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Mephedrone (4-MMC), despite its illegal status, is still a widely used psychoactive
substance. Its effects closely mimic those of the classical stimulant drug
methamphetamine (METH). Recent research suggests that unlike METH, 4-MMC is
not neurotoxic on its own. However, the neurotoxic effects of 4-MMC may be
precipitated under certain circumstances, such as administration at high ambient
temperatures. Common use of 4-MMC in conjunction with alcohol raises the question
whether this co-consumption could also precipitate neurotoxicity. A total of six groups
of adolescent rats were treated twice daily for four consecutive days with vehicle, METH
(5 mg/kg) or 4-MMC (30 mg/kg), with or without ethanol (1.5 g/kg). To investigate
persistent delayed effects of the administrations at two weeks after the final treatments,
manganese-enhanced magnetic resonance imaging brain scans were performed.
Following the scans, brains were collected for Golgi staining and spine analysis. 4-
MMC alone had only subtle effects on neuronal activity. When administered with
ethanol, it produced a widespread pattern of deactivation, similar to what was seen
with METH-treated rats. These effects were most profound in brain regions which are
known to have high dopamine and serotonin activities including hippocampus, nucleus
accumbens and caudate-putamen. In the regions showing the strongest activation
changes, no morphological changes were observed in spine analysis. By itself 4-MMC
showed few long-term effects. However, when co-administered with ethanol, the
apparent functional adaptations were profound and comparable to those of
neurotoxic METH.
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INTRODUCTION

During the last couple of decades, there has been an increasing supply of substituted cathinones in
the illegal drug market (Vardakou et al., 2011; Deluca et al., 2012; EMCDDA, 2018). Generally, these
substances initially gain popularity as legal alternatives to existing amphetamine-type stimulants. As
their popularity grows, they are subsequently banned by national governments and once banned,
they become available on the illegal drug market next to already controlled substances. One of the
better-known substituted cathinones is mephedrone (4-methylmethcathinone, 4-MMC), the usage
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of which has remained high even after its classification as illegal
(Deluca et al., 2012; Papaseit et al., 2020).

4-MMC shows many pharmacological similarities with
methamphetamine (METH), with both substances
producing rapid and substantial increases in accumbal
extracellular dopamine (DA) and serotonin levels in vivo
(Kehr et al., 2011). The effects of both METH and 4-MMC
are mainly mediated via increased release and blockade of
reuptake of DA (Cho and Melega, 2002; Winstock et al., 2011b;
Hadlock et al., 2011; Lopez-Arnau et al., 2012; Martinez-
Clemente et al., 2012; Korpi et al., 2015). However, long-
term neurotoxic effects of mephedrone and METH appear
to differ substantially. While METH is known to produce
substantial and long-lasting reductions in monoamine levels
and other markers of DA neurotoxicity, such findings are
generally not replicated with 4-MMC. In fact, several
studies have found little evidence of mephedrone
neurotoxicity when administered under normal conditions
(Angoa-Perez et al., 2012; Baumann et al., 2012; Angoa-
Perez et al., 2013; Angoa-Perez et al., 2014; den Hollander
et al., 2015; Ciudad-Roberts et al., 2016). Nonetheless, 4-MMC
neurotoxicity can be precipitated when the drug is
administered under circumstances known to exacerbate
stimulant neurotoxicity, such as high ambient temperatures
(Hadlock et al., 2011; Lopez-Arnau et al., 2015; Pantano et al.,
2017).

In recreational settings, stimulants such as 4-MMC and
METH are often used in conjunction with alcohol (ethanol,
EtOH) (Winstock et al., 2011a; Papaseit et al., 2020). Alcohol
use is a known exacerbating factor for stimulant neurotoxicity
and has been shown to increase or precipitate neurotoxic
effects of MDMA and METH (Izco et al., 2007; Rodriguez-
Arias et al., 2011; Blaker and Yamamoto, 2018; Blaker et al.,
2019). This raises the question whether alcohol could also
precipitate 4-MMC neurotoxicity. Currently, very little is
known about this. One study reported evidence of
neurotoxicity when 4-MMC was co-administered with
EtOH, but this study also administered the drug at high
ambient temperatures, making it difficult to conclusively
attribute the effects to EtOH (Ciudad-Roberts et al., 2016).
Another study in mice reported EtOH increased 4-MMC-
induced conditioned place preference but did not assess
toxicity (Ciudad-Roberts et al., 2015). Interestingly, the
acute effects of 4-MMC alone or in combination with EtOH
was investigated in a clinical study which demonstrated that
EtOH increased the cardiovascular effects of the drug as well as
self-reported euphoria. However, this study did not investigate
long-term neurocognitive effects (Papaseit et al., 2020).
Further investigating this question is of importance
considering that 4-MMC is often consumed together with
EtOH and will help inform both drug users and healthcare
providers of potential risks and help guide the development of
an evidence-based harm reduction approach.

We previously used manganese-enhanced magnetic resonance
imaging (MEMRI) to assess the long-term effects of 4-MMC and
METH in rats and showed that METH produced a pattern of
widespread neuronal deactivation in monoamine-rich brain areas

2 weeks following a binge-dosing regimen; 4-MMC, conversely,
produced an effect that was limited primarily to the parietal
cortex, hypothalamus and hippocampus and was characterized
by neuronal activation rather than deactivation (den Hollander
et al., 2015). MEMRI signal suppression has previously been
associated with neurotoxicity in a study where MPTP-induced
loss of DA neurons in substantia nigra produced decreased
neuronal activation by MEMRI (Weng et al., 2016). The
MEMRI method is based on the fact that manganese functions
as a Ca2+ analogue in vivo; manganese influx into neuronal cells
via the Ca2+ channels during fast neuronal depolarization and
subsequent distribution throughout the neuron and axons
thereby represent a measure of mean neuronal activity over
time (Bedenk et al., 2018; Svehla et al., 2018).

Here, we employed MEMRI to investigate the long-term
effects of EtOH co-administration with 4-MMC or METH on
neuronal activity. Additionally, we used Golgi staining to evaluate
potential changes in neuronal morphology in regions of interest
identified based on MEMRI neuronal activity patterns. We show
that EtOH modifies the long-term effects of 4-MMC on neuronal
activity, resulting in a similar pattern of deactivation as observed
after METH administration.

MATERIALS AND METHODS

Animals
A total of 48 juvenile male Wistar rats (RccHan:WIST, supplied
by the Laboratory Animal Center, University of Eastern Finland,
Kuopio, Finland; 8 weeks old at the start of the experiment) were
used in this study. The rats were randomly allocated to six
treatment groups, with eight rats per group. The rats were
housed in one-animal, open-air cages containing woodchip
bedding and environmental enrichment including hardwood
blocks and plastic shelter tubes, with food pellets (Teklad
2016S, Envigo, Netherlands) and tap water available ad
libitum. The rats were maintained under a 12-h light–dark
cycle with lights on from 7.00 a.m. All treatments were given,
and all tests were performed during daytime (07:00 a.m.–07:00
p.m.). All animal experiments were performed in accordance with
European Union guidelines (Directive 2010/63/EU and the
guideline 2007/526/EC) and approved by the Division of
Health and Social Services, Legality and Licensing of the
Regional State Administrative Agency for Southern Finland
(license number ESAVI-2016–001158). All effort was taken to
minimize animal suffering and the number of animals used.

Drugs
METH was purchased from Sigma-Aldrich (St. Louis, MO,
United States) and ethanol (EtOH 99.96%) from VWR
(Pennsylvania, United States); 4-MMC was synthesized in-
house (Siivonen et al., 2018). Other products were acquired
from Sigma-Aldrich unless specified otherwise. All drugs were
dissolved in saline on the day before use and administered
intraperitoneally at a volume of 1 ml/kg (METH and 4-MMC)
or 10 ml/kg (EtOH) as two separate injections at approximately
8-h intervals.
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Dose Selection
The 5 mg/kg METH and 30 mg/kg 4-MMC doses employed
in this study were in line with those used previously and
based on an estimation of the relative difference in potency
between 4-MMC and METH (den Hollander et al., 2015).
The 1.5 g/kg EtOH dose was chosen to produce a blood
alcohol level of approximately 0.2% (by vol; 200 mg/dl,
43.3 mmol/L) that is characteristic for hazardous binge
drinking (Vonghia et al., 2008). The aim of the dosing
regimen was to mimic a pattern of heavy, recreational
binge-abuse. As such, all treatments were administered
twice daily (morning and afternoon, approximately 8 h
apart) for four consecutive days. An overview of drug and
EtOH treatments administered to the various experimental
groups is shown in Figure 1.

Overview of Experimental Design
After a habituation period of four days in groups of four animals,
the experiment began on Day 1 with the 4-days drug binge
treatment regimen of METH and 4-MMC alone or in
combination with EtOH, with additional saline and EtOH
control groups (Figure 1). The animals’ body weights were
assessed before the first treatment on Day 1 and after the last
drug treatment on Day 4. Core body temperatures were assessed
30 min after the first drug treatment on Day 1 using a
thermometer equipped with a rectal probe (Physiotemp BAT-
12, Physiotemp Instruments Inc., NJ, United States). One week
after the final drug treatment, on Day 11, animals were
administered manganese dichloride (MnCl2) as MEMRI
contrast agent through the implantation of manganese-
releasing osmotic minipumps. On day 18, following a week of
manganese exposure and two weeks after the final drug
treatments, animals were anesthetized and subjected to
MEMRI brain imaging. Immediately following the completion
of the scan, animals were sacrificed (while still under isoflurane

anesthesia), and brain tissues were collected and stored for Golgi
staining.

MRI Imaging
MnCl2 Administration
Manganese chloride was dissolved into Tris-buffered saline (pH
7.4) and administered with osmotic minipumps (Alzet, model
2001) that delivered 200 µL of MnCl2 (1 μL/h) during a 7-days
infusion, corresponding to a total MnCl2 dose of 120 mg/kg (den
Hollander et al., 2015). The concentration of MnCl2 in the pumps
was adjusted according to the body weight of the animals. Prior to
implantation, the pumps were primed overnight in saline at 37°C.
Animals were anesthetized with isoflurane (Vetflurane, Virbac
Animal Health, United Kingdom) and the pumps were implanted
subcutaneously on the dorsum, slightly caudal to the scapulae.
For post-surgical analgesia, animals received a subcutaneous
injection of carprofen (5 mg/kg, Pfizer Animal Health,
Belgium) immediately after implantation of the pumps.

Magnetic Resonance Imaging Data Acquisition
Animals were transferred from the vivarium to the imaging
facility on the day of the MEMRI imaging. MEMRI imaging
was performed in a 9.4-T horizontal magnet (Bruker Biospec,
Ettlingen, Germany) using a volume coil transmitter/4-channel
surface coil receiver pair (Rapid Biomedical, Rimpar, Germany).
During the experiments, the animals were anesthetized with
isoflurane (5% induction, 1–2% maintenance, 70:30 N2:O2 gas
mixture at 2 L/min) and placed inside a holder with breath
monitoring (60–80 breaths per minute) and temperature
control (37°C) using warm water. Accurate positioning of the
head was ascertained with the help of scout images. T1-weighted
images were acquired using a three-dimensional rapid
acquisition-relaxation enhanced (RARE) pulse sequence
(RARE factor � 6, repetition time � 200 ms, effective echo
time � 9 ms, flip angle � 180°, number of averages � 12, field

FIGURE 1 | Experimental design shown as a flowchart. 4-MMC, 4-methylmethcathinone; EtOH, ethanol; METH, methamphetamine.
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of view � 32 × 19.2 × 14 mm3, matrix size � 160/96/70, resulting
in 0.2 × 0.2 × 0.2 mm3 voxel resolution. The total imaging time
was approximately 1 h.

Magnetic Resonance Imaging Data Processing
All MRI images were converted to Analyze format, scaled up
by a factor of 10 and spatially preprocessed with a custom-
developed MATLAB (version R2017) functions using a
pipeline described previously (den Hollander et al., 2015).
In brief, T1-weighted and brain-extracted images were
spatially normalized using a rat brain template co-registered
to a rat brain atlas (Schwarz et al., 2006) by a 12-parameter
affine transformation using the FSL/FLIRT tool (Jenkinson
et al., 2002). This template was co-registered to the digitized
Paxinos and Watson atlas (Paxinos and Watson, 2009), which
enabled atlas-based generation of region-of-interest (ROI)
masks for further detailed anatomical analysis. Spatially
normalized were smoothed with a 0.4 × 0.4 × 0.4 mm3 full
width at half-maximum Gaussian kernel to improve signal-to-
noize ratio. For creating statistical parametric maps of
differential brain activation between experimental groups,
the groups were compared by performing voxel-wise
independent two-tailed t-tests using SPM8 (version 6313,
www.fil.ion.ucl.ac.uk/spm/).

Despite adjusting the MnCl2 concentration for individual
rats based on the body weight, systemic administration can
lead to inter-individual differences in Mn2+ accumulation in
the brain, causing brain activation-independent differences in
the mean global signal intensity between individuals.
Therefore, the mean global intensity was included as a
covariate in the general linear model on a voxel-by-voxel
basis (Friston et al., 1990). The resulting statistical
parametric maps were thresholded voxel-wise using a
significance level of p < 0.0001 and then cluster-size
thresholded with a threshold of k � 32 voxels, resulting in
an overall significance level of p < 0.01 corrected for multiple
comparisons across the whole brain. k was computed based on
Monte Carlo simulations.

To describe further activation differences between the
groups at anatomically specified brain areas, three-
dimensional masks were created with the WFU_PickAtlas
tool (Maldjian et al., 2003). The ROI masks were then
applied to the SPM contrast files generated previously
using the REX tool (Duff et al., 2007). For comparing the
groups across selected ROIs, mean ROI intensity values were
extracted including all voxels within the ROIs in the
analysis.

Golgi Staining
Brain regions were selected based on the results from voxel-wise
and ROI analyses. Particularly, regions with notable deactivation
and distinguishable morphological dendritic spine profiles were
chosen. The analyzed sections were 2.16 to 1.08 mm for the
nucleus accumbens and caudate-putamen and −3.00 mm to
−3.24 mm for the dorsal hippocampus. Coordinates
correspond to Bregma in Paxinos’ atlas space (Paxinos and
Watson, 2009).

Sample Preparation
Immediately following the completion of the MRI scan, animals
were sacrificed by decapitation and brains were removed and a
commercial Golgi staining kit (FD Rapid GolgiStain™ Kit;
PK401, FD NeuroTechnologies Inc., Columbia, MD,
United States) was used to stain the brain samples. In short,
the removed brains were immersed in an impregnation solution.
After 14 days of impregnation, the brains were frozen using
isopentane and stored in a −80°C freezer.

The brains were then sectioned into 100-μm-thick coronal
sections and stained in a multistep staining protocol on gelatin-
coated slides (Objektträger 50 K, O. Kindler GmbH; Freiburg,
Germany; gelatin powder, Sigma, St. Louis, MO, United States).
The regions were imaged in bright-field mode under ×100 oil-
immersion objective (EC Plan-Neofluar, NA 1.3) in z-stacks with
an AxioImager Z2 microscope and AxioCam 105 camera (Carl
Zeiss AG, Oberhocken, Germany). During the imaging process,
the correct brain regions were identified, and then z-stacks were
taken from each brain region (four z-stacks from both
hemispheres), roughly from the same location within the area,
keeping the order of the branch of the dendrite (second to third)
constant. The imaging was performed blindly, so that the
researcher did not know the treatment group of individual
sections.

Data Analysis
For the Golgi-stained neurons, spine densities and morphologies
were analyzed using previously published pipeline for efficient
and unbiased classification of dendritic spines (Risher et al.,
2014). In short, the previously acquired images were converted
to an analyzable file format using ImageJ (version 1.52p; https://
imagej.nih.gov/ij/). The converted images were then imported to
Reconstructs software (1.1.0.0, https://github.com/SynapseWeb/
Reconstruct). All spines within approximately 10 μm length of
previously acquired dendrites were manually marked by
identifying the base and the top of the spine. The data from
the Reconstructs software were then exported to csv-files. Those
files were imported to R-studio (2019, version 1.2) and were
classified using following criteria: “branched” spines: more than
one head; “stubby”: length-width ratio ≤1; “mushroom”: width
>0.6 µm; “filopodia”: length >2 μm; “thin”: length-width ratio >1
and “longThin”: length >1 µm. About 860 dendritic segments,
approximately 4 segments per animal per hemisphere per brain
region, were analyzed with about 30 spines per 10 μm dendrite,
resulting in a total of about 25,000 classified spines. The total
number per spine type per brain region was divided by the total
length of analyzed dendrites per brain region, which resulted in
one datapoint per animal per brain region per spine type for the
statistical analysis.

Statistics
Analyses were performed using SPSS (version 24.0.0.1),
MATLAB (version R2017), R (version 3.4.4) and GraphPad
Prism (version 7). Body temperatures and weights were
compared with One-Way analysis of variance (ANOVA)
followed by Tukey HSD post-hoc test. The overall effects of
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treatments on the mean ROI MEMRI signal intensity were
assessed using a two-way (brain region × treatment) ANOVA
with Greenhouse-Geisser correction. Individual regions were
subsequently compared with individual one-way ANOVAs
with Fisher’s LSD post-hoc tests. The spine types were
compared using individual one-way ANOVAs for each spine
type and brain region.

RESULTS

Body Temperature and Weight
A significant effect of drug treatment on core body temperature
assessed 30 min after the first drug administration was observed
(F5,47 � 15.45, p < 0.0001). Post-hoc testing revealed a significant
decrease in body temperature vs. vehicle only in the group treated
with EtOH, whereas a significant increase in body temperature
was observed in all other groups that received METH or 4-MMC
(Figure 2). Notably, concurrent treatment with EtOH had no
modulatory effect on body temperatures in animals treated with
the stimulants.

There were no differences in body weights between groups
prior to the drug treatments on Day 1 (F 5, 47 � 0.20, n. s.) or at the
end of the drug treatments on Day 4 (F5,47 � 1.63, n. s.), indicating
that the binge-treatment regimen was well tolerated in all groups.

Manganese-Enhanced Magnetic
Resonance Imaging
Voxel-wise
All treatments except 4-MMC induced long-term deactivation
compared with saline vehicle in multiple cortical regions

including the primary motor cortex and secondary
somatosensory cortex (Figure 3A). The deactivations were not
limited to the cortex but were also present in the midbrain and
striatum. Conversely, 4-MMC caused statistically significant
activations in the primary and secondary somatosensory
cortices and in some regions of the midbrain including the
tectum.

The thresholded brain maps of 4-MMC + EtOH compared
with 4-MMC alone (Figure 3C) showed deactivations in similar
regions as in the METH vs saline analysis. METH + EtOH group
looked very similar to groups of METH alone and EtOH alone
(Figure 3B).

Regions of Interest
Signal intensities from 34 ROIs expressed as intensities relative
to the saline-treated control group are shown in Table 1. A
two-way ANOVA with treatment as between-subjects factor
and brain region as within-subjects factor revealed a
significant main effect of treatment (F5,42) � 3.42, p < 0.05), as
well as a significantGreenhouse-Geisser–correctedmain effect of region
(F 3.50, 1386 � 13.89, p < 0.0005) and treatment × region interaction
(F17.48, 1386 � 2.07, p < 0.05).

Confirming previous results (den Hollander et al., 2015),
METH- and 4-MMC-treated groups induced very different
signal intensities throughout the brain (Table 1), with METH-
treatment reducing the signal and 4-MMC increasing it in several
brain regions as compared to the saline-treated group. METH
produced significant decreases in brain activity in DA terminal
regions (Table 1) as well a multitude of cortical and subcortical
regions, including the cingulate and limbic cortex, ventral
hippocampus, dorsal thalamus and raphe nucleus. 4-MMC
treatment resulted in increased brain activity, although this
effect did not reach statistical significance in any DA terminal
region and was limited to the retrosplenial cortex and primary
somatosensory cortex, as well as the dorsal hippocampus,
thalamic areas and the superior colliculus.

In EtOH-treated animals, a decrease in brain activity was
observed as compared with saline-treated group (Table 1).
This effect was most notable in DA terminal regions, such as
the nucleus accumbens and caudate-putamen and
throughout several cortical and subcortical regions,
including the cingulate and prelimbic cortex and the bed
nucleus of the stria terminalis. Addition of EtOH to the
METH treatment yielded similar deactivations in signal
intensity vs. saline as EtOH or METH alone.
Interestingly, the activation seen in the 4-MMC group
was not observed in the group treated with 4-MMC +
EtOH. Conversely, in the 4-MMC + EtOH treated group
the deactivation pattern strongly resembled the deactivation
pattern seen in the group treated with METH.

Golgi Staining
Brain regions which showed the most notable changes and had
distinguishable dendritic spine morphology were chosen for
analysis. With those criteria hippocampal CA1, nucleus
accumbens and caudate-putamen were selected for analysis
(for representative examples, please see Figure 4).

FIGURE 2 | Effect of treatment on body temperature ethanol (EtOH)
decreased while all other treatments including the stimulants, increased core
body temperatures as assessed 30 min after the first drug administration on
Day 1 of the experiment. The data points are means ± SEM for n � 8 per
group. *p < 0.05 and **p < 0.01 compared with saline-control (Tukey test); n.
s., not significant. 4-MMC, 4-methylmethcathinone; EtOH, ethanol; METH,
methamphetamine.
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The hippocampal CA1 region was analyzed for spine elements
using a total of 39 brains (saline-control n � 6, METH n � 6, 4-
MMC n � 6, EtOH n � 8, METH + EtOH n � 7, and 4-MMC +
EtOH n � 6). No significant differences between the treatment
groups were seen in the total number of spines (F 5, 33 � 0.59, n.
s.), filopodia-type spines (F5, 33 � 1.00, n. s.), thin-type spines (F5,
33 � 0.57, n. s.), stubby-type spines (F5, 33 � 0.40, n. s.),
mushroom-type spines (F5,33 � 0.57, n. s.), branched-type
spines (F5, 33 � 0.69, n. s.) and long-thin-type spines (F5, 33 �
0.20, n. s.) (Figure 5).

Nucleus accumbens dendrites were analyzed for spine
elements using a total of 41 brains (saline-control n � 5,
METH n � 7, 4-MMC n � 6, EtOH n � 8, METH + EtOH
n � 8, 4-MMC + EtOH n � 7). No significant differences between
treatment groups were seen in medium spiny neurons, total
number of spines (F5, 35 � 0.63, n. s.), filopodia-type spines
(F5, 35 � 1.29, n. s.), thin-type spines (F5, 35 � 0.25, n. s.),
stubby-type spines (F5, 35 � 0.93, n. s.), mushroom-type spines
(F5, 35 � 0.28, n. s.), branched-type spines (F5, 35 � 1.37, n. s.) and
long-thin-type spines (F5, 35 � 0.51, n. s.) (Figure 5).

The dorsomedial caudate-putamen was analyzed for spine
elements using a total of 42 brains (saline-control n � 6, METH
n � 7, 4-MMC n � 7, EtOH n � 7, METH + EtOH n � 8, and 4-
MMC + EtOH n � 7). No significant differences between

treatment groups were seen in the total number of spines (F5,
36 � 1.27, n. s.), filopodia-type spines (F5, 36 � 2.45, n. s.), thin-type
spines (F5, 36 � 0.28, n. s.), stubby-type spines (F5, 36 � 0.87, n. s.),
mushroom-type spines (F5, 36 � 0.98, n. s.), branched-type spines
(F5, 36 � 0.67, n. s.) and long-thin-type spines (F5, 36 � 0.77, n. s.)
(Figure 5).

DISCUSSION

Here we show that co-administration of EtOH with 4-MMC in a
binge-abuse model produces a widespread pattern of neuronal
deactivation in monoamine-rich brain areas when assessed with
MEMRI two weeks after the last drug administration. The 4-
MMC + EtOH deactivation pattern was very similar to the one
observed following METH administration. This pattern of
widespread deactivation is in contrast with the effect seen
when 4-MMC was administered alone. 4-MMC increased,
rather than decreased, neuronal activity in an anatomically
more limited manner, and occurring in areas not strongly
innervated by DA axons. These findings regarding 4-MMC
alone were in line with our previous results, indicating good
reproducibility of the MEMRI method (den Hollander et al.,
2015). However, when examining neuronal morphology in the

FIGURE 3 | Effect of treatment on brain activity. Statistical color-coded t-maps (thresholded at pc < 0.01) are superimposed on T2-weighted sections from the brain
template (Schwarz et al., 2006), with the corresponding atlas sections (Paxinos and Watson, 2009) manually overlaid. (A) All treatments compared to the saline control.
(B)METH + EtOH treatment compared toMETH treatment. (C) 4-MMC + EtOH treatment compared to 4-MMC treatment. EtOH, ethanol; METH,methamphetamine; 4-
MMC, 4-methylmethcathinone.
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TABLE 1 | Effects of METH and 4-MMC alone or in combination with EtOH on magnetic resonance imaging signal intensity in pre-defined ROIs, two weeks following the last dose of the binge treatment regimen. The mean
intensity values in each ROI were normalized (saline � 1). All data are expressed asmean ±SEM.N � 8 per group. Significant p values (p < 0.05) aremarked by bolded text. Only significant p values with ANOVAmain effect
are bolded. EtOH, alcohol; METH, methamphetamine; 4-MMC, 4-methylmethcathinone; ROI, region of interest; SEM, standard error of the mean.

ROI MRI intensity value (mean ± SEM) ANOVA Post-hoc p-value

Saline EtOH METH METH
+

EtOH

4-MMC 4-MMC
+

EtOH

F p Saline
vs EtOH

Saline
vs METH

Saline
vs METH

+
EtOH

METH
vs METH

+
EtOH

Saline
vs 4-MMC

Saline
vs 4-MMC

+
EtOH

4-MMC
vs 4-MMC

+
EtOH

Dopamine system
Nucleus accumbens core 1.00 0.89 0.89 0.89 1.05 0.91 3.57 0.009 0.037 0.040 0.046 0.949 0.351 0.086 0.010

±0.04 ±0.05 ±0.03 ±0.03 ±0.03 ±0.03
Nucleus accumbens shell 1.00 0.89 0.89 0.90 1.04 0.91 3.11 0.018 0.042 0.036 0.068 0.770 0.440 0.101 0.018

±0.04 ±0.05 ±0.03 ±0.03 ±0.04 ±0.03
Caudate/putamen (striatum) 1.00 0.89 0.89 0.90 1.05 0.92 3.77 0.007 0.037 0.032 0.045 0.877 0.298 0.103 0.009

±0.04 ±0.04 ±0.02 ±0.04 ±0.03 ±0.03
Lateral globus pallidus 1.00 0.87 0.88 0.89 1.04 0.90 3.19 0.016 0.025 0.036 0.047 0.729 0.523 0.093 0.023

±0.05 ±0.05 ±0.03 ±0.03 ±0.04 ±0.03
Substantia nigra 1.00 0.99 0.86 0.93 0.97 0.87 1.43 0.232 0.888 0.055 0.344 0.654 0.683 0.080 0.166

±0.05 ±0.05 ±0.03 ±0.05 ±0.04 ±0.07
Ventral tegmental area 1.00 0.95 0.90 0.94 1.05 0.92 1.98 0.101 0.431 0.075 0.279 0.488 0.383 0.160 0.028

±0.05 ±0.04 ±0.02 ±0.04 ±0.04 ±0.05
Cerebral cortex
Insular cortex 1.00 0.93 0.89 0.92 1.07 0.93 2.65 0.036 0.201 0.055 0.185 0.536 0.242 0.256 0.024

±0.05 ±0.04 ±0.03 ±0.05 ±0.04 ±0.04
Primary auditory cortex 1.00 0.90 0.89 0.91 1.09 0.94 3.23 0.015 0.096 0.076 0.150 0.726 0.153 0.293 0.016

±0.06 ±0.03 ±0.02 ±0.05 ±0.04 ±0.05
Secondary auditory cortex 1.00 0.90 0.88 0.91 1.08 0.93 3.23 0.015 0.104 0.059 0.141 0.663 0.172 0.253 0.015

±0.05 ±0.03 ±0.02 ±0.05 ±0.04 ±0.05
Cingulate cortex 1.00 0.89 0.89 0.90 1.07 0.91 4.34 0.003 0.040 0.037 0.051 0.884 0.166 0.094 0.003

±0.04 ±0.04 ±0.03 ±0.03 ±0.03 ±0.03
Ectorhinal cortex 1.00 0.93 0.87 0.96 1.06 0.92 1.51 0.208 0.342 0.103 0.567 0.283 0.433 0.295 0.071

±0.06 ±0.04 ±0.03 ±0.06 ±0.06 ±0.06
Frontal association cortex 1.00 0.90 0.90 0.90 1.07 0.90 3.99 0.005 0.056 0.061 0.062 0.993 0.171 0.081 0.003

±0.04 ±0.05 ±0.03 ±0.04 ±0.03 ±0.03
Infralimbic cortex 1.00 0.90 0.89 0.92 1.06 0.93 3.08 0.019 0.055 0.046 0.125 0.499 0.304 0.173 0.020

±0.05 ±0.04 ±0.03 ±0.03 ±0.04 ±0.03
Primary motor cortex 1.00 0.89 0.89 0.89 1.06 0.92 4.09 0.004 0.042 0.034 0.035 0.904 0.224 0.128 0.008

±0.04 ±0.05 ±0.03 ±0.04 ±0.03 ±0.03
Secondary motor cortex 1.00 0.90 0.90 0.91 1.08 0.93 3.83 0.006 0.063 0.063 0.088 0.874 0.138 0.190 0.007

±0.04 ±0.05 ±0.03 ±0.04 ±0.03 ±0.03
Orbital cortex 1.00 0.90 0.90 0.92 1.07 0.92 3.36 0.012 0.076 0.068 0.128 0.993 0.184 0.154 0.008

±0.04 ±0.05 ±0.03 ±0.03 ±0.03 ±0.03
Perirhinal cortex 1.00 0.96 0.92 0.96 1.12 0.97 1.85 0.124 0.583 0.259 0.566 0.753 0.107 0.719 0.051

±0.07 ±0.04 ±0.02 ±0.06 ±0.05 ±0.06
Prelimbic cortex 1.00 0.90 0.90 0.90 1.06 0.91 4.05 0.004 0.043 0.043 0.050 0.575 0.212 0.076 0.004

±0.04 ±0.05 ±0.03 ±0.03 ±0.03 ±0.03
Parietal association cortex 1.00 0.90 0.89 0.90 1.08 0.92 4.50 0.002 0.050 0.031 0.042 0.943 0.140 0.140 0.004

±0.04 ±0.04 ±0.02 ±0.04 ±0.03 ±0.03
(Continued on following page)
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TABLE 1 | (Continued) Effects of METH and 4-MMC alone or in combination with EtOH on magnetic resonance imaging signal intensity in pre-defined ROIs, two weeks following the last dose of the binge treatment
regimen. The mean intensity values in each ROI were normalized (saline � 1). All data are expressed as mean ± SEM. N � 8 per group. Significant p values (p < 0.05) are marked by bolded text. Only significant p values
with ANOVA main effect are bolded. EtOH, alcohol; METH, methamphetamine; 4-MMC, 4-methylmethcathinone; ROI, region of interest; SEM, standard error of the mean.

ROI MRI intensity value (mean ± SEM) ANOVA Post-hoc p-value

Saline EtOH METH METH
+

EtOH

4-MMC 4-MMC
+

EtOH

F p Saline
vs EtOH

Saline
vs METH

Saline
vs METH

+
EtOH

METH
vs METH

+
EtOH

Saline
vs 4-MMC

Saline
vs 4-MMC

+
EtOH

4-MMC
vs 4-MMC

+
EtOH

Retrosplenial cortex 1.00 0.94 0.95 0.95 1.12 0.97 3.83 0.006 0.218 0.285 0.295 0.448 0.021 0.556 0.004
±0.04 ±0.03 ±0.02 ±0.04 ±0.03 ±0.04

Primary somatosensory cortex 1.00 0.90 0.93 0.94 1.12 0.96 4.61 0.002 0.054 0.200 0.297 0.545 0.024 0.491 0.003
±0.04 ±0.04 ±0.03 ±0.04 ±0.04 ±0.03

Secondary somatosensory cortex 1.00 0.91 0.87 0.90 1.05 0.91 3.33 0.013 0.109 0.019 0.066 0.797 0.373 0.086 0.012
±0.05 ±0.04 ±0.02 ±0.04 ±0.04 ±0.04

Subcortical
Amygdala 1.00 0.90 0.87 0.94 1.08 0.88 3.17 0.016 0.116 0.052 0.354 0.295 0.219 0.078 0.004

±0.05 ±0.04 ±0.04 ±0.04 ±0.04 ±0.05
Bed nucleus of the stria terminalis 1.00 0.88 0.89 0.89 1.04 0.90 3.15 0.017 0.036 0.039 0.054 0.878 0.478 0.079 0.016

±0.04 ±0.05 ±0.03 ±0.03 ±0.04 ±0.03
Hippocampus, dorsal 1.00 0.91 0.96 0.97 1.15 0.99 4.84 0.001 0.107 0.407 0.520 0.844 0.006 0.805 0.002

±0.05 ±0.04 ±0.02 ±0.04 ±0.04 ±0.04
Hippocampus, ventral 1.00 0.92 0.77 0.84 0.96 0.78 4.53 0.002 0.199 0.001 0.017 0.262 0.578 0.001 0.006

±0.05 ±0.05 ±0.03 ±0.04 ±0.04 ±0.06
Thalamus, dorsal 1.00 0.91 0.88 0.89 1.04 0.91 3.78 0.006 0.058 0.014 0.025 0.830 0.447 0.056 0.011

±0.04 ±0.04 ±0.02 ±0.03 ±0.03 ±0.03
Thalamus, ventral 1.00 0.90 0.97 0.99 1.15 1.01 4.84 0.001 0.071 0.624 0.825 0.788 0.006 0.889 0.008

±0.04 ±0.03 ±0.03 ±0.04 ±0.04 ±0.04
Subthalamic nucleus 1.00 0.93 0.94 0.99 1.13 0.97 2.85 0.026 0.257 0.358 0.811 0.304 0.036 0.585 0.009

±0.05 ±0.04 ±0.03 ±0.05 ±0.04 ±0.04
Hypothalamus 1.00 0.97 0.93 0.98 1.06 0.96 0.88 0.505 0.673 0.307 0.726 0.993 0.363 0.569 0.143

±0.06 ±0.03 ±0.03 ±0.05 ±0.04 ±0.04
Interstitial nucleus of the
posterior limb of the
anterior commissure

1.00 0.89 0.88 0.90 1.05 0.91 3.40 0.011 0.046 0.026 0.058 0.627 0.396 0.086 0.012
±0.04 ±0.04 ±0.03 ±0.04 ±0.04 ±0.03

Raphe nucleus 1.00 0.93 0.88 0.92 1.05 0.92 3.02 0.020 0.207 0.021 0.110 0.897 0.353 0.116 0.014
±0.04 ±0.03 ±0.04 ±0.04 ±0.04 ±0.04

Superior colliculus 1.00 0.93 0.92 0.93 1.10 0.95 4.43 0.003 0.132 0.097 0.144 0.594 0.036 0.327 0.003
±0.04 ±0.03 ±0.02 ±0.04 ±0.04 ±0.03

Substantia innominata 1.00 0.90 0.84 0.86 0.98 0.86 3.53 0.009 0.061 0.003 0.009 0.839 0.704 0.011 0.026
±0.04 ±0.04 ±0.03 ±0.03 ±0.04 ±0.04

Only significant p values with ANOVA main effect are bolded.
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hippocampus, nucleus accumbens and caudate-putamen, the
three regions showing the strongest neuronal deactivation in
animals treated with 4-MMC and EtOH, we found no
morphological changes to dendrites suggestive of long-term
neurotoxic effects.

When administered alone, 4-MMC produces a subtle
pattern of long-term neuronal activation in regions like the
retrosplenial and primary somatosensory cortex, as well as the
dorsal hippocampus, thalamic areas and the superior
colliculus. These areas are not strongly innervated by DA,
and the observed changes plausibly do not reflect DA
neurotoxicity. A potential explanation for the increased

neuronal activity is that during 4-MMC intoxication, it
has been shown that plasma cortisol levels are elevated
(Papaseit et al., 2020). Elevation of cortisol levels in acute
stress via the serotonergic effects on the hypothalamo-
pituitary-adrenal axis has been shown to activate regions
important for memory consolidation, like the hippocampus
(Herman and Cullinan, 1997; Kim et al., 2015). Interesting in
this regard is that 4-MMC was shown to reduce memory
performance 2 weeks after a similar binge-regimen as
employed in this study without causing any reductions in
monoamine levels that could be indicative of toxicity (den
Hollander et al., 2013).

FIGURE 4 |One representative dendrite section from the hippocampus, nucleus accumbens and caudate putamen shown as an example of the labeling process.

FIGURE 5 | Spine density per spine type shown in the hippocampus, nucleus accumbens and caudate putamen. Individual data points shown in red, bars
represent data as mean ± SEM.
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The pattern of widespread neuronal deactivation seen
following treatment with 4-MMC in combination with EtOH
as well as following METH, either alone or in combination with
EtOH, is striking considering the anatomical correlation of the
deactivation pattern with brain regions innervated by DA nerve
ending and typically implicated in neurotoxicity of
amphetamines (Ares-Santos et al., 2014). Nonetheless, even
the areas showing the strongest deactivation did not display
signs of neurotoxicity as assessed by subsequent Golgi staining
and dendritic spine analysis. This raises the question what the
exact neurochemical correlates of the MEMRI deactivation
pattern are. Co-administration of 4-MMC with EtOH lowers
synaptic transmitter function markers for DA and 5-HT, while
elevating oxidative stress markers at least in high ambient
temperatures (Ciudad-Roberts et al., 2016). It is thus possible
that the 4-MMC and EtOH-induced deactivation observed here
reflects the long-term functional effects of increased oxidative
stress-related adaptation in synaptic terminals. However, it
should be noted that deactivation in brain regions largely
overlapping with those in the 4-MMC/EtOH-treated group
were observed in the group treated with EtOH only.
Considering that the EtOH dose employed in this study was
moderate it is worth noting that neuronal deactivation as
assessed by MEMRI should not be considered as conclusive
evidence of neurotoxicity, although such a correlation has been
observed previously (Weng et al., 2016). Similarly,
neurotoxicity may have occurred in the 4-MMC group in a
way that is not reflected in the MEMRI data. The exact
neurochemical correlates of altered activation patterns
remain to be determined and until then the data must be
interpreted with relative caution.

Despite these caveats, our results appear in agreement with
previous studies that have generally failed to observe
neurotoxicity following administration of 4-MMC at normal
ambient temperatures (Angoa-Perez et al., 2012; Baumann
et al., 2012; Angoa-Perez et al., 2013; Angoa-Perez et al., 2014;
den Hollander et al., 2015; Ciudad-Roberts et al., 2016). Although
there are some reports of neurotoxicity as assessed by levels of
monoamines, their transporters and tyrosine hydroxylase
(Martinez-Clemente et al., 2014; Kaminska et al., 2018), 4-
MMC neurotoxicity is primarily observed when administered
under exacerbating conditions, specifically increased ambient
temperatures (Hadlock et al., 2011; Lopez-Arnau et al., 2015;
Pantano et al., 2017). This raises the question as to what
pharmacological differences between 4-MMC and METH
result in the latter much more readily inducing neurotoxicity
in animal models. Anneken et al. (2018) hypothesized that the
proposed difference could be due to differences in how METH
and 4-MMC access the drug-releasable pool of DA. However,
their experiments showed that combining the drugs with
L-DOPA, which increases the size of the release pool, did in
fact not precipitate any 4-MMC neurotoxicity while enhancing
the toxic effects of METH. In a subsequent experiment, the same
group investigated whether differences in how the two drugs
modulate core body temperatures may be responsible for
differences in toxicity using tryptophan hydroxylase 2
knockout mice lacking brain serotonin. The rationale for this

experiment was the observation that while both METH and 4-
MMC produce hyperthermia, 4-MMC has also been reported to
produce a brief hypothermic response. However, they reported
that although the knockout mice did not experience the
characteristics hypothermic response, no increase in toxicity
was observed in the knockouts vs. the wild-types (Anneken
et al., 2019). Another possibility is that 4-MMC has a different
effect of mitochondria than METH, which has been associated
with mitochondrial-dependent mechanisms of toxicity (Shin
et al., 2018). However, 4-MMC in fact appears to also affect
mitochondria. It has been shown to impair mitochondrial
complexes II and IV, collapse mitochondrial membrane
potential, induce mitochondrial swelling and lower
mitochondrial respiration in vitro (den Hollander et al., 2014;
Naserzadeh et al., 2019). Nonetheless, in the case of 4-MMC,
these in vitro results do not generally appear to translate into
measurable neurotoxicity in vivo. Thus, the exact mechanism(s)
underlying the observed differences in toxicity between 4-MMC
and METH remain to be elucidated.

In this study, core body temperatures vs. the control group
were lowered after EtOH but increased after 4-MMC and METH,
in line with results from previous studies (Lomax et al., 1980;
Myles and Sabol, 2008; den Hollander et al., 2015). Notably, co-
administration of EtOH with 4-MMC and METH neither
exacerbated nor blocked the hypothermic effects of these
drugs. Since hyperthermia was seen in stimulant-treated
groups and not affected by EtOH co-administration, any
differences observed between groups were not due to a
differing hyperthermic reaction in this study.

Golgi staining followed by spine analysis has been suggested to
be an effective and unbiased way to assess neuronal changes at
the dendritic spine level (Risher et al., 2014). This has also
proven to be the case with stimulant-induced changes in
dendritic spines (Robinson and Kolb, 1997; Robinson and
Kolb, 1999). However, in the present experiment, no
statistically significant alterations were found in the spine
analysis in three relevant brain regions. This lack of changes
could be due to the limitations in Golgi staining, such as
variability of staining intensity, variability in localizing the
brain area within thick brain sections or the random nature at
which neurons of different types are stained which is inherent
to the Golgi method. Stimulant-induced increases in striatal
spines have been found in studies in which prolonged
psychomotor sensitization has been detected (Li et al.,
2004), but our slightly heavier regimen was aimed at
finding possible neurotoxicity without sensitization (den
Hollander et al., 2015). Another aspect to be taken into
account is the fact that changes in spine formation,
deformation and maturation can be very fast and
bidirectional (Nagerl et al., 2004; Berry and Nedivi, 2017).
To our knowledge there has been no previous research to
assess the temporal stability of stimulant-induced alterations
in spine morphology. It is possible that stimulant-induced
alterations in spine morphology are not stable enough to
persist following the 2-weeks recovery period after
treatments. Furthermore, Golgi-staining stains post-
synaptic parts of the synapse whereas the stimulant-
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induced neurotoxicity has previously been associated with
the axonal part of the synapse but at higher doses, from
20 mg/kg and up (Zhu et al., 2006) than used in this
experiment. And therefore, our dose of 5 mg/kg METH
might not have been sufficient to cause axonal apoptosis
which would then cause dendritic spine deformation.
Lastly, it is conceivable that the isoflurane anesthesia
employed during the MEMRI scanning could have
produced alterations or reversals in morphology
considering the fact that isoflurane has previously been
associated with activation of neurotrophic signaling, but
not with spine structure changes (Antila et al., 2017).

A limitation of this study is that only Golgi staining was
employed to interpret the neuronal activation patterns
observed in MEMRI experiment. The assessments of levels
of monoamines or their transporters, as well as other
assessments of inflammation and oxidative stress during
and following the binge regimen could have provided
further insights into potential causative factors. Also, other
type of silver staining or terminal deoxynucleotidyl transferase
dUTP nick end labeling could be used to assess cell-level
neurotoxicity. Moreover, assessments of neurocognitive and
neuropsychiatric function such as memory, mood and anxiety
tests, could have provided further information about
functional effects. These are aspects which will need to be
addressed in future studies.

When administered on its own, the effects of 4-MMC on
neural activity are subtle, anatomically limited, and likely not
reflective of long-term neurochemical perturbations. However,
when administered in combination with EtOH, it produces a
pattern of widespread neuronal deactivation in brain regions
densely innervated by DA neurons similar to what is seen after
METH. The deactivated regions nonetheless do not show clear
morphological changes indicative of toxicity. This suggests the
deactivation pattern is likely due to long-term neurochemical
perturbations that are substantial but not so severe as to produce
overt neurotoxicity.

In conclusion, this study suggests that binge-treatment with 4-
MMC on its own does not substantially alter brain activity, but in

combination with EtOH may result in long-term reductions in
brain activity. This is important from a harm-reduction
perspective, although further studies are needed to outline the
exact neurochemical changes responsible for the altered activity
patterns.
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