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Evaluation of proarrhythmic properties is critical for drug discovery. In particular, QT
prolongation in electrocardiograms has been utilized as a surrogate marker in many
evaluation systems to assess the risk of torsade de pointes and lethal ventricular
arrhythmia. Recently, new evaluation systems based on human iPS cell-derived
cardiomyocytes have been established. On the other hand, in clinical situations, it has
been reported that the incidence of atrial arrhythmias such as atrial fibrillation has been
increasing every year, with the prediction of a persistent increase in the near future. As to
the increased incidence of atrial arrhythmias, in addition to the increased population of
geriatric patients, a wide variety of drug treatments may be related, as an experimental
method to detect drug-induced atrial arrhythmia has not been established so far. In the
present study, we characterized the atrial-like cardiomyocytes derived from human
induced pluripotent stem cells and examined their potential for the evaluation of drug-
induced atrial arrhythmia. Atrial-like cardiomyocytes were induced by adding retinoic acid
(RA) during the process of myocardial differentiation, and their characteristics were
compared to those of RA-free cardiomyocytes. Using gene expression and membrane
potential analysis, it was confirmed that the cells with or without RA treatment have atrial or
ventricular like cardiomyocytes, respectively. Using the ultra-rapid activating delayed
rectifier potassium current (IKur) channel inhibitor, which is specific to atrial
cardiomyocytes, Pulse width duration (PWD) 30cF prolongation was confirmed only in
atrial-like cardiomyocytes. In addition, ventricular like cardiomyocytes exhibited an early
after depolarization by treatment with rapidly activating delayed rectifier potassium current
(IKr) channel inhibitor, which induces ventricular arrhythmia in clinical situations. Here, we
have established a high-throughput drug evaluation system using human iPS cell-derived
atrial-like cardiomyocytes. Based on the obtained data, the system might be a valuable
platform to detect potential risks for drug-induced atrial arrhythmias.
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INTRODUCTION

It has been reported that 22% of candidate compounds dropped
out at the developmental stage of new drugs and 45% of
pharmaceutical products were withdrawn from the market
(Watkins, 2011). Therefore, in research and development, it is
critical to detect cardiotoxicity during the selection of appropriate
compounds for new drugs. In particular, drug-induced torsade de
pointes (TdP) has been the most serious concern as it leads to
ventricular fibrillation or sudden death.

In western countries, cases of TdP-related death were
frequently reported in the late 80s through the early 90s.
Several pharmaceutical products were withdrawn from the
market because of their risk of inducing TdP in the early 90s
(Thomsen et al., 2006; Stockbridge et al., 2013). The International
Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH) guidelines for
cardiotoxicity evaluation (non-clinical: S7B, clinical: E14),
therefore, were enforced to handle these situations, and there
have been few examples of product withdrawal due to TdP after
the launch of ICH guidelines (Stockbridge et al., 2013). In recent
years, human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) in which ventricular
cardiomyocytes are dominant have been commercially
available, and multi-facility validation studies using these cells
to improve the predictability of drug-induced arrhythmia
evaluation have been in progress (Nozaki et al., 2017; Ando
et al., 2017).

Cases of not only ventricular but also atrial arrhythmia are also
known in clinical situations. Atrial arrhythmia indicates some
phenotypes including tachyarrhythmia such as atrial flutter or
fibrillation, or bradyarrhythmia such as sick sinus syndrome or
atrioventricular block. In tachyarrhythmia, atrial fibrillation
occasionally induces cardiac arrest caused by a deterioration of
contraction, atrial thrombus formation, and related infarction in
organs/tissues. Bradyarrhythmia also causes transient cardiac
arrest accompanied by loss of consciousness or cardiac arrest.
Although the fatality rate caused by atrial arrhythmia itself is not
very high, some lethal diseases originating from atrial arrhythmia
are known. The incidence of atrial arrhythmia has increased
annually in recent decades (Jensen et al., 2012; Chugh et al.,
2014; Schnabel et al., 2015; Lane et al., 2017) and it is
predicted that the number of patients will be growing
(Jensen et al., 2014; Lane et al., 2017). Aging can be
thought of as one of its risk factors, and an aging society
might be related to an increase in the number of atrial
arrhythmias. Several medicines, such as calcium
antagonists, beta-adrenergic blockers, or antipsychotic
agents, induce bradyarrhythmia (Edoute et al., 2000; Berry
and Hasin, 1978; Johnson et al., 1997; Bordier et al., 2003).
Not only aging but also drug treatment may be a trigger for
tachyarrhythmia. As the evaluation tools for atria arrhythmia
have not been established thus far, we could not confirm the
existence of drug-induced atrial arrhythmia itself.

As ventricular cardiomyocytes are dominant in commercially
available hiPSC-CMs, atrial arrhythmia might not be detected
using these cells. Retinoic acid (RA) is essential in the regulation

of cardiac development (Moss et al., 1998). Inhibition of RA
synthesis induced the lack of atrial chamber in mouse embryo
heart (Xavier-Neto et al., 1999). Hidaka et al.(2003) established a
differentiation protocol from mouse embryonic stem (ES) cells
to cardiomyocytes, and confirmed that retinoic acid induced
atrial cardiomyocytes from ES cells. In recent years, retinoic
acid has also been used for inducing atrial cardiomyocyte from
human ES/iPS cells Zhang et al. (2011), Gassanov et al. (2008),
Lee et al. (2017), and these differentiation methods have been
proposed for the application of pathophysiological models of
atrial arrhythmia or drug screening for atrial arrhythmia
(Devalla et al., 2015; Argenziano et al., 2018; Lemme et al.,
2018). In the present study, we obtained a hiPS-derived atrial-
like phenotype by supplemented RA during the cardiac
mesoderm induction. Accordingly, we tried to examine the
acute response to drug administration in the hiPS-CMs with
(atrial-like subtype) or without (ventricular-like subtype)
treatment of RA.

RESULTS

Cardiac Differentiation Induction From
hiPSCs
Undifferentiated hiPSCs were maintained in AK02 medium for
2–3 days until 80% confluency was obtained. Cardiac
differentiation was then induced according to the
manufacturer’s protocol, as shown in Figure 1A. To obtain
highly purified cardiomyocytes, metabolic selection was
performed during post-differentiation, from day 15–26.
Cardiomyocyte proportion was quantified by immunostaining
with cardiac troponin-T (cTnT). Figure 1B shows that the
proportion of cTnT-positive cells was over 90% with or
without RA treatment (CT 93.9 ± 2.51% vs. AM 96.8 ±
1.81%). The results suggest that RA application did not
influence cardiomyocyte differentiation efficiency.

Characteristics of hiPS-Derived
Cardiomyocytes With RA Treatment
To further evaluate the gene expression of cardiac subtypes in the
control hiPS-CMs (CT) and the RA-treated hiPS-CMs (AM), the
cells were co-stained with myosin light chain 2a (MLC-2a: atrial
isoform) and myosin light chain 2v (MLC-2v: ventricular
isoform) (Supplementary Figure 1). An immunofluorescence
study showed that the ratio of MLC-2a positive cells and MLC-2v
positive cells are comparable in CT (MLC-2a 56.0 ± 2.1% vs.
MLC-2v 57.0 ± 2.11%), and the percentage of double-positive
cells (MLC-2a+/MLC-2v+) was approximately 40%. In AM
(MLC-2a 83.4 ± 0.63%), most cTnT-positive cells were co-
positive for MLC-2a, however, very few cTnT-positive cells
were found co-positive for MLC-2v (MLC-2v 14.0 ± 2.82%)
(Figures 1B, C).

To analyze the differences in the functional and
electrophysiological properties of atrial and ventricular
cardiomyocytes, we assessed multiple parameters of the action
potential in CT and AM using a voltage-sensitive dye.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 6806182

Honda et al. iPS Cell-Based Atrial Toxicity Testing

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


To examine the electrophysiological properties, we conducted
optical mapping of action potentials based on spontaneous beating
cardiomyocytes. The AP of AMs displayed a spike-like shape with a
steep upslope and downslope, as well as a high frequency, which was
more than twice that of CT (Figures 2A, B. CT 83.7 ± 9.50/min vs.
AM 237 ± 5.20/min). In addition, the action potential duration in

AM was significantly shorter than that in CT (Figures 2C–E.
CT vs. AM: cAPD20: 159.8 ± 11.7 vs. 69.8 ± 3.66 ms; cAPD50

315.5 ± 16.93 vs. 114.9 ± 10.7 ms; cAPD90 369.7 ± 21.7 vs.
156.1 ± 9.19 ms).

The above data suggested more atrial-like properties in
ATRA-treated AM compared with that of control CT.

FIGURE 1 | Cardiac differentiation from hiPSCs (A) Schematic of the protocol for the differentiation of cardiomyocytes from hiPS cells with (RA (+)) or without RA
(RA (−)) treatment (B) The ratio of cardiomyocytes quantified by immunostaining with cardiac troponin-T (cTnT). The proportion of cTnT positive cells was 93.91 ± 2.51%
in CT (control hiPS-CMs), or 96.79 ± 1.81% in AM (RA-treated hiPS-CMs), respectively (P � N.S.). Error bars represent SD of the mean from the values of independent
experiments. n � 3. N.S., not significant (C) Immunofluorescence analysis of the percentage of MLC2a (atrial isoform) and MLC2v (ventricular isoform) positive
expression in the CT and AM. Error bars represent SD of the mean from the values of independent experiments. **p < 0.01 for comparison with MLC 2a+/MLC
2v-cardiomyocyte in CT, ##p < 0.01 for comparison with MLC 2a+/MLC 2v-cardiomyocyte in AM, n � 3.

FIGURE 2 | Optical action potential (OAP) of CT (control hiPS-CMs) or AM (RA treatment hiPS-CMs). Representative waveforms for AP of CT or AM. The
comparison of AP parameters: beating rate, cAPD20, cAPD50, and cAPD90, between CT and AM. Error bars represent SD of the mean from the values of independent
experiments. **p < 0.01, n � 3.
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High-Throughput Drug Testing Using
hiPS-Derived Atrial Myocytes
Using a high-throughput screening system (FDSS/μCell), we
assessed the drug toxicity of several experimental drugs on
hiPS-derived atrial myocytes as well as control hiPS-derived
cardiomyocytes. Membrane potential was used as one of the
parameters during the assessment.

After purification, hiPS-derived cardiomyocytes were plated in
96-well plates for downstream drug response assessment using
FluoVolt™Membrane Potential Kit. The results of the analysis of
membrane potentials are summarized in Table 1. For the proper
evaluate the variance of electrophysiological response in CT and
AM after drug administration, we have recorded the baseline data
of CT and AM respectively (Supplementary Table 1). The
comparison of variance in the response of drug administration
in CT and AM was represented by the percentage of changes
based on their baseline values respectively.

hiPS-derived cardiomyocytes without RA (CT) or with RA
(AM) were applied with an incremental concentration of IKr
blockers: E-4031, donepezil, and propranolol. The application of
E-4031 (0.0003–0.1 μM), donepezil (0.03–10 μM), and
propranolol (0.1–100 μM) showed a dose-dependent decrease
in beating rate, rising slope, and falling slope of membrane
potential in both the CT and the AM (Figure 3,
Supplementary Figure 2). PWD (Pulse width duration) 80cF
and PWD30-80 were prolonged as the drug concentration
increased. Although under the 0.1 μM E-4031 conditions, both
CT and AM showed an increase in membrane potential duration,
EAD was elicited in CT (Figure 3).

As presented in Table 2, E-4031 treatment increased the
incidence of EAD in a dose-dependent manner. When treated
with 10 μM donepezil on CT, EAD was observed in 2 of 6 cases,
while cessation of beating was observed in the remaining 4 cases.
However, all of the wells appeared to stop beating in AM under
the same dose of donepezil. For the application of propranolol,
the CT showed irregular beating or the EAD appeared once the
concentration was above 10 μM. Cessation of beating was
observed in all cases at a 100 μM dose of propranolol. In the
AM, 1 out of 9 samples showed irregular beating at a 10 μM dose
of propranolol, and all wells ceased beating at concentrations
higher than 30 μM.

With the application of the IKs channel blocker Chromanol
293B in the range of 0.3–100 μM, CT either AM exhibited a dose-
dependent decrease in the rising slope of membrane potential,
while an increase in the membrane potential duration was
observed (data not shown). When a dose under 100 μM of
Chromanol 293B was administered, cessation of beating
appeared in 2 of 9 samples in CT and 3 of 12 samples in AM.

To evaluate the response of CT or AM to the IKur channel
blockers, 4-Aminopiridine (4-AP) (0.3–100 μM), DPO-1
(0.01–3 μM), and S9947 (0.03–10 μM) were used within
various dose ranges, respectively (Figure 4). In AM, the
application of 4-AP and DPO-1 exhibited dose-dependent
increases in PWD30cF and PWD50cF. S9947 treatment of AM
led to a dose-dependent increase in membrane potential duration,
and was the highest in PWD30cF. All of the AM samples were

arrested after application of 10 μM of S9947, although the half
cases were arrested on CT accompanied by a decrease in the
amplitude of membrane potential.

Carbachol, which can activate IKAch current, led to a decrease
in the beating rate and rising slope of membrane potential in AM;
however, no significant difference was observed in the response to
CT (Table 1). No irregular beating or EAD was elicited on CT
either in AM.

As widely used drugs for cardiovascular diseases, the calcium
ion channel blocker verapamil and diltiazem, as well as the
selective calcium channel activator Bay K8644, were also tested
at various concentrations (Figure 5, Supplementary Figure 3).
For CT, verapamil and diltiazem showed dose-dependent
increases in beating rate and falling slope of membrane
potential. Accordingly, the membrane potential durations
decreased, especially for PWD30cF and PWD50cF. However,
in AM, except for the dose-dependent increase in the beating rate,
no obvious changes were observed in other parameters of
membrane potential. At 0.1 μM doses of verapamil and
diltiazem, all the AM samples showed cessation of beating. In
contrast, Bay K8644 showed a dose-dependent decrease in the
falling slope of membrane potential and prolonged membrane
potential duration in both CT and AM samples. The CT either
AM showed an acute response to Bay K8644, and PWD30
prolonged significantly (Table 1).

Carbamazepine treatment in CT led to a decrease in the beating
rate and the rising slope of membrane potential, as well as an
increase in falling slope and shortenedmembrane potential duration
in a dose-dependent manner (Figure 6, Supplementary Figure 4).
Irregular beating and cessation of beating were induced over
application of concentrations above 30 μM. At 100 μM, 11 of 12
cases in CT showed arrest of beating (Table 2). In contrast, in AM,
no obvious change was observed except a decrease in the rising slope
of the membrane potential. However, cessation of beating was
observed in half the cases and 5 of 6 cases at concentrations of
30 μM and 100 μM, respectively (Table 2).

The effect of phenytoin on CT was characterized by a dose-
dependent decrease in the rising slope and an increase in the falling
slope of membrane potential (Figure 6, Supplementary Figure 4).
Cessation of beating was elicited when the concentration was
higher than 30 μM (Table 2). In AM samples, there was also a
dose-dependent decrease in the rising slope of membrane
potential, though cessation of beating was elicited at the
concentration higher than 10 μM. Furthermore, the incidence of
cessation of beating increased in a dose-dependent manner
(Table 2).

DISCUSSION

In the present study, we established a high-throughput drug
testing system using human iPS cells derived atrial-like
myocytes based on our previous reports (Nakanishi et al.,
2019; Hidaka et al., 2003).

The protocol successfully yielded atrial-like myocytes with
adequate quality and efficiency, similar to the previous report by
(Argenziano et al., 2018).
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In RA-treated myocytes, gene expression levels showed a
decrease in ventricle-specific transcription factor IRX4 and an
increase in atrium-specific NPPA. On the other hand, those of
cardiac ion channels such as Ca2+ and K+ channels, which

constitute action potentials, were expressed in both groups,
while atrial specific channels such as KCNA5 and KCNJ3 were
significantly increased in RA-treated myocytes. These results
suggest that RA treatment induces atrial differentiation, similar

TABLE 1 | Effects of test compounds in MP of CT or AM. The change scopes of MP parameters are represented by the width of % change.

FIGURE 3 | Dose-response of IKr blockers in CT and AM. CT and AM were treated with various concentrations of E-4031, donepezil, and propranolol, and
membrane potential (MP) was analyzed by FDSS/μCell imaging platform. Y-axis represents the percentage change from the value before test compound addition.
Comparison of MP parameters: beat rate, PWD30cF, PWD80cF, PWD30-80 in CT and AM. Error bars represent SD of the mean from the values of independent
experiments. n � 3–12. *p < 0.05, **p < 0.01 for comparison of drug treatment of CT vs. AM (right-most panel) representative waveforms for MP in CT or AM after
application of 0.1 μM E-4031. Although both CT and AM showed an increase in membrane potential duration, EAD was elicited in CT. E-4031 data: reuse from the
conference paper with permission (Honda, 2020).
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to previous reports (Devalla et al., 2015; Argenziano et al., 2018;
Lemme et al., 2018; Nakanishi et al., 2005).

The measurement of cardiac action potentials has been used in
the research of disease modeling and drug discovery based on
hiPS-derived cardiomyocytes, since APs directly
recapitulate patients’ pathophysiological conditions and
reflect the efficacy and cardiotoxicity of pharmacological
compounds as drug candidates. Although patch-clamp
techniques have been widely used for single-cell-based
precise electrophysiological testing, the technique is not
suitable for high-throughput screening systems. Thus, in
the present study, we employed optical recording using
membrane potential dyes (FluoVolt™).

As shown in Figure 2, the optical action potentials of CT
demonstrated the “plateau” phase, while the shorter action
potentials of AM demonstrated a lack of “plateau.” This
property was recognized as the difference of the ratio APD30–40/
APD70–80 in CT (1.30 ± 0.18) and in AM (0.75 ± 0.11) (data not
shown). Although the data in the present study was less than the
data reported by Argenziano et al. (APD30–40/APD70–80: 0.97 ±
0.12 in CT and AM 0.48 ± 0.0), this may be ascribed to the
difference in beating rates (Argenziano et al., 2018).

Based on these properties, hiPS-CTs and hiPS-AMs can be
considered stable platforms for electrophysiological testing for
drug discovery and development, although the cells may have an
immature nature compared to native cardiomyocytes, as reported
previously (Feric and Radisic, 2016).

IKr Blockers
We further verified the feasibility of detecting atrial-specific
responses of various pharmacological compounds. In the

present study, we examined the effect of E-4031 (an IKr
blocker) on OAP parameters in CT and AM As a result, E-
4031 caused dose-dependent increases in PWD80cF and
PWD30-80, and a decrease in the rising slope and falling
slope in both CT and AM (Figure 3, supplementary
Figure 2). These results are comparable to the previous report
by Knobloch stating that IKr blockers prolonged ventricular
repolarization and the atrial refractory period (Knobloch et al.,
2002). In addition, it is known that IKr blockers cause QT
prolongation and induce ventricular arrhythmias. Thus,
previous papers reported that IKr blockers showed
characteristic proarrhythmic changes in action potentials in
ventricular-rich-hiPS-CMs (Ma et al., 2011; Nozaki et al.,
2017). In the present study, since EADs were observed in CT
but not in AM (Figure 3; Table 2), induction of proarrhythmic
propensity by IKr blockers in the hiPS-based platform was a
ventricular specific phenomenon. Based on this observation, our
platform clearly showed the difference between control
(induction of arrhythmias) and atrial platform (inhibition of
arrhythmias).

Donepezil (Anti-dementia Drug)
Donepezil is a choline esterase inhibitor used to treat Alzheimer’s
disease and dementia with Lewy bodies, and the drug shows IKr
blocking action with various critical side effects including QT
prolongation and lethal ventricular arrhythmias (Kho et al., 2021).
Our present data showed that donepezil prolonged the membrane
potential duration at a concentration consistent with previous reports
1.3–9.9 μM (Chae et al., 2015) (Figure 3). It has been also reported
that the drug causes bradyarrhythmias (Rosenbloom et al., 2010;
Kuwahata et al., 2021). In the present study, consistent with the

TABLE 2 | Effects of test compounds on arrhythmia-like waveforms in CT or AM. The blue frame indicates drug application concentration. Values indicate an incidence of
arrhythmia-like waveforms; green column: irregular beat, yellow column: arrest, red column: EAD.
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FIGURE 4 | Dose-response of IKur channel blockers in CT and AM. CT and AM were treated with various concentrations of 4-Aminopiridine (4-AP), DPO-1, and
S9947, and MP was analyzed by FDSS/μCell imaging platform. Y-axis represents the percentage change from the value before test compound addition. Comparison of
MP parameters: beat rate, PWD (Pulse width duration) 30cF, PWD80cF, PWD30-80cF in CT and AM. Error bars represent SD of the mean from the values of
independent experiments. n � 6, *p < 0.05, **p < 0.01 for comparison of drug treatment of CT vs. AM. DPO-1 data: reuse from the conference paper with
permission (Honda, 2020).

FIGURE 5 |Dose-response of calcium ion channel regulator in CT and AM. Comparison of MP parameters: beat rate, PWD30cF, PWD80cF, PWD30-80 in CT and
AM after application of calcium ion channel blocker verapamil and diltiazem, as well as the selective calcium channel activator Bay K 8644. Error bars represent SD of the
mean from the values of independent experiments. n � 6. *p < 0.05, **p < 0.01 for comparison of drug treatment of CT vs. AM. Bay K8644 data: reuse from the
conference paper with permission (Honda, 2020).
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reports, the drug induced the cessation of spontaneous beating in AM
and CT at the concentration higher than 30 μM (Table 2).

IKur Blockers
IKur channels are expressed specifically in the atrium and
contribute to atrial repolarization by activating in an ultrarapid
manner. IKur channels have attracted attention because the channel
has been considered as a pharmacological target for atrial
tachyarrhythmias such as atrial fibrillation (Courtemanche et al.,
1999; Nattel et al., 2002). DPO-I, an IKur inhibitor, showed
prolongation of action potentials in human atrial myocytes but
not in ventricular myocytes (Lagrutta et al., 2006). In addition, a
previous study reported that S9947, another IKur inhibitor, did not
affect ventricular function and porcine ventricular myocytes, but it
prolonged the atrial refractory period (Knobloch et al., 2002). In
the present study, consistent with the previous reports, DPO-1,
S9947, and 4AP (non-selective IKur inhibitor) showed prolongation
in PWD30cF and PWD50cF, but not in CT (Figure 4). In addition,
our results showed that the KCNA5 gene was more abundantly
expressed in AMs than in CT (data not shown). These results
suggest that the present system is feasible for detecting the effect of
pharmacological compounds on the early repolarization phase
through IKur channels.

Bradyarrhythmias
As for cardiac toxicity, in addition to QT prolongation related
to lethal ventricular arrhythmias, life-threatening bradyarrhythmias
are also critical rhythm disorders to be avoided. Gene expression
patterns in AM suggested that the present system not only shows
atrial characteristics but also nodal type cells. Our previous paper
reported that retinoic acid-treated hiPS-CMs demonstrated nodal
type properties as well as atrial type properties in the gene
expression of SHOX2 and HCN4 (Nakanishi et al., 2019). Thus,
AM would be useful to detect unexpected electrophysiological
action of pharmacological compounds. In the present study, AM
demonstrated not only atrial properties but also nodal type, as
demonstrated by the increase observed in SHOX2 gene expression
and spontaneous beating rates. In this regard, the present system

would be useful to detect drug toxicity to induce critical rhythm
disorders such as sick sinus syndrome.

IKAch Agonists
IKAch channels are expressed specifically in the atrium as well as
IKur, and contribute to atrial repolarization and resting
membrane potentials. The activation of the channel causes
shortening and increased dispersion of refractory periods,
and these induce atrial reentry following the onset of atrial
fibrillation (Liu et al., 1997). In the present study, carbachol, an
IKAch agonist, showed a decrease in beating rate and rising slope
in AM but not in CT. In the present study, we analyzed the data
at the time point (10 min after addition of the drug); however,
carbachol caused irregular beats early after application only in
AMs (data not shown). This phenomenon suggests that
carbachol-induced activation of IKAch led to the increased
dispersion of the refractory period, and thus, the optimal
analysis time remains to be re-evaluated. In the present
system, it is now feasible to evaluate the propensity for
drug-induced tachyarrhythmias by comparing the chamber-
specific effect of cardiac ion channels of pharmacological
compounds.

Ca2+ Channel Blockers and Agonist
In the present study, we tested Ca2+ channel blockers (verapamil
and diltiazem) and an agonist (Bay K 8644). As a result, both
verapamil and diltiazem decreased membrane potential duration
through the shortening of the plateau phase. On the other hand,
Bay K 8644 prolonged membrane potentials, especially
PWD30cF in AM as well as in CT. These responses are
different from those seen in IKur blockers, which showed
prolongation in AM, but not in CT. In addition, more
strikingly, both verapamil and diltiazem caused arrest of
spontaneous beating in all the tested samples in the AM at the
maximal concentration (Table 2). The results may be ascribed to
the involvement of nodal type cell type in AMs in which the Ca
current plays an important role in generating pacemaker
potentials.

FIGURE 6 | Dose-response of sodium ion channel regulator in CT and AM. Comparison of MP parameters: beat rate, PWD30cF, PWD80cF, PWD30-80 in CT and
AM after application of carbamazepine and phenytoin. Error bars represent SD of the mean from the values of independent experiments. n � 6–12. *p < 0.05, **p < 0.01
for comparison of drug treatment of CT vs. AM.
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Carbamazepine (Anti-epileptic Drug)
Carbamazepine is an antiepileptic drug that blocks neural Na
channels, but the drug is also known to block the cardiac Na+

channel (Nav1.5) with an IC50 of 152.0 μM (Harmer et al., 2011).
In the present study, the drug showed a decrease in the rising
slope and amplitude of membrane potentials in CT (Figure 6,
supplementary Figure 4). In addition, carbamazepine caused the
arrest of spontaneous beating when administered at a dose over
30 μM, more frequently in AM than in CT (Table 2).
Carbamazepine has been reported to cause a decrease in
Vmax and shortening of APD50 and APD90 in ventricular
myocytes of guinea pigs at a concentration of 75 μM
(Delaunois et al., 2015). Consistent with the previous study,
the effects of carbamazepine on membrane potentials may be
attributed to the inhibition of depolarization of ventricular
myocytes through blocking of the Nav1.5 current. On the
other hand, the membrane potentials of AM showed a
decrease in the rising slope only at the maximal concentration.
The results may be ascribed to the fact that Ca2+ channels, but not
Na+ channels, contribute to membrane potentials mainly in nodal
cells, and thus AM were less sensitive to CBZ. The inhibition of
the Na+ current in both atrial-and node-type cells might cause the
arrest of spontaneous beating at the maximal concentration.

Phenytoin (Anti-epileptic Drug)
Phenytoin is an antiepileptic drug with neural Na+ channel
blocking action, similar to the action exhibited by
carbamazepine. In the present study, phenytoin showed an
increase in the falling slope, a slight shortening of membrane
potential duration, and arrest of spontaneous beating at

concentrations higher than 30 μM in CT, while the drug
caused arrests at concentrations higher than 10 μM in AM
(Figure 6, supplementary Figure 4, Table 2). These results
obtained with phenytoin were similar to those obtained with
verapamil and diltiazem. Previous studies reported that
phenytoin exhibits an inhibitory action on the cardiac Nav1.5
current and the Cav1.2 current with IC50 values of 72.4/120.6 μM
and 21.9 μM, respectively Kramer et al., (2013), Harmer et al.,
(2011), demonstrating that the drug has stronger action on
Cav1.2 than Nav1.5. Based on these data, it is conceivable that
the results observed with the use of phenytoin in AM may be
caused by its heterogenic cellular population including nodal type
cells as well as atrial cells.

In the present study, various drugs demonstrated the arrest
of spontaneous beatings in AM before the onset of the
dysrhythmias in CT, and these results can be explained
based on their actions on cardiac ion channels. These
results strongly suggest that the detection of drug-induced
bradyarrhythmias can be one of the important parameters in
addition to the induction of tachyarrhythmias and the
velocity/pattern of conduction.

CONCLUSION

We successfully established a platform for human iPS-derived
cardiomyocytes with atrial and nodal properties by treatment
with retinoic acid (Figure 7). Membrane potential-based drug
testing on the present platforms would be useful to detect
propensities for drug-induced tachyarrhythmias by comparing

FIGURE 7 | Graphic abstract. In the present study, we generated a hiPS-derived atrial-like phenotype by supplemented RA during the cardiac mesoderm
induction. Thereafter, we examined the acute response to several drug administration in the hiPS-CMs with (atrial-like subtype) or without (ventricular-like subtype)
treatment of RA by using a high-throughput drug evaluation system, which might be a valuable platform to detect potential risks for drug-induced atrial arrhythmias.
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ventricular and atrial drug responses. In addition, atrial platforms
are more sensitive to bradyarrhythmias. This may be achieved
with additional parameters for cardiac conduction.

These results suggest that the present evaluation system is
useful for developing anti-atrial-arrhythmic drugs as well as for
detecting potential risk for drug-induced atrial arrhythmias or
rhythm/conduction disturbances.

MATERIALS AND METHODS

The study protocol was approved the Institutional Review Board
of Osaka University and all experiments were performed under
the guidelines of the Osaka University Gene Modification
Experiments Safety Committee.

Cardiac Differentiation of hiPSC-CMs
hiPSCs from a healthy human (RIKEN BRC Cell Bank, Tsukuba,
Japan) were subjected to cardiac differentiation using the PSC
Cardiomyocyte Differentiation Kit (ThermoFisher SCIENTIFIC).
Briefly, undifferentiated hiPSCs were maintained on iMatrix-511
(Nippi, 892,021) in StemFit® AK02N medium (Ajinomoto,
AK02N) and passaged enzymatically at 80%–90% confluence.

The hiPSCs were enzymatically dispersed and maintained until
80% confluence with StemFit® AK02N containing 10 µM Y-27632
(Wako, 036-24023). The next day, the culture mediumwas changed
to StemFit® AK02N without Y-27632, which was maintained until
the next passage. hiPSCs were seeded on a dish coated with Geltrex
LDEV-Free Reduced Growth Factor (ThermoFisher SCIENTIFIC)
at 1% concentration in PBS. When the seeded cells reached 80%
confluency (day-1), the culture medium was changed to StemFit®
AK02N containing Matrigel® (Growth Factor Reduced, Corning,
354,230) at 1% concentration for 24 h. On day0, the culture
medium was changed to Medium A (PSC Cardiomyocyte
Differentiation Kit, ThermoFisher SCIENTIFIC) containing
Matrigel for 48 h. On day2, the culture medium was changed to
Medium B (PSC Cardiomyocyte Differentiation Kit, ThermoFisher
SCIENTIFIC) for 48 h. On day4, the culture medium was changed
to cardiomyocyte maintenance medium (PSC Cardiomyocyte
Differentiation Kit, ThermoFisher SCIENTIFIC) supplemented
with or without 0.7 μM RA (Sigma Aldrich, R2625) for 72 h. On
day 7, the culture medium was changed to cardiomyocyte
maintenance medium, and change the medium every 2 days.
The cells typically started spontaneous beating around 10 days
of initiation of the differentiation protocol. Purification of
cardiomyocytes was performed by using a non-glucose medium
supplemented with 4 mM lactic acid for 4days/time, performed
2 times (from day 14 to day 18, and from day 21 to day 25), between
the 2 times of purifying application, the medium was changed to
cardiomyocyte maintenance medium for 72 h (from day 18 to day
21). After purification, the culture was continued in the
cardiomyocyte maintenance medium until the functional analysis.

Immunofluorescent Staining
hiPSC-derived cardiomyocytes were fixed with 4% PFA and
permeabilized with 0.1% Triton-X in PBS (-) for 15min at 4°C.
Then, the cells were blocked with 5% BSA in PBS (-) for 60min at

room temperature. Primary antibodies were reacted for 24 h at 4°C,
and secondary antibodies were reacted for 1 h at room
temperature. Nuclei were labeled with Hoechst 33342 (Dojindo,
H342). Primary antibodies were anti-Troponin T (clone 13-11) (1:
200, Thermo Scientific, MA5-12960), anti-MLC2a (1:200, Synaptic
Systems, 311 011), and anti-MLC2v (1:200, ProteinTech, 10906-1-
AP). Secondary antibodies were Alexa Fluor 488, donkey anti-
mouse IgG (HCL), Alexa Fluor 568, donkey anti-rabbit IgG (HCL),
Alexa Fluor 647, donkey anti-mouse IgG (HCL). Fluorescence
images were obtained using Operetta high content imaging system
(PerkinElmer, Japan) and analyzed using Harmony analysis
software (PerkinElmer, Japan).

Optical Action Potential Imaging
hiPSC-CMs were loaded with a voltage-sensitive dye (FluoVolt™
Membrane Potential Kit, F10488, ThermoFisher SCIENTIFIC)
for 30 min at RT. The excitation and emission wavelengths were
522 and 535 nm, respectively. Then, 10 µM blebbistatin (Wako,
027-17043), an excitation-contraction uncoupler, was applied to
avert motion artifacts. All experiments were performed at 37°C
under aerial conditions. Optical action potential (OAP) imaging
was acquired at a sampling rate of 5 or 10 ms per frame using the
MiCAM02 imaging system (Brainvision, Tokyo, Japan) equipped
with a high-speed CMOS camera, alongside field-of-view and
spatial resolution, which were 5.76 × 4.8 mm and 30 × 30 μm,
respectively. OAP parameters including average CL, d (−F)/dtmax,
and APD, were calculated using OriginPro 8.6J software
(LightStone, Tokyo, Japan).

High-Throughput Recording of Membrane
Potential Signal Recording
FluoVolt™ Membrane Potential Kit (ThermoFisher SCIENTIFIC,
F10488, Massachusetts, United States) was used to measure
membrane potentials. The basic procedure was performed in
accordance with the manufacturer’s instructions. Briefly, the
loading dye solution was adjusted with an experimental medium
(1% GlutaMAX supplement (ThermoFisher SCIENTIFIC), 1%
HEPES (Sigma-Aldrich, Missouri, United States), and 0.001%
Pluronic F-127 (Thermo Fisher Scientific) in FluoroBrite
DMEM™ (ThermoFisher SCIENTIFIC). After washing the cells
twice with the experimental medium, the loading dye solution was
added and loaded for 30 min at 37°C. Thereafter, the cells were
washed twice with the measurement buffer (1% GlutaMAX
supplement, 1% HEPES, 2% fetal bovine serum in FluoroBrite
DMEM™). Fluorescence signals representing the membrane
potential were measured using FDSS/μCell imaging platform
(Hamamatsu Photonics K.K., Hamamatsu, Japan). MP were
recorded at excitation and emission stages at wavelengths of 470
and 540 nm, respectively. Measurements were taken during the pre-
test, and 10min (except for Bay K 8644, the drug response time was
3 min) post-compound addition. Stock solutions of the test
compounds were prepared in 100% DMSO, and serially diluted
1/40 into compound plates for testing (0.5% DMSO was the
maximum concentration in all wells). The compounds were
automatically pipetted from the compound plate, and 12 μL was
loaded in the wells already containing the cells with 48 μL of media.
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Recording data were analyzed using Waveform Analysis of
Cardiomyocyte Software (Ver.1.2.1J, Hamamatsu Photonics K.K.).
Data values for a well were averaged from waveforms that arose
during 30 s. The beat rate (BR; beats per minute), waveform
amplitude (AMP), and duration at 30, 50, and 80% of decay
(PWD30, PWD 50, and PWD 80, respectively) were used as
evaluation parameters. PWDs were corrected using the Fridericia
formula. PWD30-80 was calculated as the difference between PWD80
and PWD30. Each parameter was calculated as percentage change (%)
from the value before test compound addition.

Data Analysis
All data are expressed as mean ± standard deviation (SD). The data
were confirmed as normal distribution by the Shapiro-Wilk test.
Two independent groups were compared using the Student’s t-test
for homogeneity variance, and the heteroscedasticity variance by
using Welch t-test. Multiple groups variance was compared using
one-way analysis of variance (ANOVA), followed by Tukey’s test.
p values of <0.05 were considered statistically significant. Statistical
analysis was performed using JMP Pro 14.0 (SAS, Tokyo).
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