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Despite several improvements in the drug development pipeline over the past decade,
drug failures due to unexpected adverse effects have rapidly increased at all stages of
clinical trials. To improve the success rate of clinical trials, it is necessary to identify potential
loser drug candidates that may fail at clinical trials. Therefore, we need to develop reliable
models for predicting the outcomes of clinical trials of drug candidates, which have the
potential to guide the drug discovery process. In this study, we propose an outer
product–based convolutional neural network (OPCNN) model which integrates
effectively chemical features of drugs and target-based features. The validation results
via 10-fold cross-validations on the dataset used for a data-driven approach PrOCTOR
proved that our OPCNN model performs quite well in terms of accuracy, F1-score,
Matthews correlation coefficient (MCC), precision, recall, area under the curve (AUC) of the
receiver operating characteristic, and area under the precision–recall curve (AUPRC). In
particular, the proposed OPCNN model showed the best performance in terms of MCC,
which is widely used in biomedicine as a performance metric and is a more reliable
statistical measure. Through 10-fold cross-validation experiments, the accuracy of the
OPCNN model is as high as 0.9758, F1 score is as high as 0.9868, the MCC reaches
0.8451, the precision is as high as 0.9889, the recall is as high as 0.9893, the AUC is as
high as 0.9824, and the AUPRC is as high as 0.9979. The results proved that our OPCNN
model shows significantly good prediction performance on outcomes of clinical trials and it
can be quite helpful in early drug discovery.
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INTRODUCTION

Over the past 30 years, failures at all phases of clinical trials have increased rapidly for safety
reasons (Ledford, 2011; Hay et al., 2014; Lysenko et al., 2018; Liu et al., 2021). This phenomenon
happens despite significant improvements at all stages of the drug development pipeline
(Scannell et al., 2012). There have been many improvements in screening for drugs that are
likely to fail clinical trials.
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Drug-likeness scores are widely utilized as a useful guideline
for eliminating toxic molecules during the early stages of drug
development. This concept was first introduced by Lipinski’s rule
of five (Ro5), which screens molecules with a low probability of
useful oral activity due to poor absorption or permeation
(Lipinski et al., 1997). That is to say, the Ro5 enhanced the
drug discovery process because it helps in distinguishing between
drug-like and nondrug-like molecules. However, Lipinski argued
that the Ro5 is a very conservative strategy because this rule does
not guarantee drug-likeness (Lipinski, 2004). To enhance the
Ro5, Veber’s rule and Ghose’s rule were proposed (Ghose et al.,
1999; Veber et al., 2002). The quantitative estimate for drug-
likeness (QED) was also recently proposed as an alternative to
rule-based methods (Bickerton et al., 2012).

Despite lots of advances in identifying potentially toxic drugs,
overall failure rates of clinical trials continued to increase (Hay
et al., 2014). To deal with this problem, Gayvert et al. recently
proposed a new data-driven approach PrOCTOR, which predicts
the odds of clinical trial outcomes on the basis of random forests
that integrates chemical properties of drugs and target-based
properties (Gayvert et al., 2016). It was exhibited that both the
chemical features and target-related gene expression values
contribute to effective classification. In this study, we will also
use the chemical features of drugs and target-based features for
predicting successes and failures of clinical trials. Lo et al. applied
machine learning techniques to predict the outcomes of
randomized clinical trials using drug development and clinical
trial data (Lo et al., 2019). Munos et al. improved the prediction of
clinical success using machine learning algorithms based on a
large database of projects (Munos et al., 2020).

Modeling the relationship between chemical structure of drug
andmolecular activity is very important for drug development for
precision medicine. In this study, we employ a novel outer
product–based convolutional neural network (OPCNN) to
integrate effectively chemical features of the drugs, biological
network features, genotype-tissue expression (GTEx) features,
and target loss frequency. The purpose of this research is to
propose a two-dimensional (2D) convolutional neural network
(CNN) based on the outer product of chemical feature vector and
a target-based feature vector to predict successes and failures of
clinical trials.

MATERIALS AND METHODS

Dataset
We evaluated our proposed OPCNN using the same dataset as in
Gayvert et al. (Gayvert et al., 2016), which consists of 757
approved drugs for positive class and 71 failed drugs for
negative class. We notice that the dataset is imbalanced. The
imbalance ratio of majority to minority compounds is 10.662.
The set of 47 input features describing each drug contains 10
molecular properties, 34 target-based properties, and three drug-
likeness rule outcomes for the Lipinski’s rule of five, Veber’s, and
Ghose’s rules. There are several missing values for six features.
We impute them with relevant median values. Molecular
properties represent molecular weight, XLogP, polar surface

area, hydrogen bond donor and acceptor counts, formal
charge, number of rings, rotatable bond count, refractivity,
and logP solubility. For a set of 30 target-based features, we
use the median expression of each drug’s known gene targets in
30 different tissues, including the blood, skin, brain, liver, testis,
muscle, nerve, and heart, calculated from the GTEx project. For
three other target-based features, we use the network connectivity
of the target, with the gene degree feature and betweenness
feature computed using an aggregated gene–gene interaction
network. We also use a feature that represents the loss-of-
function mutation frequency in the target gene.

Model Development
The Proposed OPCNN Classifier
The problem of predicting clinical successes and failures of
clinical trials is modeled as a binary classification task. For a
given drug i, the target label is a binary variable yi, where yi � 1
indicates that the drug is passed and yi � 0 indicates otherwise.
Our dataset contains n � 828 drugs, where each is represented by
a pair of feature vector xi and a corresponding clinical outcome yi:
(xi, yi)ni�1, where xi � (x(1)i , x(2)i ) and x(1)i and x(2)i represent the
chemical feature vector and target-based feature vector,
respectively. The data associated with this task are bimodal
and highly imbalanced. Both modalities are associated with
chemical properties of the drugs and target-based properties,

FIGURE 1 | A workflow of the proposed OPCNN classifier for predicting
successes and failures of clinical trials. Given an outer product of two
representative feature vectors as an input, 2D CNN is used to learn features.
The architecture of OPCNN consists of three residual blocks and five fully
connected (FC) layers. Each residual block has three convolution layers. (A)
OPCNN classifier (B) Residual block.
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respectively. Thus, we need to join effectively two different
modalities. In addition, we also need to consider the model
that deals with class-imbalance problem.

Figure 1 explains the entire workflow of the proposed
OPCNN classifier for the prediction of successes and failures
in clinical trials. Our OPCNN consists of three residual blocks
and five fully connected (FC) layers. Each residual block has three
convolution layers, each of which employs 32 kernels with kernel
size 3 and stride size 1, and the rectified linear unit (ReLU)
activation function. The numbers in parentheses of FC(1),
FC(50), and FC(100) indicate the number of nodes. FC(1)
layer employs the sigmoid activation function. Both FC(50)
and FC(100) layers employ the rectified linear unit (ReLU)
activation function. Our method consists of two stages. First,
the representative feature vectors of chemical feature vector and
target-based feature vector are calculated and then the outer
products between these two representative feature vectors are
calculated. Second, a 2D CNN model is adopted to extract deep
features from the outer products and to predict successes and
failures of clinical trials.

The process of calculating the outer product is as follows. The
chemical feature vector x(1) ∈ R13 and the target-based feature
vector x(2) ∈ R34 in different modalities are first fed into the
FC(50) layer to get representative feature vectors f (1) ∈ R50and
f (2) ∈ R50 and improve their performance. Given f (1) ∈ R50 and
f (2) ∈ R50, the outer product on the augmented unimodal is
calculated as follows:

xf � [ f (1)
1

]⊗[ f (2)
1

] � [ f (1) f (1)⊗f (2)

1 f (2)t
]. (1)

Here, ⊗ indicates the outer product between vectors. Thus, this
outer product produces two sets of information: the bimodal
interactions in the form of two-dimensional tensor and the raw

unimodal representations of the modalities. The tensor calculated
by such outer product is directly fed into the first residual block.
The final representation is used for the classification task.

Other Deep Multimodal Neural Networks
Classification with multimodal data often occurs in many
machine learning applications (Baltrušaitis et al., 2019; Gao
et al., 2020). Multimodal learning is an effective approach to
combine information from multiple modalities to perform a
prediction task. The modalities may be independent or
correlated. Fusing multiple modalities is a key issue in any
multimodal task. In general, the fusion of multiple modalities
can be achieved at three levels: at the level of features or at a lower
layer, at the intermediate level, and at the level of decisions.
Fusion at the feature level or at a lower layer is called early fusion.
On the other hand, fusion at the intermediate layer is called
intermediate fusion, whereas fusion at the level of decisions is
called late fusion. Because early and late fusions can generally
suppress either intra-modality or inter-modality interactions,
recent studies have focused on intermediate methods that
allow fusion to occur on multiple layers of a deep model.

Figure 2 illustrates a graphical representation for deep
multimodal neural network (DMNN) models associated with
the early, intermediate, and late fusions used in the study. As seen
from Figure 2, each DMNN model consists of several FC layers.
The number in parentheses indicates the number of nodes. As in
Figure 1, the FC(1) layer employs the sigmoid activation
function. Both FC(50) and FC(100) layers employ the ReLU
activation function. In the case of early fusion, each modality is
first fed into an FC(50) layer before fusion in order to improve
performance and to apply several fusion techniques. However,
the standard early fusion allows multiple modalities to be directly
concatenated to produce a single multimodal vector. In the case
of intermediate and late fusions, each modality is fed into an

FIGURE 2 | Graphical representation for the early, intermediate, and late fusions. (A) Early fusion (B) Intermediate fusion (C) Late fusion.
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independent deep neural network (DNN) and then fused to be
the inputs of higher layers. The final representation is used for the
classification task.

Based on the literature, five fusion operations are often used to
fuse multiple modalities (Feng et al., 2021): Eq. 1 addition, Eq. 2
product, Eq. 3 concatenation, Eq. 4 ensemble, and Eq. 5mixture
of experts. Addition and product operations are performed in
terms of elements at the fusion layer. Here, we will consider two
more multimodal fusion techniques based on tensor fusion layer
(TFL) (Zadeh et al., 2017) and multimodal circulant fusion
(MCF) (Wu and Han, 2018) for early and intermediate
fusions. When using TFL and MCF for the intermediate
fusion, we actually use the DMNN model with FC(100)-
FC(50) instead of FC(100)-FC(100)-FC(50) for each modality
to improve its performance.

In general, the early fusion approach performs better than
individual unimodal classifiers. The ensemble approach called
late fusion is to weigh several individual classifiers and combine
them to get a classifier that surpasses individual classifiers. In
general, ensemble methods provide better results when there are
significant differences among the models. Therefore, many
ensemble methods try to enhance diversity among the models
to be combined. Based on our preliminary studies, the unimodal
classifiers using only chemical features perform better than
unimodal classifiers using only target-based features. We
actually have tried three different ensemble models using
support vector machine (SVM) (Vapnik, 1995) and one-
dimensional CNN and our DMNN for the late fusion in
Figure 2. Note that our DMNN model uses only
concatenation technique for late fusion. Since our DMNN
ensemble model has shown the best performance, we will only
report those results later.

Tensor Fusion Layer and Multimodal Circulant Fusion
We now briefly illustrate TFL and MCF strategies. Element-wise
addition and product are used to join features from multiple
modalities. Concatenation technique focuses more on learning
intra-modality than learning inter-modality. However, both TFL
and MCF capture both intra-modality and inter-modality
dynamics. TFL also employs the same outer product on the
augmented unimodal as in our OPCNN.

We first illustrate the idea of TFL strategy to fuse multimodal
data at the tensor level. For our studies, we need to build a TFL
that disentangles unimodal and bimodal dynamics. Given
representative feature vectors f (1) ∈ R50 and f (2) ∈ R50

associated with the chemical feature vector x(1) ∈ R13 and the
target-based feature vector x(2) ∈ R34 in different modalities, TFL
calculates the outer product on the augmented unimodal using
the Eq. 1. However, as seen from Figure 2, f (1) ∈ R50 and
f (2) ∈ R50 are obtained slightly differently for the early fusion
and intermediate fusion. Thus, TFL also produces two sets of
information: the bimodal interactions in the form of two-
dimensional tensor and the raw unimodal representations of
the modalities. The tensor calculated by TFL is fed into a FC
layer after being flattened. It is noted that TFL introduces no
learnable parameters. Although TFL yields the high dimensional
output tensor, chances of overfitting are low (Zadeh et al., 2017).

We now briefly illustrate the idea of MCF strategy which
consists of four steps. Given representative feature vectors
f (1) ∈ R50 and f (2) ∈ R50, we first project f (1) and f (2) to a
lower dimensional space using projection matrices W1 ∈ Rd×50
and W2 ∈ Rd×50.

v � W1 f
(1) ∈ Rdand c � W2 f

(2) ∈ Rd , (2)

where d ≤ 50. As in TFL, f (1) ∈ R50 and are obtained slightly
differently for early fusion and intermediate fusion. Second, we
construct circulant matrices A ∈ Rd×d and B ∈ Rd×d using the
projection vector v ∈ Rd and c ∈ Rd .

A � circ(v), B � circ(c), (3)

where circ(b) denotes converting b to a circulant matrix. Third,
we calculate in one of two ways: matrix multiplication between
circulant matrix and projection vector to make elements in this
matrix and vector fully interact. Two ways are illustrated in Eqs.
4, 5.

f � Ac, g � Bv , (4)

f � 1
d
∑d
i�1

ai⊙ c, g � 1
d
∑d
i�1

bi⊙ v. (5)

Here, ai and bi are column vectors of circulant matrices A and B,
respectively. ⊙ denotes the operation of element-wise product. It
is noted that we introduce no new parameters in the
multiplication operation. Finally, we calculate target vector
m ∈ Rk using f , g , and a projection matrix W3 ∈ Rk×d .

m � W3( f⊕g) ∈ Rk. (6)

Here, ⊕ denotes the operation of element-wise addition.

Imbalanced Data Learning
Since the ratio of passed drugs to failed drugs in clinical trials is
highly imbalanced, the class-imbalance problem occurs. There
are generally three types of methods to deal with the imbalance
data learning (Wang et al., 2019). We briefly illustrate the
methods to be actually used in the study. 1) Sampling method:
an intuitive way to cope with the imbalanced distribution of the
data is to balance class distributions via resampling, which could
oversample the minority class and undersample the majority
class. One advanced sampling method called synthetic minority
oversampling technique (SMOTE) creates artificial examples
through interpolating neighboring data points (Chawla et al.,
2002). Several variants of this technique have been proposed.
However, oversampling can lead to overfitting due to repeatedly
visiting the existing minority samples. On the other hand,
undersampling can discard potentially useful information in
majority samples. 2) Cost-sensitive learning method: instead of
balancing class distributions via sampling methods, this method
aims at coping with the abovementioned issues by directly
imposing a heavier cost on misclassifying the minority class.
However, what types of cost to use in different problem settings is
still an open problem. In this study, we use the cost-sensitive
learning method using the class weights (CWs) n/(2 × n+) and
n/(2 × n−) for the positive and negative classes, respectively.
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Recall that the majority class is the positive class and the minority
class is the negative class in the study. Here, n represents the size
of training dataset and n+ and n− represent the sizes of the
positive and negative classes, respectively. 3) Hybrid method: this
is an approach that combines aforementioned two methods. In
the study, we use the combination of SMOTE and CW
techniques.

Classification Evaluation Metrics
To evaluate binary classifications, we can employ various
statistical metrics, accordingly to the goal of the experiment
we are performing. Accuracy and F1-score have been among
the most quintessential metrics for binary classification problems.
Accuracy is a valid evaluation metric for classification problems
which are well balanced and not skewed or no class imbalance. In
general, accuracy can dangerously show overoptimistic inflated
results, especially on imbalanced datasets. F1-score is the
harmonic mean of precision and recall, and thus F1-score
maintains a balance between the precision and recall for
classifier. F1-score is a measure of accuracy, which takes both
false positives and false negatives into account. F1-score is usually
more useful than accuracy especially for imbalanced
classification. Precision and recall are two extremely important
model evaluation metrics. While precision measures the
probability of correct detection of positive values, recall
measures the ability to distinguish between the classes. Area
under the curve (AUC) of the receiver operating characteristic
(ROC) and the area under the precision–recall curve (AUPRC)
are ranking order metrics. AUPRC is often used as evaluation
metrics for imbalanced classes. AUPRC is preferred over AUC.
When comparing performance of classifiers that need to deal with
imbalanced data, F1-score, precision–recall, and AUPRC are
often used out of convenience (Brabec et al., 2020).

The use of inadequate performance metrics, such as accuracy,
lead to poor generalization results because the classifiers tend to
predict the largest size class. Matthews correlation coefficient
(MCC) is widely used in biomedicine as a performance metric.
The MCC is a more reliable statistical measure which produces a
high score only if the prediction obtained good results in all of the
four confusion matrix categories (true positives, false negatives,
true negatives, and false positives), proportional to both the size
of positive elements and the size of negative elements in the
dataset (Chicco and Jurman, 2020; Ietswaart et al., 2020). MCC is
easier to interpret as a correlation coefficient since it takes a value
in the interval [−1, 1], with 1 showing a perfect classifier, –1
showing a perverse classifier, and 0 showing that the prediction is
uncorrelated with the ground truth. MCC is a very good metric
for the imbalanced classification and can be safely used for even
classes that are very different in sizes. It is also shown that MCC
produces a more informative and truthful score in evaluating
binary classifications than accuracy and F1-score (Chicco and
Jurman, 2020). We prefer to use MCC to assess classification
performance in this study.

The performance of the prediction models of successes and
failures of clinical trials is evaluated using the following statistical
metrics: TN (true negative), FN (false negative), TP (true
positive), FP (false positive), PR (precision), RE (recall), ACC

(accuracy), F1-score, MCC, AUC, and AUPRC, which are defined
in the following equations:

PR � TP
TP + FP

, (7)

RE � TP
TP + FN

, (8)

ACC � TP + TN
TP + FN + FP + TN

, (9)

F1 − score � 2 × PR × RE
PR + RE

, and (10)

MCC � TP × TN − FP × FN�����������������������������������(TP + FN)(TP + FP)(TN + FP)(TN + FN)√ . (11)

EXPERIMENTS AND RESULTS

As mentioned before, we use the same dataset as in Gayvert et al.
(Gayvert et al., 2016), which consists of 757 passed drugs for
positive class and 71 failed drugs for negative class. We notice that
the dataset is imbalanced. The imbalance ratio of majority to
minority compounds is 10.662. The dataset used may not have
enough samples for the use of deep learning. We use 10-fold
cross-validation techniques to evaluate classification models. The
folds are stratified based on drugs. That is to say, all experiments
of a single drug are either completely in the training set or
completely in the test set. Thus, a model is expected to predict
the clinical outcomes of previously unseen drugs at test time. We
conduct these 10-fold cross-validation experiments, randomly
splitting ten folds. To obtain reliable performance results, we
repeat the cross-validation 20 times for eachmodel on the dataset,
and report the mean and standard deviation for each metric.

We select OPCNN as a good model for this particular data.
Early experiments with different models did not yield meaningful
results. To take into account the class imbalance, we use cost-
sensitive learning and hybrid methods. We use binary cross
entropy (BCE) as the loss function. We investigate the effect
of employing weighted BCE and SMOTE to address the
imbalance in our training dataset. Adam optimizer is used for
training the neural networks. While the learning rate for Adam
optimizer is tuned separately for each model and dataset pair, the
same set of hyperparameters is used across the folds. We select
hyperparameters such as the number of layers and the number of
nodes for OPCNN and DMNN, which provide the best MCC
value based on a 10-fold cross-validation.

Deep learning models are likely to overfit the training data
since the data used do not have sufficient samples. Therefore, we
consider two conventional machine learningmodels such as SVM
and random forest for comparison since these models alleviate
overfitting by ensemble and regularization techniques,
respectively. 47 input features are first concatenated to be used
as inputs of these two models. For the case of SVM, the
polynomial kernel of degree 3 and penalty constant C � 10 are
selected. It is because this combination provides the best MCC
value based on a 10-fold cross-validation. We have tried with
several polynomial degrees and C values to determine the best
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TABLE 1 | Classification results for various prediction models via a 10-fold cross-validation.

Multimodal
learning

Model ACC F1-score MCC Precision Recall AUC AUPRC

SVM
Early fusion
Concatenation

Base 0.8308***

(0.0053)
0.9055***

(0.0031)
0.1796***

(0.014)
0.9253***

(0.0017)
0.8864***

(0.0054)
0.5622***

(0.0099)
0.9578***

(0.0099)
CW 0.8152***

(0.0075)
0.8956***

(0.0046)
0.1837***

(0.0149)
0.9263***

(0.002)
0.8669***

(0.0079)
0.5658***

(0.0114)
0.9574***

(0.0011)
SMOTE
+ CW

0.7748***

(0.0077)
0.8687***

(0.005)
0.1975***

(0.0157)
0.9297***

(0.0028)
0.8153***

(0.0085)
0.5791***

(0.0145)
0.9569***

(0.0015)
Random
forest
Early fusion
Concatenation

Base 0.9149***

(0.0018)
0.9551***

(0.0009)
0.2018***

(0.0303)
0.9206***

(0.0013)
0.9924***

(0.0016)
0.7019***

(0.0058)
0.9532***

(0.0015)
CW 0.9156***

(0.0022)
0.9556***

(0.0011)
0.1865***

(0.0367)
0.9193***

(0.0012)
0.9950 (0.0018) 0.7125***

(0.0055)
0.9565***

(0.0021)
SMOTE
+ CW

0.8949***

(0.0026)
0.9435***

(0.0014)
0.2484***

(0.0156)
0.9285***

(0.0012)
0.9689***

(0.0023)
0.7045***

(0.0052)
0.9577***

(0.0015)
OPCNN Base 0.9758 (0.0067) 0.9868 (0.0037) 0.8451 (0.0424) 0.9844***

(0.0050)
0.9893***

(0.0058)
0.9824 (0.0102) 0.9979 (0.0015)

CW 0.9539***

(0.0249)
0.9743***

(0.0144)
0.7620***

(0.0854)
0.9866**

(0.0041)
0.9628***

(0.0282)
0.9653***

(0.0247)
0.9952***

(0.0045)
SMOTE
+ CW

0.9329***

(0.0338)
0.9619***

(0.0201)
0.7012***

(0.0909)
0.9889 (0.0048) 0.9373***

(0.0379)
0.9583***

(0.0177)
0.9583***

(0.0177)
DMNN
Early fusion
Addition

Base 0.9653***

(0.0038)
0.9811***

(0.0021)
0.7727***

(0.0250)
0.9760***

(0.0037)
0.9863***

(0.0041)
0.9717***

(0.0061)
0.9968**

(0.0010)
CW 0.9492***

(0.0075)
0.9719***

(0.0042)
0.7238***

(0.0368)
0.9843***

(0.0039)
0.9598***

(0.0065)
0.9660***

(0.0080)
0.9961**

(0.0011)
SMOTE
+ CW

0.9309***

(0.0073)
0.9612***

(0.0043)
0.6740***

(0.0228)
0.9871**

(0.0032)
0.9367***

(0.0089)
0.9551***

(0.0070)
0.9944***

(0.0011)
DMNN
Early fusion
Product

Base 0.9669***

(0.0026)
0.9819***

(0.0014)
0.7880***

(0.0175)
0.9798***

(0.0030)
0.9840***

(0.0031)
0.9748**

(0.0055)
0.9972 (0.0012)

CW 0.9449***

(0.0085)
0.9694***

(0.0048)<
0.7111***

(0.0358)
0.9849***

(0.0028)
0.9544***

(0.0080)
0.9678***

(0.0073)
0.9964**

(0.0011)
SMOTE
+ CW

0.9170***

(0.0090)
0.9529***

(0.0054)
0.6465***

(0.0265)
0.9898 (0.0024) 0.9187***

(0.0095)
0.9560***

(0.0108)
0.9936***

(0.0061)
DMNN
Early fusion
Concatenation

Base 0.9652***

(0.0038)
0.9810***

(0.0021)
0.7715***

(0.0261)
0.9761***

(0.0035)
0.9861***

(0.0031)
0.9751***

(0.0063)
0.9973 (0.0008)

CW 0.9473***

(0.0057)
0.9708***

(0.0032)
0.7125***

(0.0293)
0.9831***

(0.0031)
0.9589***

(0.0043)
0.9662***

(0.0071)
0.9963**

(0.0010)
SMOTE
+ CW

0.9345***

(0.0069)
0.9634***

(0.0039)
0.6786***

(0.0301)
0.9855***

(0.0036)
0.9422***

(0.0064)
0.9569***

(0.0097)
0.9943***

(0.0019)
DMNN
Early fusion
TFL

Base 0.9652***

(0.0053)
0.9811***

(0.0029)
0.7700***

(0.0365)
0.9753***

(0.0039)
0.9869***

(0.0031)
0.9748**

(0.0064)
0.9971*
(0.0009)

CW 0.9512***

(0.0072)
0.9731***

(0.0041)
0.7252***

(0.0324)
0.9822***

(0.0028)
0.9641***

(0.0070)
0.9663***

(0.0072)
0.9963**

(0.0009)
SMOTE
+ CW

0.9172***

(0.0113)
0.9531***

(0.0067)
0.6387***

(0.0295)
0.9874*
(0.0032)

0.9212***

(0.0128)
0.9535***

(0.0085)
0.9943***

(0.0015)
DMNN
Early fusion
MCF

Base 0.9582***

(0.0048)
0.9773***

(0.0026)
0.7219***

(0.0309)
0.9703***

(0.0028)
0.9845***

(0.0041)
0.9635***

(0.0091)
0.9959***

(0.0016)
CW 0.9325***

(0.0133)
0.9625***

(0.0076)
0.6429***

(0.0512)
0.9768***

(0.0040)
0.9487***

(0.0131)
0.9454***

(0.0131)
0.9939***

(0.0017)
SMOTE
+ CW

0.8958***

(0.0122)
0.9407***

(0.0073)
0.5616***

(0.0345)
0.9798***

(0.0037)
0.9046***

(0.0126)
0.9331***

(0.0105)
0.9919***

(0.0021)
DMNN
Intermediate
fusion
Addition

Base 0.9582***

(0.0041)
0.9773***

(0.0023)
0.7212***

(0.0261)
0.9701***

(0.0033)
0.9845***

(0.0041)
0.9630***

(0.0065)
0.9959***

(0.0008)
CW 0.9315***

(0.0075)
0.9620***

(0.0043)
0.6335***

(0.0298)
0.9757***

(0.0036)
0.9487***

(0.0083)
0.9429***

(0.0090)
0.9934***

(0.0014)
SMOTE
+ CW

0.9297***

(0.0081)
0.9607***

(0.0047)
0.6522***

(0.0291)
0.9820***

(0.0029)
0.9404***

(0.0083)
0.9462***

(0.0065)
0.9934***

(0.0010)
DMNN
Intermediate
fusion
Product

Base 0.9484***

(0.0047)
0.9716***

(0.0026)
0.6983***

(0.0265)
0.9774***

(0.0033)
0.9659***

(0.0042)
0.9638***

(0.0079)
0.9960**

(0.0015)
CW 0.9311***

(0.0084)
0.9614***

(0.0048)
0.6715***

(0.0338)
0.9863***

(0.0035)
0.9377***

(0.0078)
0.9636***

(0.0093)
0.9959***

(0.0014)
SMOTE
+ CW

0.9203***

(0.0076)
0.9549***

(0.0045)
0.6518***

(0.0216)
0.9890 (0.0026) 0.9231***

(0.0087)
0.9632***

(0.0069)
0.9958**

(0.0012)
DMNN
Intermediate

Base 0.9574***

(0.0059)
0.9769***

(0.0032)
0.7173***

(0.0390)
0.9701***

(0.0041)
0.9838***

(0.0045)
0.9621***

(0.0082)
0.9958***

(0.0011)
CW

(Continued on following page)
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combination. We have also tried with several kernel parameter
values of Gaussian kernel and C values. For the case of random
forest, the number of trees is selected as 100, which provides the
best MCC value based on 10-fold cross validation. We have
decided it by increasing the number of trees from 10 to 150 in
increments of 10. When looking for the best split, the number of
input features to be considered is determined as

��
47

√
, where the

number of input features is 47.
To statistically evaluate the significant improvement of our

OPCNN, we utilize the two sided t-test. We basically compare
the model with the best performance result to other models.
For all evaluation metrics, the value for the best-
performing model is highlighted in bold font. Therefore,
the null hypotheses associated with Table 1 are given as
follows: H0 : ACC(best model) � ACC(other model), H0 : F1 −
score(best model) � F1 − score(other model),
H0 : MCC(best model) � MCC(other model), H0 :
Precision(best model) � Precision(other model),
H0 : Recall(best model) � Recall(other model),
H0 : AUC(best model) � AUC(other model)S, and
H0 : AUPRC(best model) � AUPRC(other model). As seen
from Table 1, the best model is OPCNN base model for the
other five metrics except precision and recall. The relevant
p-values less than 0.05 are given one asterisk, p-values less
than 0.01 are given two asterisks, and p-values less than 0.001
are given three asterisks.

Table 1 shows the comparison of various prediction models
via a 10-fold cross-validation, each of which is trained based on
the imbalanced training dataset with or without balancing the
class frequencies. We calculate means and standard deviations of
the ACC, F1-score, MCC, precision, recall, AUC, and AUPRC.
Boldfaced values indicate best performance result. Standard

errors are given in parenthesis. As seen from Table 1,
OPCNN and DMNN models overall show better results than
SVM and RF for all evaluation metrics except recall. The OPCNN
base model shows the highest ACC, F1-score, MCC, AUC, and
AUPRC averages, which are 0.9758, 0.9868, 0.8451, 0.9824, and
0.9979, respectively. In particular, OPCNN base model
significantly outperforms the other models for both F1-score
and MCC that are good metrics for the imbalanced classification.
Although OPCNN base model does not show the highest
precision and recall averages, it still shows evenly high
precision and recall averages. The DMNN base model using
product operation at the early fusion step shows the second
highest ACC, F1-score, and MCC averages, which are 0.9669,
0.9819, and 0.7880, respectively. If classification successes and
errors must be considered together, then the MCC arises as the
best choice (Luque et al., 2019). Therefore, we prefer to use MCC
to assess classification performance in this study. Compared to
other models, the OPCNN base model shows a significantly
higher MCC average. To conclude, Table 1 shows that
OPCNN base model is the best model for predicting successes
and failures of clinical trials.

Plotting ROC and precision–recall curves is a popular way for
discriminatory accuracy visualization of the binary classification
models. Figure 3 shows the graph of ROC curves and
precision–recall curves for three best-performing models in
terms of AUC and AUPRC, respectively. Since we replicate
the cross-validation 20 times for each model, we here show
curves only for one replication. Figure 3 shows that the
OPCNN base model is a better classifier. By the way, Table 1
illustrates that AUC averages of these three models differ
significantly but AUPRC averages of these three models do
not differ significantly.

TABLE 1 | (Continued) Classification results for various prediction models via a 10-fold cross-validation.

Multimodal
learning

Model ACC F1-score MCC Precision Recall AUC AUPRC

fusion
Concatenation

0.9362***

(0.0122)
0.9646***

(0.0070)
0.6542***

(0.0463)
0.9767***

(0.0036)
0.9529***

(0.0126)
0.9522***

(0.0097)
0.9947***

(0.0013)
SMOTE
+ CW

0.9265***

(0.0098)
0.9588***

(0.0057)
0.6400***

(0.0347)
0.9811***

(0.0033)
0.9376***

(0.0101)
0.9461***

(0.0083)
0.9934***

(0.0014)
DMNN
Intermediate
fusion
TFL

Base 0.9652***

(0.0053)
0.9810***

(0.0029)
0.7774***

(0.0324)
0.9787***

(0.0035)
0.9834***

(0.0044)
0.9678***

(0.0096)
0.9964**

(0.0013)
CW 0.9457***

(0.0054)
0.9699***

(0.0031)
0.7068***

(0.0242)
0.9831***

(0.0029)
0.9571***

(0.0058)
0.9632***

(0.0091)
0.9958***

(0.0013)
SMOTE
+ CW

0.9286***

(0.0112)<
0.9598***

(0.0065)
0.6740***

(0.0334)
0.9887

(0.0025)<
0.9325***

(0.0122)
0.9597***

(0.0098)
0.9950***

(0.0016)
DMNN
Intermediate
fusion
MCF

Base 0.9464***

(0.0042)
0.9706***

(0.0023)
0.6770***

(0.0255)
0.9736***

(0.0034)
0.9677***

(0.0038)
0.9550***

(0.0067)
0.9948***

(0.0011)
CW 0.9225***

(0.0073)
0.9564***

(0.0043)
0.6379***

(0.0225)
0.9836***

(0.0025)
0.9307***

(0.0082)
0.9541***

(0.0111)
0.9947***

(0.0018)
SMOTE
+ CW

0.9057***

(0.0136)
0.9464***

(0.0081)
0.6060***

(0.0408)
0.9857***

(0.0035)
0.9101***

(0.0129)
0.9505***

(0.0109)
0.9943***

(0.0016)
DMNN
Late fusion
Concatenation

Base 0.9432***

(0.0050)
0.9691***

(0.0028)
0.6276***

(0.0310)
0.9633***

(0.0036)
0.9750***

(0.0047)
0.9414***

(0.0084)
0.9934***

(0.0012)
CW 0.8990***

(0.0107)
0.9429***

(0.0062)
0.5476***

(0.0405)
0.9750***

(0.0049)
0.9130***

(0.0090)
0.9228***

(0.0153)
0.9912***

(0.0020)
SMOTE
+ CW

0.9005***

(0.0054)
0.9434***

(0.0033)
0.5835***

(0.0181)
0.9832***

(0.0036)
0.9067***

(0.0070)
0.9381***

(0.0057)
0.9931***

(0.0009)

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6706707

Seo et al. Predicting Failures of Clinical Trials

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


CONCLUSION

In this study, to develop the prediction model of the outcomes of
clinical trials of drug candidates, we proposed OPCNN model
that employs the augmented outer product to join effectively
chemical features of drugs and target-based features. The
proposed OPCNN model was evaluated via 10-fold cross-
validation techniques on dataset used in Gayvert et al.
(Gayvert et al., 2016), which consists of 757 approved drugs
for positive class and 71 failed drugs for negative class. We
observed that the OPCNN base model shows the highest
averages of ACC, F1-score, MCC, AUC, and AUPRC. In
particular, it is noteworthy that the OPCNN base model
showed the highest averages of F1-score, MCC, and AUPRC,
which are more reliable metrics for the imbalanced classification.
The two-sided t-test showed that F1-score and MCC averages of
OPCNN base model are significantly higher than those of the
other models. The OPCNN base model also showed evenly high
precision and recall averages, even though this model did not
show the highest precision and recall averages. The graph of ROC
curves and precision–recall curves also illustrate that the OPCNN
base model is a better classifier.

Although we did not report the experimental results, we also
conducted experiments on ensemble models based on RFs, extra
trees, and weighted least squares SVM. In addition, we performed
experiments on a DMNN using a one-dimensional CNN for each
individual modality. OPCNN and DMNN models
aforementioned performed much better than those of
ensemble models for all of five evaluation metrics. The
purpose of this study is to develop an efficient predictive
model based on the dataset used in Gayvert et al. (Gayvert
et al., 2016). The key idea underlying OPCNN is to integrate
two modalities using the augmented outer product and to apply
CNN to the resulting matrix. We think this idea can be effectively
applied to other tasks based on bimodal data and can be extended
to multimodal data. The OPCNNmodel can be further improved
by adjusting the architecture of CNN according to the data
structure.

A critical issue is that the dataset does not have enough
samples for the use of deep learning and particularly has only
71 samples for failure data. Therefore, OPCNN andDMNN could
overfit the data since these complex models are likely to detect
subtle patterns in the data. Obviously, these patterns will not
generalize to new instances. Therefore, we need to apply our
OPCNN to a larger dataset and check its efficacy. Furthermore,
we need to carefully argue that our OPCNN is an effective
approach for predicting successes and failures of clinical trials
and can be quite helpful in drug development process.
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FIGURE 3 | ROC and precision–recall curves for 10-fold cross-validation. (A) ROC curves (B) Precision–recall curves.
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