the control group, the serum
triglyceride (Figure 9M), cholesterol (Figure 9N) and LDL-C levels
(Figure 90) of the rats in the model group are remarkably elevated.
Conversely, KD (1.5 g/kg and 3.0 g/kg) and metformin (100 mg/kg)
had significant inhibitory activity on the overexpression of serum
triglyceride (Figure 9M), cholesterol (Figure 9N) and LDL-C levels
(Figure 90). Meanwhile, KD (1.5 g/kg and 3.0 g/kg) also enhanced
the expression of serum HDL-C (Figure 9P) compared with the
model group. These results indicate that KD effectively inhibits
hyperlipidemia in high-fat diet-fed rats.

KD Prevents Hepatic Steatosis in High-Fat
Diet-Fed Rats

As shown in Figure 10A, hepatocytes with central nuclei radiate
from the central vein lined by flat endothelial cells in the control
group. Pathological evaluation of liver tissues from the model
group manifested many features of hepatic steatosis, including
intumescent hepatocytes with eccentric nuclei, plentiful lipid
droplets and fatty degenerations with granular cytoplasm.
Consistent with the inhibitory effect of hyperlipidemia, KD at
doses of 1.5 and 3.0g/kg significantly attenuated the
accumulation of lipid droplets in the liver tissues. However,
KD at a dose of 0.75g/kg could not effectively inhibit the
hepatic steatosis of high-fat diet-fed rats.

KD Activates AMPK/mTOR Signaling
Pathway to Trigger Autophagy

To gain insight into the molecular mechanism of KD in the
treatment of metabolic syndrome, we further examined the

Kun-Dan Alleviates Insulin Resistance

expression of AMPK/mTOR signaling pathway in liver tissues
of high-fat diet-fed rats. Compared with the control group, the
protein expressions of p-AMPK (E), Atg7 (F), Atgl3 (H), Atg5 (I)
and LC3-1l/I (J) were remarkably inhibited in the model group,
and p-mTOR (D) and p62 (G) protein expressions were increased
(Figures 10B-J). However, metformin (100 mg/kg) or KD (1.5
and 3.0 g/kg) efficiently increased the protein expressions of
p-AMPK (E), Atg7 (F), Atgl3 (H), Atg5 (I) and LC3-II/I (]),
and inhibited p-mTOR (D) and p62 (G) protein expressions.
Nevertheless, there were no statistically significant differences in
the protein expressions of total AMPK and mTOR among all
groups. These results suggest that autophagy may be the critical
molecular mechanism of KD in the treatment of metabolic
syndrome.

DISCUSSION

Metabolic syndrome is described as a cluster of metabolic alterations
including insulin resistance, hyperglycemia, hyperlipidemia,
hypertension and obesity. Nowadays, it is generally believed that
metabolic syndrome is a risk factor for type 2 diabetes mellitus,
cardiovascular disease and cancer. Now, about 20% of adults suffer
from metabolic syndrome worldwide (Kuo et al, 2019).
Encouragingly, more and more medicinal and edible herbs
have shown therapeutic effects on metabolic syndrome. Kun-
Dan (KD), comprising Atractylodes macrocephala Koidz.,
Crataegus pinnatifida Ege., Citrus medica L. var. Sarcodactylis
Swingle, Cassia obtusifolia L. and Ecklonia kurome Okam., has
been used to treat patients with metabolic syndrome for more
than ten years. However, the underlying mechanism of KD in
the treatment of metabolic syndrome remains unclear. More
and more evidence verifies that impaired autophagy plays a
critical risk role in the pathogenesis of metabolic syndrome
(Hyejin et al., 2018; Kosacka et al., 2018). Therefore, in this
study, we established a rat model of metabolic syndrome and
insulin-resistant LO2 cells to explore the role of autophagy in
the treatment of metabolic syndrome by KD.

Traditional Chinese medicine is a valuable therapeutic strategy
and drug resource for the treatment of metabolic disorders
including metabolic syndrome, type 2 diabetes and insulin
resistance (Li et al, 2014; Pan and Kong, 2018; He et al,
2019). However, it is a challenge to explore the active
ingredients of traditional Chinese medicine and their potential
molecular mechanisms. Recently, traditional Chinese medicine
network pharmacology has been put forward, which will provide
a new research paradigm for the transformation of traditional
Chinese medicine empirical medicine to an evidence-based
medical system, which will accelerate the discovery of
traditional Chinese medicine (Li et al.,, 2010; Li, 2011; Li and
Zhang, 2013).

First, we take advantage of network pharmacology to explore
the molecule mechanism of KD in the treatment of metabolic
syndrome. In our research, we obtained 52 chemical ingredients
for KD and predicted 145 potential targets. The KEGG analysis
indicated that KD treated metabolic syndrome by regulating
certain signaling pathways including AGE-RAGE signaling
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pathway in diabetic complications (hsa04933), TNF signaling
pathway  (hsa04668), adipocytokine signaling pathway
(hsa04920), insulin resistance (hsa04931) and non-alcoholic
fatty liver disease (hsa04932). In a word, results from network
pharmacology suggest that insulin resistance may be the key
molecule mechanism of KD in the treatment of metabolic
syndrome. Accordingly, considering the important role of
insulin resistance in the pathogenesis of metabolic syndrome,
we wanted to confirm the role of insulin resistance in the
treatment of metabolic syndrome by KD.

In general, insulin stimulates glucose disposal in adipose and
muscle tissues, and suppresses hepatic glycogenolysis and
gluconeogenesis to maintain glucose homeostasis. In the case
of insulin resistance, normal circulating levels of insulin are
inadequate to elicit normal insulin responses in adipose,
muscle and liver tissues, resulting in hyperglycemia and
hyperlipidemia, ultimately metabolic syndrome (Reza and
Khosrow, 2009).

In the insulin-resistant cell model, we found that KD
effectively enhanced insulin sensitivity and inhibited lipid
accumulation in insulin-resistant LO2 cells. Mechanistically,
we observed that KD could restore AMPK/mTOR-mediated
autophagy to improve the glucose and lipid metabolism of
insulin-resistant LO2 cells. Moreover, autophagy activator
RAP, inhibitor 3-MA and Atg7 siRNA were used to verify
the role of AMPK/mTOR-mediated autophagy in the
treatment of metabolic syndrome by KD. In our study, we
observed that RAP could enhance the therapeutic effect of KD
on the glucose and lipid metabolism of insulin-resistant LO2
cells. However, 3-MA could inhibit the autophagy of insulin-
resistant LO2 cells to overthrow the therapeutic effect of KD
on glucose and lipid metabolism in insulin-resistant LO2 cells.
Moreover, when we knocked out the Atg7 gene in LO2 cells,
the therapeutic effect of KD on the glucose and lipid
metabolism in insulin-resistant LO2 cells was attenuated.
Therefore, we speculate that AMPK/mTOR-mediated
autophagy plays a key role in the treatment of metabolic
syndrome by KD.

Our study also revealed that KD effectively decreased the body
weight, liver indexes, renal indexes and abdominal fat indexes of
high-fat diet-fed rats, suggesting that KD could significantly inhibit
the obesity of high-fat diet-fed rats. And reduced serum glucose,
insulin, cholesterol, triglyceride and LDL-C levels and enhanced
serum HDL-C level were observed in high-fat diet-fed rats treated by
KD. Moreover, KD also enhanced ISI and inhibited HOMA-IR of
high-fat diet-fed rats. Mechanistically, we confirm that KD can
activate AMPK/mTOR-mediated autophagy to treat metabolic
syndrome in high-fat diet-fed rats.

Recent research indicates that a high-fat diet is a critical risk
factor for metabolic syndrome. The rat model of metabolic
syndrome is characterized by obesity, hyperinsulinemia and
hyperlipidemia, which are the common clinical features of
patients with metabolic syndrome. Therefore, a rat model of
high-fat diet-induced metabolic syndrome is extensively
considered as an ideal and reproducible pharmacological
research model (Ruedaclausen et al., 2011; Nascimento et al.,
2013). So, we used a rat model of high-fat diet-induced metabolic
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syndrome to probe into the therapeutic effect of KD on metabolic
syndrome in our study.

Obesity is a very important feature of metabolic syndrome
(Gepstein and Weiss, 2019). And overexpression of serum
cholesterol, triglyceride and LDL-C is also important
symptoms in patients with metabolic syndrome (Basu, 2019).
In our study, after 12 weeks of high-fat diet, the obesity of rats in
the model group increased significantly. Interestingly, after
6 weeks of pharmacotherapy, KD could obviously inhibit the
obesity of high-fat diet-fed rats, which were manifested by
decreased body weight, Lee’s indexes and abdominal fat, renal
and liver indexes. We also found that the serum cholesterol,
triglyceride and LDL-C levels in high-fat diet-fed rats were
significantly increased when compared with the control group.
Nevertheless, KD also markedly inhibited the expressions of
serum cholesterol, triglyceride and LDL-C in high-fat diet-fed
rats. Research has shown that HDL-C has the capacity to promote
the elimination of cholesterol to prevent metabolic disorders. In
our study, we observed that KD reversed the decrease in HDL-C
expression in high-fat diet-fed rats. Consistent with the results of
animal experiments, KD also prevented lipid accumulation and
intercellular triglyceride and LDL-C levels in oleic acid-induced
LO2 cells. Taken together, these results suggest that KD can
prevent obesity and hyperlipidemia in high-fat diet-fed rats.

Current evidence suggests that insulin resistance plays a
critical role in the pathogenesis of metabolic syndrome
(Adnan et al.,, 2019). Therefore, enhancing insulin sensitivity is
widely considered as an effective treatment strategy for metabolic
syndrome. Impaired glucose tolerance is the most conspicuous
hallmark of insulin resistance. Results of OGTT and ITT showed
that a high-fat diet had successfully induced insulin resistance in
rats. After 6 weeks of KD treatment, the glucose tolerance of high-
fat diet-fed rats was considerably improved. Furthermore, we
found KD could evidently inhibit HOMA-IR and increase insulin
sensitivity in high-fat diet-fed rats.

The liver is the most essential organ regulating glycometabolism
and lipid metabolism. Hepatic insulin resistance is a pivotal risk
factor for the onset and progression of metabolic syndrome.
Accordingly, human hepatic cell lines LO2 cells were used to
explore the molecular mechanism of KD in the treatment of
metabolic syndrome. In our study, we observed that KD
distinctly enhanced glucose uptake and consumption in oleic
acid-induced LO2 cells, suggesting an increase in insulin
sensitivity. In conclusion, enhancing insulin sensitivity may be a
critical mechanism for KD to prevent metabolic syndrome.
According to the result of network pharmacology and
experimental results in vitro and in vivo, we confirm the role of
insulin resistance in the treatment of metabolic syndrome by KD.
However, more work still needs to be done to verify the active
ingredients and molecular mechanisms of KD in the treatment of
metabolic syndrome revealed by network pharmacology (Li, 2021).

More and more evidence has confirmed the causality between
autophagy deficiency and the pathogenesis of metabolic
syndrome (Hyejin et al, 2018). Autophagy, a conservative
catabolic process, can degrade excessive fatty acids and
damaged organelles by lysosome to maintain cellular energy
homeostasis. It is well documented that autophagy deficiency
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can induce metabolic syndrome by causing endoplasmic
reticulum stress and mitochondrial dysfunction (Mizushima
and Komatsu, 2011; Hyejin et al, 2018). Accordingly,
plentiful autophagy activators have been employed to treat
metabolic syndrome (Kim et al., 2014; Lim et al., 2014). The
findings in our study are in line with previous reports that the
enhancement of autophagic activity may be a novel therapeutic
approach for metabolic syndrome. In our study, we found that
KD could activate autophagic activity to improve the metabolic
profile of oleic acid-induced LO2 cells and high-fat diet-fed rats.
3-MA, an autophagy inhibitor, could aggravate oleic acid-
induced insulin resistance in LO2 cells by preventing KD-
promoted autophagic activity. As we expect, RAP, an
autophagy activator, could cooperate with KD to enhance
autophagic activity to further improve oleic acid-induced
insulin resistance in LO2 cells. These findings are confirmed
by silencing Atg7 gene using small interfering RNA, which
significantly reverses the therapeutic effect of KD on
metabolic syndrome, which were manifested by aggravated
insulin resistance and lipid accumulation in oleic acid-
induced LO2 cells. Accordingly, it is concluded that the
enhancement of autophagic activity may be the key molecular
mechanism of KD in the treatment of metabolic syndrome.

CONCLUSION

Our results demonstrate that KD improves metabolic syndrome via
activating hepatic autophagy in vivo and in vitro. Our findings also
suggest that KD can be considered as a complementary and
alternative therapy for insulin resistance and metabolic syndrome.
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