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Parkinson’s disease (PD) is a neurodegenerative disease associated with severe disability
and adverse effects on life quality. In PD, motor dysfunction can occur, such as
quiescence, muscle stiffness, and postural instability. PD is also associated with
autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other
non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra
compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of
PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia
nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The
formation of the Lewy body is associated with the misfolding of α-synuclein, which
becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause
neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors
and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD
is mainly treated with drugs that increase dopamine concentration or directly stimulate
dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins
strongly associated with neurodegenerative diseases such as PD. FGF and its receptor
(FGFR) play an essential role in the development and maintenance of the nervous system
as well as in neuroinflammation and have been shown to improve the survival rate of
dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in
the pathological process of PD and related signaling pathways, involving the development
and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial
dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow
down or prevent the potential of PD.
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INTRODUCTION

Parkinson’s disease (PD) is considered the most common neurodegenerative disease after
Alzheimer’s disease (Feigin et al., 2017). In Asia, Africa, Europe, North America, South
America, and Arab countries, the crude prevalence rates of PD for all age groups are 15–119
per 100,000, 10–43 per 100,000, 66–1,500 per 100,000, 111–329 per 100,000, 31–470 per 100,000, and
27–43 per 100,000, respectively (Kalia and Lang, 2015). Age is the most significant risk factor for the
development of PD. The prevalence and incidence of PD almost increase exponentially with age,
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reaching its peak after 80 years old (Driver et al., 2009;
Pringsheim et al., 2014). With the aging of the world’s
population, PD will cause an increasing social and economic
burden on society. In 2016, an estimated 6.1 million people
worldwide were diagnosed with PD, which is 2.4 times that of
1990 (Dorsey et al., 2018). It is estimated that by 2040, the global
prevalence of PD will double (Dorsey and Bloem, 2018). The
overall prevalence rate and annual incidence rate of PD in China
are 190/100,000 and 362/100,000, respectively, which are lower
than those in developed countries but higher than those in some
developed countries (Ma et al., 2014).

PD usually has two main features: 1) the death of
dopaminergic (DA) neurons in the pars compacta of
substantia nigra, and 2) misfolded α-synuclein (α-syn)
accumulates in neuronal cell bodies or dendrites and axons to
form Lewy bodies (LBs) or Lewy neurites (LNs) (Goedert et al.,
2013). α-synuclein aggregates are harmful to dopaminergic
neurons in the substantia nigra. Their formation may trigger
the transfer of toxic α-synuclein from affected cells to other
neighboring cells, resulting in a cascade of LBs formation,
leading to cell death (Emamzadeh and Surguchov, 2018). The
diffusion of pathological α-synuclein to adjacent cells leads to the
progressive loss of dopaminergic neurons in SN, accompanied by
a decrease in dopamine levels, and eventually leads to dyskinesia
(Luk et al., 2012).

PD is usually divided into two subtypes: tremor-predominant
PD and non-tremor-predominant PD (including severe motor
syndrome and postural instability and gait difficulties), and
tremor-dominant PD progresses more slowly and has milder
dysfunction than non-tremor-dominant PD (Thenganatt and
Jankovic, 2014). PD is also related to many non-motor
symptoms, including pain, loss of smell, psychotic features,
sleep disorder, and autonomic nerve dysfunction, which
usually occur before motor symptoms and sometimes last for
many years (Schapira et al., 2017). At present, PD mainly uses
drugs that increase dopamine concentration or directly stimulate
dopamine receptors for symptomatic treatment. Although drug
treatment can effectively control many symptoms, there is still a
significant risk of adverse events in long-term treatment, such as
levodopa-induced dyskinesia (Turcano et al., 2018) and
dopamine agonist-induced impulse control disorder (ICDs)
(Garcia-Ruiz et al., 2014).

Withdrawal symptoms are easy to appear after drug
withdrawal (Pondal et al., 2013). In addition, these drugs
will not change the course of the disease, and with the
development of PD, its symptomatic benefits will decrease,
so patients need to increase the frequency and dosage of drugs,
which increases the risk of adverse events (Armstrong and
Okun, 2020). The lack of adequate disease remission treatment
may reflect the multifactorial nature of the underlying
pathogenesis of PD. Including oxidative stress and
mitochondrial dysfunction, protein misfolding and
aggregation, neuroinflammation and excitotoxicity, etc.
(AlDakheel et al., 2014). Therefore, the development of
drugs that can provide neuroprotection or repair in PD not
only has a significant advantage over existing treatments but
may also help to prolong its validity.

Fibroblast growth factors (FGFs) is a secreted protein family
with a wide range of signal molecular functions in angiogenesis,
embryonic development, cell proliferation, and wound healing
(Beenken and Mohammadi, 2009). In recent years, with the in-
depth study of FGF family, the role and mechanism of FGF in
brain-related diseases have attracted much attention. Many
studies have proved that FGF and its receptors play a key role
in neuroprotection and neurogenesis of PD, including
proliferation and differentiation of stem cells during
development and in the adult brain. In PD model, FGF can
provide effective protection against dopaminergic neuron loss,
promote the development and survival of nervous system, relieve
neurological symptoms and exert neurotrophic activity on DA
neurons in vivo and in vitro. These findings indicate the
importance of FGF in the differentiation and survival of
dopamine neurons, and the etiology and treatment of PD (Ye
et al., 1998; Tanaka et al., 2001; Timmer et al., 2007; Mäkelä et al.,
2014). In the following, this review will provide an overview of
this growth factor family, summarize its significance in the
pathophysiology of PD, and discuss possible opportunities for
targets to obtain new treatment strategies.

THE FIBROBLAST GROWTH FACTORS

In 1973, Armelin purified a cell growth factor from pituitary
extracts, which was named as fibroblast growth factor because of
its ability to promote the proliferation of fibroblasts, and was
determined to have an isoelectric point of 9.6, so it was called
basic fibroblast growth factor (bFGF or FGF-2) (Armelin, 1973).
Subsequently, the substance causing proliferation of fibroblasts in
bovine brain extract was found in bovine brain extracts, which
was identified as having different FGF-like activities, and was
called acidic fibroblast growth factor (aFGF or FGF-1) because its
isoelectric point was 5.6 (Gospodarowicz, 1974). Genome
sequencing of humans and mouse showed that there were 23
members of the mammalian FGF family. FGF 11–14 are not
always included in the FGF family. However, they have a high
amino acid sequence identity with the FGF family and bind
heparin with high affinity. They have no ability to bind fibroblast
growth factor receptor (FGFR) and activate fibroblast growth
factor receptor, and they are called FGF homologous factors
(Olsen et al., 2003). FGF-15 is a mouse ortholog of human FGF-
19 (Beenken and Mohammadi, 2009).

According to biochemical function, evolutionary relationships
and sequence homology, FGF can be divided into seven
subfamilies (Figure 1). It is composed of secreted fibroblast
growth factor (including paracrine FGF 1–10, FGF 15–18,
FGF-20, FGF-22, endocrine FGF 19/21/23) and intracellular
fibroblast growth factor (FGF 11–14). The former sends
signals to receptor tyrosine kinases, while the latter does not,
and has no clear interaction with the signal transduction FGFRs,
which is mainly acts as cofactors for voltage-gated sodium
channels and other molecules (Ornitz and Itoh, 2001;
Goldfarb, 2005; Itoh and Ornitz, 2008; Ornitz and Itoh, 2015).
The special function of intracellular FGF may help to regulate the
subcellular localization of in axon initiation segment during
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development, as well as the ion gating characteristics of other
excitable cell channels such as mature neurons and
cardiomyocytes (Goldfarb et al., 2007; Laezza et al., 2007;
Wang et al., 2011; Xiao et al., 2013).

FGF subfamilies usually have similar expression patterns,
although each FGF seems to have its own unique expression
sites. Some secreted fibroblast growth factors are only expressed
during embryonic development (such as FGF 3, 4, 8, 15, 17, and
19), and they act as necessary regulatory factors at the earliest
stages of embryonic development and organ formation, while
others are expressed in embryonic and adult tissues (such as FGF
1, 2, 5–7, 9–14, 16, 18, and 20–23), where they regulate growth
and function as factors in tissue maintenance, repair, and
regeneration, and endocrine FGFs have a key role in the
regulation of postnatal phosphate, bile acid, carbohydrate, and
lipid metabolism (Ornitz and Itoh, 2001; Ornitz and Marie,
2015). Members of secretory FGF subfamily can also be
further characterized according to the mechanism of their
release from cells. FGF 3–8, 10, 15, 17, 18, 21, 22, and 23 are
secretory proteins with cleavable amino terminal signal peptide.
FGF 9, 16, and 20 are also secreted proteins, but contain a non-
cleavable dimeric secretory signal sequence, and it has been
shown that hydrophobic sequences in their structure are
critical for their secretion and can be transported to and from
the endoplasmic reticulum as non-cleavable signals (Itoh and
Ornitz, 2011). In contrast, FGF-1 subfamily has no recognizable
signal sequence, so it does not secrete FGF-1 and FGF-2, but it
can still be found in extracellular position, which is mainly

exported from the cell through the cell membrane through
direct translocation (Prudovsky et al., 2013). In addition, FGF-
1 and FGF-2 were also found in some cell nuclei. Potential
functions of nuclear FGF-1 include regulating cell cycle, cell
differentiation, survival and apoptosis (Pirou et al., 2017).

The FGFR family consists of four highly conserved
transmembrane tyrosine kinase receptors (FGFR 1–4) and one
receptor (FGFR5, also known as FGFRL1) that can bind to FGF
ligands but lacks the intracellular protein tyrosine kinase domain
(Figure 2; Balestrino and Schapira, 2020; Ornitz and Itoh, 2015;
Trueb, 2011). FGFR is composed of three critical domains:
extracellular ligand-binding domain, the single transmembrane
domain, and intracellular protein tyrosine kinase domain (Tiong
et al., 2013). The extracellular ligand-binding region contains
three immunoglobulin (Ig)-like domains: Ig-I, Ig-II, and Ig-III
(also known as D1, D2, and D3) (Tiong et al., 2013). In FGFR1-3,
through alternative splicing of the IgIII domain (D3), each
receptor’s IIIb and IIIc subtypes are generated, which have
different ligand binding and cell and tissue expression
specificities (Gong, 2014; Table 1). For example, FGFRb
splicing variants occur mainly in epithelial tissues and bind to
FGFs expressed in mesenchymal tissues, while FGFRc splicing
variants exist in mesenchymal tissues and bind to FGF ligands
expressed in both epithelial and mesenchymal cells (Gong, 2014).
FGFR5 is similar to other FGFRs in structure, but it lacks the
domain of intracellular protein tyrosine kinase, which is replaced
by the intracellular tail of short cells rich in histidine motifs.
Therefore, FGFR5 cannot transmit signals through trans

FIGURE 1 | The FGF 1, FGF 4, FGF 7, FGF 8, and FGF 9 subfamily genes encode secreted paracrine FGFs, which bind to and activate FGFRs with heparin/HS as a
cofactor. The FGF 15/19 subfamily members encode endocrine FGFs, which combine and activate FGFRs with the Klotho family protein as a cofactor. The FGF 11
subfamily genes encode intracellular FGFs, which are non-signaling proteins serving as cofactors for voltage-gated sodium channels and other molecules.
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autophosphorylation, nor can it play a role like other FGFRs
(Trueb, 2011).

The interaction of the FGF ligand and its signal receptors is
regulated by proteins or proteoglycan cofactor and extracellular
binding proteins (Kuro-o, 2008; Shimokawa et al., 2011).
Paracrine FGF combined with FGFR to form FGF-FGFR-HS
ternary complex in a heparin/heparan sulfate proteoglycan
(HSPGs) dependent manner, which increased the affinity of

FGF to FGFR, stabilized the formation of a dimer and
enhanced the activation of the receptor (Schlessinger et al.,
2000). Compared with paracrine FGFs, endocrine FGFs have a
low affinity for heparin/heparan sulfate and can freely spread
from the cells that secrete them, enter the blood circulation, and
reach the target cells in distant organs (Goetz et al., 2007).
Endocrine FGF depends on Klotho proteins (α-Klotho and
β-Klotho) as the primary tissue-selective cofactor to promote

FIGURE 2 | (A) shows a schematic diagram of the protein structure of FGFR. FGFR is a receptor tyrosine kinase composed of about 800 amino acids, with multiple
domains, including three extracellular immunoglobulin-like domains (I, II, and III), a transmembrane domain (TM), and two intracellular tyrosine kinase domains (TK1 and
TK2). SP represents a cleavable secretory signal sequence. The FGFR gene family consists of four members, FGFR 1–4. Among them, FGFR 1–3 produces two major
splicing variants of the immunoglobulin-like domain III, called IIIb and IIIc, which are essential determinants of ligand binding specificity. (B) The schematic
representation of the FGFRL1/FGFR5 protein structure is shown. FGFR5, similar to FGFRs in structure, is a membrane protein composed of about 500 amino acids, with
three extracellular immunoglobulin-like domains (I, II, and III), a transmembrane domain (TM), and a short cytoplasmic tail without tyrosine kinase domain. SP represents a
cleavable secretory signal sequence.

TABLE 1 | Receptor specificity of FGFs.

FGF subfamily FGF Cofactor FGF receptor activity

FGF1 subfamily FGF1 Heparin or heparan sulfate All FGFRs
FGF2 FGFR1c,3c > 2c,1b,4

FGF4 subfamily FGF4 FGFR1c,2c > 3c,4
FGF5 FGFR1c,2c > 3c,4
FGF6 FGFR1c,2c > 3c,4

FGF7 subfamily FGF3 FGFR2b > 1b
FGF7 FGFR2b > 1b
FGF10 FGFR2b > 1b
FGF22 FGFR2b > 1b

FGF8 subfamily FGF8 FGFR3c > 4>2c > 1c >> 3b
FGF17 FGFR3c > 4>2c > 1c >> 3b
FGF18 FGFR3c > 4>2c > 1c >> 3b

FGF9 subfamily FGF9 FGFR3c > 2c > 1c, 3b >> 4
FGF16 FGFR3c > 2c > 1c,3b>>4
FGF20 FGFR3c > 2c > 1c,3b>>4

FGF19 subfamily FGF19 β-Klotho FGFR1c,2c,3c,4
FGF21 FGFR1c,3c
FGF23 α-Klotho FGFR1c,2c,3c,4

FGF11 subfamily FGF11 Is not combined with FGFRs
FGF12
FGF13
FGF14
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the high-affinity binding of FGF ligand with its homologous
FGFR, and then activate FGFRs (Kurosu and Kuro, 2009; Goetz
et al., 2012).

The biological activity of FGF is mediated by combining FGFR
to initiate intracellular signal transduction. The binding of FGF
and receptor induces dimerization of FGFR, which makes the
protein tyrosine kinase domains close to each other and locate
correctly, thus activating the kinase through trans
autophosphorylation. Activated FGFR kinase activates its
intracellular substrate through phosphorylation and initiates
different but possibly interactive signal pathways, resulting in
different cell reactions and functions (Furdui et al., 2006;
Lemmon and Schlessinger, 2010). Activation of FGFR tyrosine
kinase domain results in phosphorylation of junction proteins of
four major intracellular signaling pathways, including RAS-
MAPK, PI3K-AKT, PLC-γ, and signal transducer and
transcriptional activator (STAT), in which the activation of
RAS-MAPK and PI3K-AKT pathways is initiated by
phosphorylation of fibroblast growth factor receptor substrate
2α (FRS2α) (Figure 3) (Ornitz and Itoh, 2015). Tyrosine-
phosphorylated FRS2α functions as a coordinated assembly
site for multiprotein complexes. After tyrosine
phosphorylation of FRS2α, the protein tyrosine phosphatase
Shp2 is recruited, which allows the phosphorylation of Shp2 to
promote the binding of FRS2α to growth factor receptor-binding
protein 2 (GRB2) and SOS proteins to form a complex, which in
turn activates the RAS-MAPK signaling pathway (Eswarakumar
et al., 2005). Besides, tyrosine phosphorylation of FRS2α also
mediates the recruitment of GRB2 and GAB1, which leads to the
activation of the PI3K-AKT signaling pathway (Ong et al., 2001).
Activated PLC-γ catalyzes the hydrolysis of phosphatidylinositol
4,5-bisphosphate (PIP2) to generate two effectors, namely
inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG),
IP3 is involved in the regulation of calcium channels in the

endoplasmic reticulum. At the same time, DAG mediates the
activation of protein kinase C (PKC) and other downstream
targets (Kadamur and Ross, 2013).

The four known branches of the FGFR intracellular signal
cascade are regulated by inhibitory molecules, including GRB2
protein, SEF (the similar expression to FGF), Spry protein, E3
ubiquitin ligase CBL, and bispecific phosphatase 6 (DUSP 6). The
combination of PLC-γ and FGFR was inhibited by high
concentration GRB2 (Timsah et al., 2014). Spry proteins
inhibit the RAS-MAPK pathway and regulate the PI3K-AKT
pathway by preventing the recruitment of GRB2-SOS complexes
to FRS2α or Shp2 (Hanafusa et al., 2002; Pintus et al., 2013). SEF
has been shown to regulate FGF-mediated ERK activation, and
SEF specifically negatively binds activated MEK and inhibits
dissociation of the MEK-ERK complex, thereby blocking
nuclear transport of activated ERK (Torii et al., 2004). The
extracellular domain of SEF may also directly interact with
FGFR to inhibit receptor phosphorylation (Kovalenko et al.,
2006). CBL inhibits FGFR signaling by forming a ternary
complex with GRB2 and tyrosine-phosphorylated FRS2α,
thereby promoting ubiquitination and degradation of FGFR
and FRS2α (Wong et al., 2002). CBL also interacts with PI3K,
leading to its ubiquitination and degradation (Dufour et al.,
2008). DUSP6 inhibits MAPK signaling through
dephosphorylation of ERK1/2 (Li et al., 2007).

THE ROLE OF FIBROBLAST GROWTH
FACTOR IN THE PATHOGENESIS OF
PARKINSON’S DISEASE
PD is a complex multifactorial disease, and multiple genetic and
environmental factors and their interactions are involved in the
pathogenesis of PD. The possible mechanisms leading to the

FIGURE 3 | FGFs activate signaling pathways coupled to the cell by interacting with specific FGFRs and HS/HSPGs to activate receptors, including the RAS-
MAPK, PI3K-AKT, PLC-γ, and STAT pathways. These pathways are negatively regulated by GRB2, DUSPs, SPRY, SEF, and CBL activities.
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pathogenesis of PD include oxidative stress, mitochondrial
dysfunction, protein aggregation and misfolding,
neuroinflammation, excitotoxicity, apoptosis, and other cell
death pathways. The development of PD is probably not
caused by one mechanism but by several pathogenic
mechanisms acting synergistically in a network through
complex interactions, which induce dopaminergic neuron
degeneration (Figure 4).

Fibroblast Growth Factor and Protein
Misfolding and Aggregation
Like any other cell, neurons are also vulnerable to misfolded
proteins or other mutated proteins in the cell. The endoplasmic
reticulum (ER) plays a vital role in protein folding. After the
peptide is synthesized in the cytoplasm, it is transported to the
endoplasmic reticulum, where chaperone proteins maintain their

proper shape. However, due to mutation, over-expression, or
abnormal post-translational modification, misfolding may occur.
In neurodegenerative diseases such as PD, misfolded proteins are
abnormally aggregated and accumulated in the endoplasmic
reticulum, which is harmful to neurons. When misfolded or
unfolded proteins gradually accumulate in the ER, ER stress
appears and triggers the unfolded protein response (UPR).
The UPR is a compensatory mechanism. Under non-stress
conditions, the ER chaperone BIP protein (GRP 78) binds to
and inhibits the activation of ER stress sensors (protein kinase-
like ER kinase (PERK), activating transcription factor 6 (ATF6),
inositol requiring protein 1 (IRE 1). When ER stress occurs, BIP
preferentially binds misfolded proteins, which releases its
inhibitory interaction with stress sensors, and reduces a load
of unfolded protein to maintain the vitality and function of cells
(Hetz, 2012). However, as misfolded proteins accumulate, they
will overload the endoplasmic reticulum, leading to apoptosis.

FIGURE 4 | The schematic diagram depicts the molecular mechanisms by which FGF regulates oxidative stress, mitochondrial dysfunction, protein aggregation
and misfolding, neuroinflammation, and excitotoxicity. Blue lines indicating positive effects, and red lines are indicating adverse effects.
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The PERK-eukaryotic initiation factor 2 (EIF 2) -activated
transcription factor 4 (ATF4) pathway is activated, which in turn
regulates the expression of CCAAT enhancer-binding protein
(C/EBP) homologous protein (CHOP) (Galehdar et al., 2010;
Nishitoh, 2012). CHOP is the initial signal of triggering apoptosis
pathway, which inhibits the promoter of the bcl-2 gene, up-
regulates apoptosis-related genes such as caspase-12 and
caspase-3 promote cell death (Hu et al., 2018). The higher
levels of phosphorylated PERK confirmed this association, and
downstream eIF 2α detected in PD patients (Hoozemans and
Scheper, 2012). Additionally, in human PD, the PERK
immunoreactive neurons colocalize with the α-synuclein.
Phosphorylated α-synuclein (Sugeno et al., 2008) and
α-synuclein oligomers (Colla et al., 2012) are known inducers
of ER stress, which has been well characterized in the brains of PD
patients (Tsujii et al., 2015; Wang, 2016). These findings indicate
that endoplasmic reticulum stress in dopaminergic neurons is
positively correlated with misfolded α-synuclein.

Acidic fibroblast growth factor (aFGF) and bFGF have been
shown to improve the recovery of motor function, increase the
survival rate of tyrosine hydroxylase (TH) positive neurons in
the substantia nigra and striatal dopamine levels by down-
regulating ER stress mediators and apoptosis levels. AFGF
can also reduce the accumulation of α-synuclein and reduce
its neurotoxicity. The above effects may be related to the
activation of PI3K/AKT and ERK1/2 signaling pathways
(Wei et al., 2014; Cai et al., 2016). PI3K/Akt mediates the
phosphorylation of Bax, a pro-apoptotic Bcl-2 family
member, which inhibits apoptosis and promotes cell survival
(Sanchez et al., 2012). Fibroblast growth factor 8b (FGF-8b) can
also exert neuroprotective effects by attenuating ER stress. FGF-
8b treatment decreased the mRNA levels of the ER stress
markers caspase-12 and GRP 78 and the pro-apoptotic genes
caspase-3 and Bax, while the mRNA levels of the anti-apoptotic
gene Bcl-xl were significantly up-regulated, confirming that
FGF-8b has the effect of inhibiting apoptosis and protecting
cells from ER stress (Chen et al., 2016).

Maintaining an average balance between the formation and
degradation of proteins in cells is also necessary for cell survival.
The ubiquitin-proteasome system (UPS) and autophagy-
lysosome pathway (ALP) are the primary degradation
pathways on which neurons maintain proteostasis. The former
tends to eliminate soluble proteins with short half-lives, while the
latter uses insoluble protein aggregates as substrates. Under
normal conditions, the main degradation pathway of
α-synuclein in vivo is the UPS. Concurrently, ALP is activated
with increasing α-synuclein levels (Ebrahimi-Fakhari et al., 2011),
caused by translocation of the transcription factor EB (TFEB, a
central transcriptional regulator of the autophagy-lysosomal
pathway) to the nucleus (Decressac et al., 2013). Mutant
α-synuclein has a high affinity for lysosomal membrane
receptors that mediate the autophagic pathway, preventing
lysosomal uptake and inhibiting ALP from degrading them
(Pan et al., 2008). The mutant α-synuclein binds to TFEB and
remains in the cytoplasmic inclusion bodies, preventing it from
transferring to the nucleus, thereby preventing TFEB-induced
ALP activation (Decressac et al., 2013). Enhancing autophagy

reduces the toxic effects of α-synuclein mutations on midbrain
dopaminergic neurons (Decressac et al., 2013).

It has been found that aFGF can play its neuroprotective role
in PD by inhibiting ER stress and down-regulating apoptosis-
promoting protein TRB3, thus activating autophagy and reducing
α-synuclein accumulation (Zhong et al., 2019). TRB3 is mainly
induced by the ATF4-CHOP pathway, and it is related to
apoptosis induced by endoplasmic reticulum stress (Ohoka
et al., 2005). Aimé et al. found that TRB3 is overexpressed in
patients with PD and cell models of PD and leads to degeneration
and death of dopaminergic neurons by reducing Parkin protein
expression (Aime et al., 2015). Also, inhibition of autophagy leads
to ER stress, which ultimately activates the transcription factor
ATF4, thereby maintaining neurons’ health and survival during
stress (Kakoty et al., 2020). ATF4 is also a factor known to activate
fibroblast growth factor 21 (FGF-21), which has significant
neuroprotective effects (De Sousa-Coelho et al., 2012).

Experiments have demonstrated that FGF-21 ameliorates
dopaminergic neuron loss and α-synuclein pathological
abnormalities in vivo and in vitro models of PD, and the
SIRT1-autophagy axis plays an essential role in FGF-21
induced α-synuclein clearance (Chen et al., 2020). SIRT1 is an
NAD+-dependent deacetylase that can affect multiple targets,
including LC3 and PGC-1α. Activated SIRT1 promotes
autophagy degradation of α-synuclein through deacetylation of
LC3 (Guo et al., 2016). Aggregation of α-synuclein can also cause
severe mitochondrial damage and exacerbate oxidative stress,
which leads to neurodegeneration, and enhanced autophagy can
remove initially damaged mitochondria and aggregated
α-synuclein and prevent oxidative stress induced by damaged
mitochondria and aggregated α-synuclein (Giordano et al., 2014).

Fibroblast Growth Factor Improves
Oxidative Stress and Mitochondrial
Dysfunction
Accumulating evidence suggests that mitochondria have become
an attractive target for neuroprotection in patients with PD
(Schapira and Patel, 2014). Mitochondria are crucial
organelles, which produce ATP through oxidative
phosphorylation, providing most of the energy needed for cell
function. As a by-product of oxidative phosphorylation, reactive
oxygen species (ROS) are produced in mitochondria. With the
passage of time, ROS will damage mitochondria and weaken their
function (Surmeier et al., 2017). Oxygen radicals act on
mitochondrial respiratory chain complex I leads to its
deficiency, and the leakage of electrons through the respiratory
chain leads to the increase of ROS production, which leads to a
vicious circle of intensified mitochondrial dysfunction (Franco-
Iborra et al., 2016).

Experiments have also demonstrated that inhibition of
mitochondrial electron transport chain complex I and
oxidative stress can lead to dopaminergic cell loss and PD in
vivo (Abou-Sleiman et al., 2006). In addition to PD, ER stress,
oxidative stress, andmitochondrial damage are closely related. ER
stress can lead to oxidative damage by activating the function of
ER oxide protein ERO-1, which is involved in disulfide bond

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6757257

Liu et al. FGF and Parkinson’s Disease

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


formation during ER protein folding to alleviate ER stress, and
glutathione helps reduce them when incorrect disulfide bonds are
formed, but this also leads to the reduction of glutathione
(Bhandary et al., 2012). With the depletion of glutathione,
ROS in mitochondria increased, causing mitochondrial
damage and eventually leading to cell death (Chen et al.,
2011). Mitochondrial stress also induces ER stress, which is
reflected in the induction of the UPR (Bouman et al., 2011).

It has been found that FGF-9 treatment alone leads to
decreased hydrogen peroxide (H2O2) levels and increased
glutathione content in primary cortical neurons, which can
alleviate oxidative damage by up-regulating the expression of
antioxidant enzymes, such as heme oxygenase 1 (HO-1) and
γ-glutamylcysteine synthase (γ-GCS), and playing a vital role in
antioxidant and neuroprotective (Huang and Chuang, 2010).
FGF-9 activates two parallel downstream ERK1/2 and AKT
signaling pathways by combining FGFR, enhances the
transcription activity of nuclear factor E-2 related factor 2
(NRF2) and cAMP response element binding protein (CREB),
and up-regulates the expression of γ-GCS and HO-1, thus
promoting the survival of neurons and protecting neurons
from MPP+-induced oxidative damage in vivo and in vitro
(Chuang et al., 2015).

Some genes have been identified as the single-gene causes of
familial PD, and many pathogenic mutations in these genes are
directly related to mitochondrial dysfunction, including
α-synuclein gene (SNCA), Parkin, DJ-1 (a gene related to
early-onset autosomal recessive PD), PINK 1 (PTEN-induced
kinase 1) and LRRK 2 (leucine-rich repetitive kinase 2) (Abou-
Sleiman et al., 2006). It has been found that mutations of SNCA
and Parkin genes inhibit the expression of peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α),
hinder mitochondrial biogenesis, and eventually lead to
mitochondrial dysfunction and cell death (Ryan et al., 2013;
Stevens et al., 2015). PGC-1α is a transcriptional coactivator,
the primary regulator of cell metabolism, mitochondrial
biogenesis, oxidative stress, and gene expression (O’Hagan
et al., 2009). A meta-analysis of patients with PD reported the
decrease of PGC-1α and its downstream genes in the disease and
confirmed that PGC-1α signaling was a potential target for early
intervention in PD (Zheng et al., 2010).

Studies have shown that adding fibroblast growth factor 21
(FGF-21) to cultured human dopaminergic neurons can promote
the expression of nicotinamide adenine dinucleotide (NAD+)
and SIRT 1 in cells and improve the level and activity of PGC-1α.
After activation of PGC-1α, the levels of antioxidant enzymes
such as thioredoxin 2 (TRX 2) and superoxide dismutase 2 (SOD
2) increased, and the respiratory capacity of mitochondria
increased, thus improving mitochondrial efficacy and cell
survival (Mäkelä et al., 2014). It has also been found that
FGF-21 can rescue the MPTP-induced decrease in
mitochondrial DNA copy number, which in turn stimulates
the expression of electron transport chain marker genes and
enhances mitochondrial function by stimulating the AMPK/
PGC-1α axis (Fang et al., 2020).

AMPK is an upstream effector of PGC-1α (Wan et al., 2014)
and promotes mitochondrial biogenesis by improving PGC-1α

transcriptional and post-translational phosphorylation
(Fernandez-Marcos and Auwerx, 2011; Scarpulla, 2011).
AMPK is the principal sensor of intracellular energy stress,
which can dynamically regulate the fusion and division of
mitochondria according to cells’ energy state and help dilute
and isolate damaged mitochondria. When there is a slight energy
deficiency, mitochondria fuse to form tubular networks,
maximizing energy production. However, in more severe cell
stress, AMPK induces mitosis and mitosis (Zhang and Lin, 2016).
It has been pointed out that AMPK activates autophagosome
formation by phosphorylating ULK 1 and alleviates its inhibition
of ULK 1 by inhibiting MTORC 1, promotes mitophagy, removes
damaged or dysfunctional mitochondria, and protects
dopaminergic neurons (Mihaylova and Shaw, 2011).

The Role of Fibroblast Growth Factor in
Neuroinflammation
The role of FGF in neuroinflammation is one of the pathological
characteristics of PD (Hassanzadeh and Rahimmi, 2018).
Activated microglia have been found in the substantia nigra
and putamen of patients with PD (Iannaccone et al., 2013). In
response to infection or injury, microglia transform into the
reactive inflammatory phenotype, also known as classical
activation or M1 phenotype, which is characterized by
increased proliferation, morphological changes, and release of
inflammatory molecules such as cytokines, chemokines, and
reactive oxygen species (Kettenmann et al., 2011).

Although the M1 phenotype is designed to protect and repair
the central nervous system, it can also be cytotoxic and
detrimental to the neural microenvironment, causing
neurodegenerative diseases if excessive and prolonged
neuroinflammation is produced (Czeh et al., 2011; Cherry JD
et al., 2014). For example, microglial activation leads to the
activation of enzymes associated with inflammation, such as
inducible nitric oxide lyase and cyclooxygenase, and the
release of inflammatory cytokines, such as chemokine (CXCL
12), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ),
interleukin-6 (IL-6), and interleukin-1β (IL-1β), which leads to
neural network dysfunction and promotes inflammatory
responses (Rocha et al., 2015). Activation of microglia in PD
is regulated by the CD200-CD200R signaling pathway (Wang
et al., 2007).

Additionally, it has been suggested that different gene
mutations, such as SNCA, LRRK 2, or DJ-1, stimulate
inflammation by activating microglia and astrocytes, thus
aggravating the loss of dopaminergic neurons and chronic
neurodegeneration in patients with PD (Gillardon et al., 2012;
Moehle et al., 2012; Harms et al., 2013; Nash et al., 2017).

FGF-2 reduced the levels of pro-inflammatory cytokines such
as interleukin-1β (IL-1β), interleukin-6, and tumor necrosis
factor-α (TNF-α), increased the level of anti-inflammatory
cytokine IL-10 and reversed the decrease of the expression of
chemokine CX3CL1, which is mainly expressed by neurons and
maintained monitoring of microglia (Tang et al., 2018). A
previous study also found that FGF-2 can regulate microglia
activation and decrease inflammatory mediators’ expression in a
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CD200-dependent manner (Cox et al., 2013). Activated FGF-2
signaling regulates IL-4 production by glial cells, and IL-4 induces
ERK signaling to increase CD200 expression, thereby enhancing
the interaction between CD200 and CD200R and hindering
microglial activation (Downer et al., 2010).

Multiple mechanisms can be induced upon microglial
activation, including the NF-κB signaling pathway (He et al.,
2017). NF-κB is a crucial transcription factor in the progression of
inflammation, and its activation is accompanied by the release of
a series of inflammatory cytokines and chemokines, such as TNF-
α, IL-1β, IL-6, and Cox-2 (Zusso et al., 2019; Li et al., 2020).
Experiments show that fibroblast growth factor 10 (FGF-10) can
activate the PI3K/Akt survival signaling pathway and inhibit the
activation and proliferation of microglia/macrophages by
inhibiting the TLR4/NF-κB signaling, thereby inhibiting the
production of pro-inflammatory factors (TNF-α and IL-6) and
exerting neuroprotection (Li et al., 2016; Chen et al., 2017).

PGC-1α is a potential new target for treating patients with PD,
and its activity is mainly regulated by PPAR-γ, AMPK, and
sirtuin 1 (SIRT 1) (De Virgilio et al., 2016). Therefore,
pharmacological activators of these proteins have the potential
to exert their effects by activating PGC-1α. Wang et al. found that
FGF-21 binds to fibroblast growth factor receptor 1 (FGFR1) and
inhibits the inflammatory response by inhibiting NF-κB and up-
regulating the expression of peroxisome proliferator-activated
receptor-γ (PPAR-γ) (Wang J.et al., 2020). FGF-21-induced
AMPK activation may also be one of the mechanisms that
inhibit neuroinflammation, with AMPK inhibiting NOX-
mediated ROS production, iNOS mediated NO production,
and NF-κB-mediated production of pro-inflammatory
cytokines such as IL-1 and TNF-α (Fang et al., 2020).

Fibroblast Growth Factor and Excitotoxicity
Excitotoxicity has been considered as the pathogenesis of many
neurodegenerative diseases, including PD. Glutamic acid is a
cardinal neurotransmitter in the central nervous system of
mammals, and it is a significant participant in the processes of
excitotoxicity. Previous studies have shown that glutamate
excitotoxicity may lead to degeneration of dopaminergic
neurons and accompanying motor dysfunction in PD
(Meredith et al., 2009). Glutamate receptors are abundantly
found in the SN’s dopaminergic neurons and are innervated
by glutamate from the thalamus and cortex. Under pathological
conditions, the extracellular glutamate concentration is elevated
when the presynaptic membrane releases excess glutamate, or the
glutamate reuptake function is impaired. Activated microglia and
reactive astrocytes release large amounts of glutamate (Iovino
et al., 2020).

Extracellular excess glutamate leads to overactivation of Ca2+

permeable N-methyl-D-aspartate receptors (NMDARs), followed
by Ca2+ overload and excitotoxicity (Lewerenz and Maher, 2015).
Ca2+ influx increases the activity of nitric oxide lyase (NOS), an
enzyme by which NO can react with superoxide radicals to
generate ONOO-, which causes severe oxidative destruction of
cellular contents and impairs cellular energy production,
ultimately inducing cell death (acute necrosis and/or delayed
apoptosis) (Wang D. et al., 2020). The prominent role of the

glutamine/glutamate-γ-aminobutyric acid cycle (GGC) is to
regulate synaptic glutamate levels, which prevent excitotoxicity
and maintain normal central nervous system function. GGC
disorders lead to alterations in glutamatergic and gamma-
aminobutyric acidergic neurotransmitter pathways associated
with PD (Gao et al., 2013). It has been established that
elevated Gln, Glu, and GABA were significantly reduced to
normal levels in PD rats after FGF-2 treatment, suggesting
that FGF-2 can help maintain homeostasis GGC, thereby
preventing and treating PD (Zheng et al., 2016). FGF-21
protects primary central nervous system neurons from
glutamate excitotoxin-induced apoptosis, and its mediated
neuroprotection is achieved by activating the cytoprotective
factor AKT-1 as inhibiting the activity of the cytotoxic factor
GSK-3β (Leng et al., 2015).

Another method to improve excitotoxicity is to solve
downstream processes, including intracellular calcium-related
signaling systems. Based on clinical data obtained from
postmortem brains of PD patients, dopaminergic neurons in
substantia nigra expressing calcium-binding protein calbindin
(CB) selectively inhibit cell death damage (Inoue et al., 2019). CB
is ubiquitously expressed in many brain regions and is involved in
regulating intracellular Ca2+ levels (Blesa and Vila, 2019). In PD,
calcium-binding protein-negative dopaminergic neurons are
preferentially lost, while FGF-20 rescues calcium-binding
protein-negative midbrain dopaminergic neurons from cytosol
dopamine toxicity induced by 6-OHDA and stress and promotes
dopamine release of calcium-binding protein-negative
dopaminergic neurons by activating FGFR1 and then
activating its downstream cascade (Murase and McKay, 2006).

FIBROBLAST GROWTH FACTORPLAYS AN
ESSENTIAL ROLE IN PROTECTING AND
REPAIRING DOPAMINERGIC NEURONS
Dopaminergic neuron apoptosis is a characteristic of PD and
preventing dopaminergic neuron apoptosis is considered as an
effective strategy to treat Parkinson’s syndrome (Parmar, 2018).
FGF-2 regulates dopaminergic neurons’ development and the
nigrostriatal pathway in vivo, which is the main pathway affecting
human beings in PD (Baron et al., 2012). Studies have shown that
reactive astrocyte FGF-2 levels are increased during 6-OHDA
induced degeneration of nigrostriatal dopaminergic neurons in
rats, suggesting that increased astrocyte FGF-2 synthesis may be
related to neuronal repair processes (Silva et al., 2009).

FGF-2 further demonstrated the importance of FGF-2 in the
viability of dopaminergic neurons in the substantia nigra of a
mouse model of PD by improving their survival and protecting
them from 6-OHDA-induced cell death (Grothe and Timmer,
2007). FGF-2-deleted mice showed a significant decrease in
dopaminergic neuron survival after nigral injury with 6-
hydroxydopamine, and the number of dopaminergic neurons
was regulated by FGFR3 (Timmer et al., 2007). The activity of the
FGF-2-PI3K/AKT signaling axis is required for neural survival
and plasticity. When the signaling pathway is activated, it up-
regulates the anti-apoptotic protein Bcl-2. It inhibits the
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activation of the pro-apoptotic enzyme caspase-3, thereby
inhibiting apoptosis and promoting cell survival, protecting
the cell body’s integrity and neurite branching from MPP+-
induced toxicity (Yu et al., 2019). FGF-2 is not effective in all
research. In the study by Jaumotte et al. FGF-2 cannot protect DA
neurons from MPP+, but the combined action of various
neurotrophic factors has protective effects, which may be
related to different PD models (Jaumotte et al., 2016).

FGF-8 is also a promising candidate for the treatment of
neurodegenerative diseases, where it has broad activity in neural
tissue and is vital in promoting dopaminergic neuron development
and function (Chen et al., 2016). FGF-8 can induce dopaminergic
neuronal differentiation and promote dopaminergic axons’ growth
in themidbrain by increasing Semaphorin 3F (Yamauchi et al., 2009;
Lim et al., 2015). Two major FGF-8 isoforms are expressed in the
midbrain (FGF-8a and FGF-8b), whereas FGF-8 b promotes
midbrain development, and FGF-8b is structurally similar to
FGF-18 and has similar receptor-binding characteristics (Liu
et al., 2003). FGF-18 has been proved to protect dopaminergic
neurons in substantia nigra and may be used as a neuroprotective
agent in PD. Intrastriatal infusion of FGF-18 prevents dopaminergic
neuron loss in the substantia nigra and significantly improves motor
dysfunction in a 6-OHDA-induced rat model of PD. In addition,
results from in vitro studies suggest that the AKT/GSK-3β signaling
pathway is involved in the neuroprotective effects of FGF-18 against
6-OHDA-induced neurotoxicity (Guo et al., 2017).

It has also been shown that endogenous FGF-9 is a survival
factor for dopaminergic neurons and that FGF-9 treatment of
cultured substantia nigra and midbrain cells prevents MPP+-
induced dopaminergic neuron death (Huang et al., 2009).

FGF-20, a member of the FGF-9 subfamily, is preferentially
expressed in the adult brain and has the highest expression levels
in the cerebellum and substantia nigra. FGF-20 protects
dopaminergic neurons from a series of toxic injuries in vitro by
activating fibroblast growth factor receptor 1 (FGFR1), which
significantly improves the survival rate of cultured dopaminergic
neurons (Sleeman et al., 2012). The binding of FGF-20 to FGFR1c
induces phosphorylation of specific cytoplasmic tyrosine residues,
thereby activating the mitogen-activated protein kinase (MAPK)
pathway is essential for the survival of dopaminergic neurons (Itoh
and Ohta, 2013). Moreover, infusion of FGF-20 in vivo protects
dopaminergic neurons from 6-OHDA-induced damage. It prevents
loss of dopaminergic neurons in the substantia nigra and subsequent
dyskinesia in PD rats (Sleeman et al., 2012), endogenous FGF-20 is
produced by astrocytes and diffuses in a paracrine manner to
neighboring dopaminergic cells within the substantia nigra to
provide protection (Boshoff et al., 2018).

THE ROLE OF FIBROBLAST GROWTH
FACTOR IN THE NEURAL
DIFFERENTIATION OF STEM CELLS INTO
DOPAMINERGIC NEURONS

Embryonic stem cells (ESCs) are pluripotent cells, which
originate from cell population differentiation in the blastocyst

stage. These cells have many characteristics of the cell origin
needed for cell replacement therapy, including proliferation and
differentiation ability. Direct differentiation of ESCs into
dopaminergic neurons has been realized (Ganat et al., 2012),
whichmay provide a source of cell transplantation therapy for the
treatment of PD (Kriks et al., 2011). The main challenge of
improving embryonic stem cells’ therapeutic effect is to
promote the proper differentiation and long-term survival in
brain regions, which are susceptible to neurodegeneration in PD.

As a physiologically relevant neurotrophic factor, FGF-2 plays
an important role in embryonic development and neural
differentiation of embryonic stem cells and is one of the key
factors determining the differentiation of dopaminergic neurons
in human embryonic stem cells (hESCs) (Cho and Kim, 2008;
Lahti et al., 2012). It has also been shown that FGFR
synergistically regulates the self-renewal of nerve progenitor
cells and the differentiation of dopaminergic neurons during
midbrain development (Saarimaki-Vire et al., 2007). In the
adult brain, FGF-2 is mainly synthesized and secreted by
astrocytes (Zhang et al., 2009).

Experiments show that the in situ release of astrocyte-specific
FGF-2 is promoted by specific activation of endogenous
astrocytes in the substantia nigra, which significantly enhances
dopaminergic neuron differentiation and brain function repair of
transplanted hESCs in PD rat model (Yang et al., 2014). Sonic
hedgehog (Shh) and FGF-8 have been used specifically to
differentiate ESCs into tyrosine hydroxylase-positive neurons
in vitro. When both Shh and FGF-8 exist, developing cells in
vivo differentiate into a dopaminergic neuron phenotype when
they encounter cross signals along the anterior-posterior (FGF-8)
and dorsal-abdominal (Shh) axes (Nandy et al., 2014). FGF-20
synergizes with FGF-2 to increase the number of dopaminergic
neurons in primate ESC-derived neurons composed of neural
progenitor cells, and transplantation of the resulting
dopaminergic neurons into a primate model of MPTP-induced
PD can act as dopaminergic neurons and reduce the neurological
symptoms caused by MPTP (Itoh and Ohta, 2013).

Mesenchymal stem cells are pluripotent stem cells. Compared
with ESCs, mesenchymal stem cells have the characteristics of
easy harvesting, no ethical issues, and the potential of autologous
transplantation. An in vitro study has shown that co-culture of
ventral midbrain cells and rat bone marrow mesenchymal stem
cells (BMSCs) can enhance tyrosine hydroxylase expression and
dopamine synthesis (Jin et al., 2008). Several in vivo studies have
shown that the implantation of intrastriatal BMSCs promotes
functional recovery in a rat model of Hemi-PD (Deierborg et al.,
2008; Delcroix et al., 2011). Transplantation of BMSCs can
alleviate the dyskinesia of animal models of PD, but the effect
is limited, and only a few transplanted cells can survive in the
brain of the host after transplantation.

FGF-2 alone is an effective inducer of differentiation of bone
marrow mesenchymal stem cells into functional dopaminergic
neurons (Nandy et al., 2014). FGF-2 can promote the neural
differentiation of human bone marrow mesenchymal stem cells
(hBM-MSCs) in vitro and in vivo, and FGF-2 supplementation
can enhance the cell viability and proliferation ability of hBM-
MSCs and improve the therapeutic effect (Xiong et al., 2013).
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Furthermore, human umbilical cord mesenchymal stem cells
(hUC-MSCs) derived from the human umbilical cord also
have great potential in the treatment of PD. Introduction of
FGF-20 gene into hUC-MSCs and transplantation into a mouse
model of PD significantly improved mouse behavior,
accompanied by an increase in tyrosine hydroxylase-positive
cells and dopaminergic neurons, which may be related to
MSC-FGF-20 promoting the degradation of the transcription
factor NF-κB in the nigrostriatal dopaminergic system (Jinfeng
et al., 2016).

NEUROTROPHIC FACTORS AS THERAPY
STRATEGIES FOR PARKINSON’S DISEASE

Neurotrophic factors, such as GDNF and BDNF, have been
proved to have considerable therapeutic potential in
neuroprotection and nerve recovery in PD, because they can
promote the growth and survival of dopaminergic neurons and
enhance their functional activity (Allen et al., 2013; Kowianski
et al., 2018). In recent years, the potential of neurotrophic factors
to protect nigrostriatal neurons in PD has been extensively
explored. Many neurotrophic factors have entered clinical
trials, but they have failed to provide significant clinical
improvement for patients with PD. Some preclinical and
clinical data show that increasing GDNF concentration does
not always lead to significant long-term improvement. Thus,
there has been uncertainty about the value of neurotrophic
factors in the future treatment of PD (Lindholm et al., 2016;
Ferreira et al., 2018). The macromolecular size of neurotrophins
poses a great challenge for drugs to cross the blood-brain barrier
(BBB) and specifically target diseased brain regions (Nagahara
and Tuszynski, 2011; Barker et al., 2020). It is difficult for
macromolecules to pass through the BBB, so they must be
administered by intraventricular or intrathecal infusion.
Extensive central administration may lead to serious side
effects, such as epilepsy, sensory disturbance, and Schwann
cells migration/proliferation to subpial space (Nagahara and
Tuszynski, 2011). Furthermore, the treatment of many nervous
system diseases requires local and continuous delivery of growth
factors (Allen et al., 2013). How to achieve a balance between
adequate infusion (neurotrophic factors are effectively distributed
to target sites without damaging tissues) and excessive infusion
(which may lead to side effects) is a significant obstacle in the
clinical translation of PD growth factor therapy (Whone et al.,
2019).

FGF-21 is an endocrine hormone, which has various effects on
metabolism regulation. It has been shown that FGF-21 is
expressed in different regions of the brain, especially in
midbrain regions containing dopaminergic neurons (Mäkelä
et al., 2014). Potential receptors of FGF-21 are widely
distributed in the central nervous system (Fon Tacer et al.,
2010), and it has been reported that FGF-21 plays different
roles in the central nervous system (Bookout et al., 2013; Chen
et al., 2019). More interestingly, FGF-21 in the periphery can
cross the BBB by simple diffusion, reach the brain directly to exert
neuroprotective effects (Hsuchou et al., 2007), and be detected in

the cerebrospinal fluid of humans and rodents (Liang et al., 2014).
These evidence show that FGF-21 can act directly on the central
nervous system and has great potential in treating PD. In
addition, FGF-2 has been studied to improve its
pharmacological activity, covalently linking polyethylene glycol
(PEG) polymer. Compared with native FGF-2, polyethylene
glycol-modified FGF-2 achieves better BBB permeability and
in vivo stability, thereby improving its transport (Zhu et al.,).
Nasal administration is also an effective method for the treatment
of central nervous system diseases. Nasal administration of
liposome-loaded bFGF significantly reduced behavioral
impairment and rescued the 6-OHDA-induced loss of TH-
positive neurons in PD model rats (Yang et al., 2016).
Notably, although the ease of administration is a clear
advantage of intranasal administration, the potential off-target
effects of this route of administration may limit its clinical
translation (Bender et al., 2015). Recently, focused ultrasound
(FUS), which can reversibly open the BBB in a site-specific
manner, has been experimentally established as a non-invasive
and localized brain drug delivery technology (Aryal et al., 2014).
Niu et al. protected a rat model of 6-OHDA-induced PD by
focusing ultrasound-guided systemic administration of
recombinant human FGF-20 proteolipids by fusing small
ubiquitin-associated modifier (SUMO) to rhFGF-20 to
enhance the efficiency of its soluble expression (Niu et al.,
2018). Another method is to use small molecule agonists to
target related receptors and specifically activate neurotrophin
signals. The effects of existing drugs on endogenous FGF 20
production in substantia nigra and striatum were studied. It was
finally determined that salbutamol and trifluorofloxacin could be
used to increase the FGF-20 level to resist the progression of
Parkinson’s disease (Fletcher et al., 2019).

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

The pathogenesis of PD is not the result of dysfunction of a
specific pathway, but a combination of a series of interrelated
pathogenic event and dealing with these pathogenic
mechanisms alone may not be sufficient to prevent
neurodegeneration. Another method is to increase the
survival rate of vulnerable neurons by increasing
neurotrophic factors. Many studies have demonstrated the
critical role of FGF and its receptors in neuroprotection and
neurogenesis in PD. In PD models, FGF provides adequate
protection against the loss of dopaminergic neurons, promotes
differentiation of cultured cells into dopaminergic neurons in
PD animal model, and alleviates neurological symptoms. These
findings indicate that FGF plays an important role in the
differentiation and survival of dopaminergic neurons and
the etiology and treatment of PD. It is worth noting that
most of the beneficial effects of FGF observed at present are
obtained from drug-induced PD models. Thus, whether FGF
plays a role in actual diseases is still unclear. Further clinical
studies are needed to evaluate the safety and effectiveness of
FGF in the treatment of PD.
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The BBB poses another challenge to the use of
macromolecules (e.g., growth factors) to treat
neurodegenerative diseases. The BBB is a double-edged
sword that effectively protects the brain from foreign bodies,
but it also limits the use of many therapeutic agents aimed at
treating neurological disorders. At present, gene therapy in vivo
is still the only way to achieve clinical trials by directly injecting
growth factor protein into the affected brain regions, and they
are still the most promising solutions. However, the latest
advances in gene therapy and biomaterial-assisted protein
and gene delivery make the alternative growth factor delivery
systems closer to clinical trials. Gene therapy plays a therapeutic
role by genetically engineering cells in vitro to produce
neurotrophic factors and then transplanting them back into
patients (Gowing et al., 2017). The main advantages of gene
therapy is that genetic engineering is carried out in vitro, gene
vectors are not directly injected into the patient’s brain, and
genetically engineered cells can be rigorously evaluated before
clinical practice. In addition, thesafety of PD gene therapy in
vivo has been proved in many clinical trials (Hitti et al., 2019).
As a new therapeutic method, the selection of gene vectors, the
nature of cell donors, cell types, and drug delivery routes are the
key factors to be considered in the delivery of growth factors
in vitro for PD (Gowing et al., 2017). Biomaterial-assisted
growth factor delivery also has excellent potential in PD
therapy. Liposomes and other biomaterial particles protect
proteins and genes from destruction by in vitro and in vivo
factors and have been shown to improve brain penetration of
growth factor proteins and gene therapy after FUS therapy in
animal models of PD (Mead et al., 2017; Price et al., 2019;
Umlauf and Shusta, 2019). At present, the first clinical trial

(NCT 03608553) of FUS opening BBB for PD is underway, and
the time will determine whether this method is safe and
effective. In addition, new compounds that specifically
activate FGF signaling in dopaminergic neurons or
specifically target these neurons may prove helpful in PD
treatment. The identification of dopaminergic-specific FGF
interactors may be helpful for the screening of such
compounds. The role of FGF in PD and the development of
therapeutic interventions deserve further studies. More research
is needed to explore the appropriate therapeutic window,
dosage, and combination with other therapeutic agents or
biomaterials, which will help promote the clinical application
of FGF.
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