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The gastrointestinal tract is particularly vulnerable to off-target effects of antineoplastic
drugs because intestinal epithelial cells proliferate rapidly and have a complex
immunological interaction with gut microbiota. As a result, up to 40–100% of all
cancer patients dosed with chemotherapeutics experience gut toxicity, called
chemotherapeutics-induced intestinal mucositis (CIM). The condition is associated with
histological changes and inflammation in the mucosa arising from stem-cell apoptosis and
disturbed cellular renewal and maturation processes. In turn, this results in various
pathologies, including ulceration, pain, nausea, diarrhea, and bacterial translocation
sepsis. In addition to reducing patient quality-of-life, CIM often leads to dose-reduction
and subsequent decrease of anticancer effect. Despite decades of experimental and
clinical investigations CIM remains an unsolved clinical issue, and there is a strong
consensus that effective strategies are needed for preventing and treating CIM. Recent
progress in the understanding of the molecular and functional pathology of CIM had
provided many new potential targets and opportunities for treatment. This review presents
an overview of the functions and physiology of the healthy intestinal barrier followed by a
summary of the pathophysiological mechanisms involved in the development of CIM.
Finally, we highlight some pharmacological and microbial interventions that have shown
potential. Conclusively, one must accept that to date no single treatment has substantially
transformed the clinical management of CIM. We therefore believe that the best chance for
success is to use combination treatments. An optimal combination treatment will likely
include prophylactics (e.g., antibiotics/probiotics) and drugs that impact the acute phase
(e.g., anti-oxidants, apoptosis inhibitors, and anti-inflammatory agents) as well as the
recovery phase (e.g., stimulation of proliferation and adaptation).

Keywords: chemotherapeutics-inducedmucositis, gastrointestinal physiology, intestinal proliferation, cancer, stem
cells, toxicity, mucositis

INTRODUCTION

Chemotherapy is in general associated with extensive anti-tumor effects, but also serious adverse effects
and long-term safety issues for both cancer patients and healthcare providers (Sougiannis et al., 2021).
One of the more common off-target toxicities is chemotherapeutics-induced intestinal mucositis (CIM),
which is a complex gastrointestinal (GI) complication. It affects up to 40–100% of all cancer patients
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dosed with chemotherapeutics, depending drug and dosing regimen
(Sonis et al., 2015; Villa and Sonis, 2015). The GI tract is particularly
vulnerable to antineoplastic drugs that inhibit cell growth and/or cell
division, as the intestinal epithelial cells (IEC) proliferate rapidly and
have a complex immunological interaction with the gut microbiota.
For instance, antineoplastic drugs such as 5-fluorouracil,
methotrexate, irinotecan, and doxorubicin target the vulnerable
GI tissue by interrupting DNA synthesis, leading to apoptosis.
An inability to resist damage and/or rapidly repair and restore
the epithelial barrier function after chemotherapy is detrimental to
the cancer patient, as it can result in various pathologies, including
inflammation, ulceration, pain, nausea, diarrhea, sepsis, andmultiple
organ dysfunction and failure (Keefe et al., 2004). In addition to
reducing the quality-of-life of these patients, CIM often leads to
dose-reduction and subsequent decrease of anticancer effect,
sometimes even resulting in death.

Despite substantial improvements in cancer treatments and a
continuous decline in its incidence in the population, CIM
remains a significant and common clinical challenge in many
cancer patients (Henley et al., 2020). Consequently, there is a
strong consensus that effective strategies are needed for the
prevention and treatment of CIM, including new
monotherapies and drug combinations (Scarpignato and
Bjarnason, 2019; Dahlgren et al., 2020). Crucial to this
endeavor is a better understanding of the pathophysiological
factors and adaptive processes involved in the regulation and
repair of an injured intestinal epithelium (Odenwald and Turner,
2017). For instance, glucagon-like peptide-1 (GLP-1) and -2
(GLP-2) have a central role in the adaptive recovery response
in the small intestine (Hytting-Andreasen et al., 2018; Billeschou
et al., 2021). Our contribution to this field is the development of
relevant in vivo models that provide us with a conceptual and
rational approach to treat CIM, coupled with a close and rapid
collaboration with clinical partners. This review presents an
overview of the functions and physiology of the healthy
intestinal barrier followed by a summary of the
pathophysiological mechanisms involved in the development
of CIM. A literature search was performed using the Pub-Med
without any time limit for article inclusion, using the following
search words: chemotherapeutics-induced intestinal mucositis,
intestinal mucositis, chemotherapeutics gut toxicity,
chemotherapeutics gastrointestinal side-effects. Finally, we
highlight some of the available pharmacological and microbial
interventions (prophylactic, acute, and recovery) that have shown
clinical potential, with an emphasis on combination treatments.
The main objective of this review was to scrutinize and analyze
CIM and to discuss and propose a few novel medical strategies.

ANATOMY AND PHYSIOLOGICAL
FUNCTIONS OF THE GASTROINTESTINAL
TRACT
Anatomy
The morphology of the intestinal barrier varies between regions,
but it has a common histology composed of four distinct layers: the
mucosa (epithelium, lamina propria, and muscularis mucosae); the

submucosa; themuscle layer (circular and longitudinal muscle, and
the in-between myenteric nerve plexus); and the serosa. The first
barrier between lumen and blood is the mucosal epithelium, which
is comprised of columnar IEC covered by a protective mucus layer
(Johansson et al., 2013). The IECs are sealed together at the apical
surface by tight junction proteins, which form the primary physical
barrier to small hydrophilic molecules (approximately less than
250 Da) across the IEC (Fagerholm et al., 1999; Van Itallie and
Anderson, 2004). These structurally and biochemically
differentiated paracellular regions primarily include tight
junctions and anchoring junctions. Tight junctions hold the
cells together and form a near leak-proof intercellular seal by
fusing adjacent cell membranes, while the anchoring junctions
provide essential adhesive and mechanical properties (Andrade
et al., 2015). In the small intestine, the mucosa is built up by finger-
like villous protrusions that increase the surface area by a factor of
about 6 compared to a smooth tube (Helander and Fändriks, 2014).
The lamina propria below the IEC layer contains blood vessels,
nerve fibers, lymphatic vascular systems, smooth muscle that
regulates blood flow and villi movement, and immune cells
such as neutrophils, T-regulatory cells, macrophages, and mast
cells (about 1 to 10 immune cells per IEC in the epithelium)
(Mowat and Agace, 2014). It also contains the most recently
identified cells of the innate immune system, the innate
lymphoid cells, where they are involved in and coordinate tissue
homeostasis during for instance infection, inflammation and
cancer by promoting remodeling, healing and repair (Artis and
Spits, 2015). The submucosa contains connective tissue with major
blood and lymphatic vessels (Bernier-Latmani and Petrova, 2017).
The muscle layer contains the submucous plexus, glial cells, cells of
Cajal, and circular and longitudinal muscles that control GI
movement, while the serosa is mainly composed of connective
tissue that supports the GI tract in the abdominal cavity.

The neurons and their nerve fibers in the GI tract are jointly
called the enteric nervous system, which is involved in regulation
of peristalsis, secretion, digestion and absorption (Furness, 2012).
Intestinal microbiota is also sometimes regarded as a part of the
GI system, where it is part of a harmonious ecosystem together
with the host. It has recently been estimated that the human body
hosts up to 1013 bacteria, and therefore, about 50% of the cells in
our body are non-eukaryotic (Sender et al., 2016). Luminal
bacteria and mucosal immune cells show region-related
distribution with a higher abundance of bacteria in the distal
regions and a more varied immune cell distribution (Mowat and
Agace, 2014; Donaldson et al., 2016). Together, they have
synergetic roles in maintaining intestinal homeostasis and also
the dysregulation associated with intestinal inflammation
(Holzapfel et al., 1998).

Physiological Functions
The primary physiological functions of the GI tract are to digest
food and to absorb water and nutrients from the intestines and
regulate metabolism. In parallel it acts as a dynamic barrier
preventing absorption of peptides/proteins/xenobiotics/toxins
and translocation of microbes and viruses into the underlying
tissue, organs, and systemic circulation (Marchiando et al., 2010).
The intestinal mucosa is thus a selective barrier with the complex
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task of simultaneously balancing optimal protection against the
harsh biochemical and mechanical luminal environment while
allowing efficient nutrient absorption (Dahlgren et al., 2014;
Ahluwalia et al., 2017). The GI tract is also a highly
specialized chemosensory organ, with the capacity to sense
nutrients via various receptors from the luminal side to
optimize and coordinate digestion, metabolism, and absorption
of the diet following ingestion of food and fluids, as well as in the
defense response to pathogens present in the lumen. The
ingestion of a meal starts neural and hormonal signaling from
the GI tract in response to gastric distension and the chemical
presence of nutrients in the GI lumen (Steinert et al., 2016).

The permeability and health of the intestinal barrier is strictly
regulated by a range of neuroendocrine processes, hormones, and
luminal stimuli that jointly aim at upholding homeostasis in
conjunction with the different IEC (Chelakkot et al., 2018). The

intestinal epithelium contains six mature cell types with distinctly
different functions: two absorptive IECs (enterocytes andM cells)
and four secretory IECs (goblet cells, enteroendocrine cells,
Paneth cells, and tuft cells) (Figure 1). The function of the
enterocytes is to absorb nutrients, water and ions; they
constitute about 80% of the intestinal cells (Gehart and
Clevers, 2019). The M-cells are part of the gut-associated
lymphoid tissue—the largest immunological tissue in the
body—where they allow some uptake of luminal bacteria,
thereby triggering or preventing an immunological response
depending on the antigen (Ohno, 2016). Thus, the microflora
in the intestinal lumen is essential for normal intestinal function
and plays an important dynamic role in health and disease
progression. Two of the secretory cells primarily secrete into
the lumen, where goblet cells secrete protective mucus and the
Paneth cells anti-microbial compounds. The other two secretory

FIGURE 1 | The pathology and timeline of chemotherapeutics-induced intestinal mucositis is primarily related to the effect of cytostatics on stem cells in the
proliferation zone of the crypts: crypt base columnar (CBC) stem cells and transit amplifying daughter stem cells. Injury to the DNA of these cells causes apoptosis and
initiates of a range of local tissue responses. These include generation of reactive oxygen species (ROS) and inflammation mediators, leading to further injury,
inflammation, ulceration, villus and crypt atrophy, and the interstitial infiltration of luminal bacteria (commensal and pathogenic) and immune cells. After about
2 weeks the histology of the intestine is restored in humans (1 week in rodents). The green texts show potential targets for CIM intervention. The figure also shows the six
different mature cell types of the intestines, the villi protrusions present in the small intestine, and the lymphatic, venous and arterial vessels. Artwork by Febe Jacobsson.
EC � enterochromaffin.
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cells secrete primarily into the interstitium as a response to
luminal stimuli. The tuft cells are involved in the defense
against parasitic infections. The enteroendocrine cells secrete
more than 30 different peptide hormones involved in a range
of GI and systemic functions, which makes the gut the largest
endocrine system in the body (Gribble and Reimann, 2016).

PATHOPHYSIOLOGY OF
CHEMOTHERAPEUTICS-INDUCED
MUCOSITIS

Normal Injury Response and Mucosal
Proliferation
The continuous, everyday mechanical and/or chemical injury to
the outer villi sections and epithelium in the lumen is repaired
within minutes to hours. This is exemplified in Figure 2, which
shows the changes in intestinal permeability of the clinical
mucosal integrity marker, 51Cr-EDTA (Dahlgren et al., 2017),
following luminal exposure of the rat small intestine to ethanol
and sodium dodecyl sulfate. This acute repair process re-
establishes the tight junctions thereby restoring the intestinal
barrier function and avoiding translocation of harmful luminal
bacteria and macromolecules into the underlying mucosa. The
repair is also crucial for re-establishing other cellular functions,
including water regulation and nutrient absorption. The
intestinal integrity and local tissue homeostasis is initially
upheld by restitution. This is a process in which IEC at the tip
of the villi, and injured IEC, undergo different types of cell death,
such as anoikis, apoptosis, necroptosis and pyroptosis (Patankar
and Becker, 2020). Dead cells slough off, while neighbouring
epithelial cells migrate to close the gap. In healthy intestine, this
process occurs without any clinically relevant loss of barrier
function (Marchiando et al., 2011; Gehart and Clevers, 2019).

A prerequisite for restitution is a continuous renewal of cells from
the lower layer of the epithelium. This renewal takes place in the
crypts of Lieberkühn, the proliferative region of the intestinal

mucosa. These crypts are positioned at the base of the villus
protrusions in the small intestine, and directly on the flat surface
of the colon. The crypts are invaginations in the epithelium that are
protected frommechanical and chemical injury and pathogens, from
the luminal side. Each crypt is thought to contain about 15 crypt base
columnar stem cells located at cell positions 1-3 (cp1-cp3) from the
bottom, wedged between the Paneth cells that secrete anti-microbial
compounds. (Potten et al., 2009) These stem cells divide infinitely
once every 24 h to initially form a transit population of rapidly
dividing progeny cells. These in turn each divide about six times in
total, adding up to about 300 new cells per day per crypt (Gehart and
Clevers, 2019). As there are about 4–10 crypts per villus depending
on small intestinal region (Keefe, 1998), about 1200–3000 cells are
shed every day for each villus.

Generation 1 transit population cells at cell position 4 from the
bottom (called +4 cell or cp4) to 3 (cp6) divide rapidly and are
uncommitted, whereas the transit population cells are committed
from generation 4 (cp7) (Duncan and Grant, 2003; Gehart and
Clevers, 2019). These committed cells differentiate into the six
distinct intestinal cell types, as discussed previously. With the
exception of the Paneth cells that travel to the bottom of the
crypts, these post-mitotic cells are pushed outward by the
constant renewal in the crypts, and they travel along the villus to
finally undergo apoptosis and shedding into the lumen at the tip
(Gehart and Clevers, 2019). This way only mature cell types face the
harsh environment of the lumen, and only for a relative short time;
the epithelial surface of the intestine is renewed about every 3–4 days
(Darwich et al., 2014). The sources and essential signalling
pathways—and their complex interplay in the determination of
cell proliferation and differentiation in the intestinal crypts—have
been elegantly illustrated byGehart andClevers (Gehart and Clevers,
2019). In principal these processes are balanced by two opposing
top-to-bottom crypt gradients. In the one gradient,WNT secreted by
the Paneth cells andmesenchymal cells in the crypt bottommaintain
stem cell function. In the other gradient, bone morphogenetic
proteins—secreted by mesenchymal cells higher up in the
crypts—counteract the effect of WNT to induce cell maturation.

FIGURE 2 | Illustration of the rapid recovery (about 60 min) of the rat small intestinal blood-to-lumen 51Cr-EDTA clearance following local luminal exposure to saline
(white area) and two mucosal irritants (grey area): (A) ethanol 30 min (Sommansson et al., 2013b) and (B) sodium dodecyl sulfate (SDS, anionic surfactant) 15 min
(Dahlgren et al., 2018b).
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Wnt signaling is a highly conserved pathway that plays principal
regulatory roles in many developmental and biological processes.
Besides its crucial role in tissue homeostasis, Wnt signaling is also
found to be activated aberrantly in many human diseases, including
cancers and metabolic disorders (Novellasdemunt et al., 2015).

Mechanisms for
Chemotherapeutics-Induced Mucositis
The DNA of crypt stem cells is well protected from the luminal
environment. Fluid flows steadily outwards and interspaced Paneth
cells secrete antimicrobial products, making crypts essentially a
sterile environment (Nylander and Sjöblom, 2007; Wehkamp and
Stange, 2020). However, injury to the DNA in stem cells may arise
from events like radiation and cytostatics, causing the cells to go into
apoptosis as well as other types of cell death. Still, evenwhen the stem
cell pool is completely wiped out it is replenished within a few days.
This is possible primarily because initial generations of progeny cells
may revert back to the parent stem cell type in the crypt when these
are lost. However, others claim that also more committed cells may
de-differentiate and repopulate the crypt stem cells upon injury
(Buczacki et al., 2013; Yan et al., 2017).

One key issue with chemotherapy is what happens when the
cell mitosis and amplification processes in the cryptal stem cells
and progenitor cells are compromised by apoptosis. The degree of
apoptosis and the local cryptal variations differ depending what
cytostatic drug that is used (Ijiri and Potten, 1983). Regardless,
normal cell maturation and regeneration of the epithelium is
impaired, which means that the continuous (normal) shedding of
apoptotic IECs at the tip of the villi is unaccompanied by
adequate cellular renewal. In addition, antineoplastic drugs
may also be harmful to non-dividing cell populations in the
intestine, potentiating any negative effects of an altered cryptal
cell renewal. For example, the cytostatic doxorubicin (DOX) is
associated with both production of reactive oxygen species and
mitochondrial dysfunction (van der Zanden et al., 2020).

Sonis et al. have proposed a general five-stage model for the
development of CIM over time (Figure 1): 1) initiation, 2)
signalling activation and primary damage response, 3)
amplification of biological pathways, 4) tissue inflammation and
ulceration, and 5) healing (Sonis, 2009; Al-Dasooqi et al., 2013).
The initiation phase is characterized both by direct DNA injury
and the generation of reactive oxygen species. The primary damage
response starts within seconds of DNA strand breaks and the
reactive oxygen species activate signalling factors such as Wnt/
β-catenin, p53, caspase-1/3, Bcl-2 and NF-κB, and their associated
pathways (Bowen et al., 2006; Sukhotnik et al., 2014; Bowen et al.,
2019). These effects jointly cause death to the intestinal stem cell
population and subsequent breakdown of the intestinal barrier.
NF-κB is especially well studied in CIM, because it plays a
fundamental role in pathogenesis by regulating a range of
cytokines (e.g., TNF-α, IL-6, IL-1, IL-18, and IL-33), stress
responders, cell adhesion molecules, as well as apoptosis in
normal cell populations (Ribeiro et al., 2016). Many of these
effects leads to signalling amplification, whereby the positive and
negative feedback responses of the initial factors affect the local
tissue in a complicated biochemical interplay. For instance, NF-κB

activates TNF-α release, which in turn activates more NF-κB. The
overall effect of the overwhelming biochemical response is mucosal
inflammation and ulceration, characterized by an ablation of the
epithelial villi, a disruption of IEC adhesion, and an increased
translocation of luminal components and immune cells into the
lamina propria. This cascade of events leads to even more
inflammation. The final stage is the spontaneous healing phase
in which normal epithelial proliferation, migration, differentiation
and maturation are restored.

The whole alimentary tract is formed from the same
structure in the embryo (Stringer et al., 2009), and any
effects of chemotherapy should be similar in all regions (oral
cavity, stomach, small and large intestine) as the same genes are
activated (Yeoh et al., 2007). Nonetheless, there are important
physiological and anatomical differences. The mouth and small
intestine seem to be most affected by mucositis, and have
therefore been the regions most studied (Keefe et al., 2004).
The dissimilarity in injury has been attributed to the different
regional expression of pro- and anti-apoptotic factors, such as
Blc-2, which amplifies apoptosis in the small intestinal crypts
(Bowen et al., 2005). Spontaneous apoptosis is 10 times more
common in the small intestine than the large intestine, and the
small intestine is therefore, not surprisingly, more vulnerable to
mucositis induced by chemotherapeutics and radiotherapy
(Bowen et al., 2006). The lower apoptosis frequency in the
large intestine also contributes to the higher incidence of
cancers in the lower compared to the upper intestinal tract.

The time from drug exposure to the epithelial effects varies for
different species, doses, administration routes and type of
chemotherapeutics, and partly follows species-specific differences
in crypt turnover. For instance, after an intravenous dose of DOX,
the concentration in the intestine is about 100 times higher than in
plasma in animals and humans (Luo et al., 2017; Lee et al., 2020).
Although the DOX concentrations in the intestines might be similar
as in the liver, kidney, and heart, they cause greater damage to the
IECs because these cells have a rapid and extensive proliferation
(Figure 3) (Luo et al., 2017). In mouse and rat, the cellular apoptosis

FIGURE 3 | Concentrations of doxorubicin in plasma and liver, heart,
kidney, and intestines of mice following 5 mg/mL intravenous administration of
a solution. Data from Luo et al. (2017). The high concentration of doxorubicin
in all the organs shows that the side-effects of many anti-cancer drugs
are not ubiquitously dose-dependent. Rather, they are associated with the
tissue-specific cell proliferation rate. This is why cancer tissue and healthy
intestinal tissue are typically heavily affected.
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in the crypts peaks at about 6–24 h after DOX administration
(Thakkar and Potten, 1992), whereas the maximum effects of the
villi height and crypt depth peaks at about 72–96 h (Dekaney et al.,
2009). This is also the same time interval after DOX treatment at
which the cellular renewal process is peaking in the crypts (Dekaney
et al., 2009). A complete recovery of the mucosa and its function are
restored after about one week in mouse and rat. In humans, these
processes are similar to the rodent models, but the peak times are
different and the overall time to recovery is about twice as long
(Keefe et al., 2004).

CIM not only affects the stem cell population. It also has a
complex interplay between the many mucosal cell types (e.g.,
IEC, immune cells, mesenchymal cells) in the different
intestinal compartments (e.g., villus, crypts, intra and
extracellular, mucus). These cell types and compartments
are important in the injury and healing following cytostatics
treatment. For instance, germ-free mice experience the same
amount of DOX-induced increase in cryptal apoptosis as
normal mice, but the overall intestinal mucosal injury is
greater in the normal mice (Rigby et al., 2016). Single
intraperitoneal injection of methotrexate (20 mg/kg) to
Sprague–Dawley rats (200–250 g) causes severe enterocolitis
and death (Mao et al., 1996). However, oral administration of
lactobacilli to the treated rats significantly improves their
intestinal nutritional status and dynamic barrier function,
reduces the number of enteric pathogenic bacteria, and
most likely explains the reduction of the bacterial
translocation and endotoxemia.

This illustrates the symbiotic interplay between microbiota and
the activation of the immune system in maintaining intestinal
homeostasis. This is further exemplified by the role of the TLR
receptors 2 and 9 that are expressed on a range of intestinal cell types.
These receptors recognize bacterial epitopes and determine different
responses to commensal and other intestinal bacteria. Mice lacking
these receptors display less CIM, most likely as a result of a
downregulation of intestinal apoptosis.(Kaczmarek et al., 2012)
The extracellular matrix is also important for maintaining tissue
morphology and healing. The cancer drug irinotecan is known to
affect extracellularmatrix protein expression, which contributes to cell
cytostasis and apoptosis followed by an increase in collagen deposits
partly attributed to changes in the expression of metalloproteinases
(Al-Dasooqi et al., 2010; Al-Dasooqi et al., 2011). Furthermore, after
cytostatics treatment, it is fundamental for mucosal health that the

protective epithelial mucus layer is rebuilt by the mucins. These
mucins are involved in cell proliferation, the inhibition of apoptosis,
and the overall severity of CIM (Thorpe, 2019).

The multitude of parameters involved in CIM, and our
improved understanding of its pathophysiology, give rise to
many possible targets for various treatment strategies. Below
and in Table 1 follows a summary of some interesting past
and recent studies and potential targets.

POSSIBLE TREATMENTOPTIONS FORCIM

There is an unmet need to identify and develop efficient drug
treatments for GI toxicities caused by chemotherapeutics
(Stringer et al., 2009; Sougiannis et al., 2021). The overall
aims of any intervention are to reduce the GI related symptoms
experienced by cancer patients—this would relieve suffering,
enable dose escalation, or avoid dose de-escalation.
Interventions can include prophylactic treatments such as
probiotics and antibiotics to prepare the GI tract. They may
also include anti-oxidants, anti-inflammatory drugs, and
apoptosis inhibitors during cytostatics treatment to alleviate
some of the immediate toxicities and associated effects. Lastly,
treatments such as incretins and growth hormones can be used
after cytostatic dosing to benefit the mucosal adaptation and
proliferation processes after injury. This section discusses
some promising interventions that can be deployed in each
of the three stages. Finally, we highlight the usefulness of
combining treatment options to tackle CIM from multiple
angles.

Microbial and Anti-microbial Treatments
The microbiota can have both detrimental and supportive effects
on GI homeostasis and health (Benno et al., 2019). This also holds
true for CIM, where luminal bacteria are involved in the
regulation of intestinal barrier functions, maintenance of
selective intestinal permeability, inflammation and innate
immune response, repair mechanisms, cell apoptosis, and
oxidative stress (Prisciandaro et al., 2011). The direct or
indirect effects of cytostatics on gut microflora dysbiosis also
impact the clinical manifestations of CIM, where they contribute
to the development of bacteremia and diarrhea. Accordingly,
there is an abundance of preclinical CIM rodent models that have

TABLE 1 | Potential future treatment options and some examples of specific interventions for CIM. Please see the text for a more detailed description of the proposed
treatment strategies.

Treatment options Examples Mechanisms

Microbiota Antibiotics Reduces pathogenic intestinal bacteria and mucosal infections
Dihydrotanshinoneon Restores normal gut microbiota
Probiotics and fecal microbiota transplantations Reduces diarrhea, reduce pathogenic bacteria, modulating inflammatory response

Anti-oxidants Amifostine, melatonin Detoxifies reactive metabolites of chemotherapeutic agents and scavenges free radicals
Mucosal barrier regulators Melatonin Reduces basal and GI injury increases in intestinal permeability
Anti-inflammatory agents Misoprostol, COX-2 inhibitors Reduces inflammatory response and propagation
Anti-apoptotic agents IL-1 receptor antagonist, β-arrestins Suppression of crypt cell death
Incretins GLP1 and GLP2 Stimulate growth, promote healing and inhibits epithelial apoptosis
Growth hormones Keratinocyte growth factor Stimulates proliferation
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reported positive effects of antibiotics (Hamouda et al., 2017),
fecal transplantations (Chang et al., 2020), and probiotics
(Yeung et al., 2015; Quaresma et al., 2020). In a mouse
model, CIM toxicity has been reduced with
dihydrotanshinoneon (a liposoluble plant extract) that
restores normal gut microbiota (Wang et al., 2020). In
patients undergoing GI surgery, a changed microbial
intestinal flora in combination with an altered barrier
function may progress to an enhanced inflammatory
response. Here probiotics may reduce pathogenic bacteria
(Jeppsson et al., 2011). Still, in spite of the vast literature
supporting the use of treatments directly or indirectly
targeting the luminal microbiota, treatments for CIM that
alter the GI microbiome have largely failed in the clinic
(Touchefeu et al., 2014), Consequently, there is a need to
improve and establish the most suitable composition of type
of probiotic bacteria, and its dose and length of treatment. Of
special interest is the possibility of combining interventions,
such as pre-treatment with antibiotics that target bacterial
populations with noxious membrane effects, and beneficial
probiotic/fecal microbiota transplantations.

Anti-Oxidants and Mucosal Barrier
Regulators
Amifostine is a phosphorylated aminothiol prodrug, which is
rapidly hydrolysed in vivo by alkaline phosphatase to the active
cytoprotective thiol metabolite, WR-1065. This metabolite has
a terminal half-life of 90 min (Ranganathan et al., 2018).
Intracellularly WR-1065 detoxifies reactive metabolites of
chemotherapeutic agents and scavenges free radicals
(Bensadoun et al., 2006); it may also accelerate DNA repair
and inhibit apoptosis. As such, intravenous administration of
WR-1065 may protect intestinal epithelium and connective
tissue from various anti-tumor treatments (Grdina et al.,
2000). It reduces DOX-induced CIM in rats (Jaćević et al.,
2018) and methotrexate-induced CIM in mice, an effect that is
potentiated by co-administration of calcium folinate (Chen
et al., 2013) The FDA indication for amifostine refers to
xerostomia prophylaxis in post-operative head-neck-cancer
patients treated with radiotherapy (Antonadou et al., 2002);
however, the data are conflicting about its value in oral CIM
prevention (Nicolatou-Galitis et al., 2013). Unfortunately,
significant side-effects (mainly nausea and hypotension)
limit its clinical use.

Melatonin, a serotonin derivative, is a hormone that controls
the sleep–wake cycle and is primarily released by the pineal gland
at night (Auld et al., 2017). Melatonin is also synthesized and
released by the enterochromaffin cells in the intestine, where it
binds to the melatonin membrane receptors MT1 and MT2, and
to the cytosolic MT3 receptor (Soták et al., 2006; Söderquist et al.,
2015). It also scavenges free radicals (Hardeland and Pandi-
Perumal, 2005). In rats and mice, melatonin reduces basal
intestinal permeability through an inhibitory nicotinic
receptor-mediated neural pathway (Sommansson et al., 2013a).
This mitigates ethanol-, chemical-, and radiation-induced
intestinal damage (Monobe et al., 2005; Sommansson et al.,

2013a; Chamanara et al., 2019), as well as methotrexate-
induced oxidative stress and injury (Kolli et al., 2013). Clinical
trials with melatonin also report positive effects in irritable bowel
syndrome and inflammatory bowel disease (Rakhimova, 2010;
Siah et al., 2014). In summary, melatonin has a potent effect on
mitigating mucosal injury. It should therefore be investigated for
limiting CIM, in particular in synergism with other treatments.
For example, melatonin dosed with misoprostol abolishes
unselective surfactant-induced intestinal injury in rat
(Dahlgren et al., 2020).

Anti-Inflammatory and Anti-apoptotic
Agents
Pro-inflammatory cytokines, such as IL-1, are involved in the
progression of CIM (Kanarek et al., 2014), and their natural
antagonists are released upon intestinal injury (Daig et al.,
2000). As such, the IL-1 receptor antagonist is repeatedly
shown to reduce 5-fluorouracil-induced CIM in mice (Wu
et al., 2010; Wu et al., 2011). These effects are attributed to
reduced crypt cell death by suppression of p53-dependent
apoptosis caused by cytotoxic treatments (Wang et al.,
2015). Other mediators in cell apoptosis are β-arrestins that
suppress p53 levels (Hara et al., 2011). For example, mice
deficient in β-arrestin1 experience increased cell death and
injury following cytostatics (Zhan et al., 2016). Other ways to
reduce caspase-3 activated cells and apoptosis in mice after 5-
fluorouracil-induced mucositis include: a serotonin-receptor
antagonist (Yasuda et al., 2013); andrographolide (an herbal
extract) (Xiang et al., 2020); and armillariella oral solution (a
fungus extract) (Wenqin et al., 2019). These preclinical studies
show the potential in targeting cell apoptosis pathways to limit
mucosal manifestations and complications in CIM.

The prostaglandin E1 analogue, misoprostol, is an agonist of
G protein-coupled prostaglandin E receptors 1-4 that are
involved in epithelial homeostasis and protect against
intestinal mucosal damage (Abramovitz et al., 2000).
Misoprostol protects by regulating gastric acid and mucus
secretion, pro-inflammatory cytokine production, and by
activating adaptive cell survival pathways through selective
gene repression and splicing (Davies et al., 2001; Field et al.,
2018). It is therefore used for the prevention of nonsteroidal
anti-inflammatory drug-induced mucosal erosions and ulcers
(Graham et al., 1988; Sugimoto and Narumiya, 2007). It is
effective at reducing radiation induced injury in animal models
(Hanson et al., 1988; Delaney et al., 1994), but its clinical use
for treating radiotherapy-induced intestinal and oral mucositis
have generated conflicting results, both positive (Hanson et al.,
1995) and negative (Duenas-Gonzalez et al., 1996) outcomes.
Still, the abundant clinical and preclinical data supporting its
cytoprotective effects for a range of GI inflammation and
injury models make it a promising drug for further
investigations with CIM.

Cyclooxygenase (COX) 1 and 2 are enzymes involved in the
formation of prostanoids, which are involved in numerous
physiological processes including inflammation (Dahlgren
et al., 2018a). COX-1 is expressed and produced
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constitutively whereas COX-2 production (prostaglandin E2) is
induced at sites of inflammation by pro-inflammatory agents
(e.g., IL-1, TNF-α) and transcription factors (e.g., NF-κB)
(Turini and Dubois, 2002). The involvement of these
mediators in the progression of CIM has led several studies
to explore the possible contribution of COX-2 to the
amplification phase rather than the acute phase of CIM
(Sonis et al., 2004). Accordingly, selective COX-2 inhibition
is reported to reduce the overall histopathological changes and/
or diarrhoea induced by various cytostatics in rodent models
[e.g., 5-fluorouracil (De Miranda et al., 2020) and irinotecan
(Javle et al., 2007)]. The same treatments have also been used in
the clinics for radiation and chemotherapeutics-induced oral
and intestinal mucositis, but with mixed results (Javle et al.,
2007; Lalla et al., 2014). Overall, the overlap between effectors in
CIM and in inflammatory induction of COX-2 make them a
possible adjuvant treatment target.

Incretins and Growth Hormones
Endogenous glucagon-like peptides GLP-1 and GLP-2 are
released by the enteroendocrine L-cells into the lamina
propria and circulation following oral nutrient ingestion.
They stimulate growth, increase absorption, promote
healing, maintain intestinal epithelial integrity, and
potentially have anti-inflammatory activity (Drucker et al.,
1996; Drucker and Yusta, 2014; Ebbesen et al., 2019; Billeschou
et al., 2021). The positive effect of luminal food on epithelial
growth is also why enteral feeding should be maintained
during chemotherapy (Bengmark and Jeppsson, 1995).
Plasma levels of GLP-1 correlate with the systemic
inflammation in cancer patients receiving chemotherapy;
plasma GLP-2 concentrations are significantly elevated
2–5 days following induction of CIM in rats and mice
(Kissow et al., 2012; Hytting-Andreasen et al., 2018;
Ebbesen et al., 2019). Besides the enhancement of
proliferation, exogenous GLP-2 inhibits epithelial apoptosis
(Tsai et al., 1997; Boushey et al., 2001). Other studies show
GLP-1 and 2 to be central in the adaptive recovery response in
the small intestine following CIM (Kissow et al., 2013; Hytting-
Andreasen et al., 2018; Billeschou et al., 2021). Thus, GLP-1
and 2, their analogues (semaglutide/exenatide and
teduglutide/glepaglutide), or inhibition of their enzymatic-
mediated degradation (DPP-IV inhibitors) have great
promise for improving mucosal regeneration after CIM, in
part by reducing chemotherapy-induced apoptosis (Boushey
et al., 2001). GLP-2 analogues also have clinical potential when
the integrity or absorptive function of the intestinal mucosa is
affected (Salaga et al., 2018).

Another interesting growth factor is the keratinocyte growth
factor (KGF), a protein in the fibroblast growth factor family.
KGF is a small signalling molecule that binds to fibroblast growth
factor receptor 2b which is expressed in the intestine (Song et al.,
2020). KGF stimulates proliferation and increases the overall
weight of the intestine (Housley et al., 1994). It has been evaluated
in rodent models of CIM, but effects have been both positive
(Farrell et al., 1998) or absent (Gibson et al., 2002). A human
recombinant version of KGF, palifermin, is the only approved

(oral) drug treatment for CIM today. As an injection drug, it is
used for treating severe oral mucositis in patients receiving
myeloablative radiochemotherapy (Nasilowska-Adamska et al.,
2007). The cytoprotective effects of palifermin could be expanded
to include other indications (Vadhan-Raj et al., 2013).

Combination Treatments
Despite decades of experimental and clinical investigations of
CIM, no effective therapeutic interventions are available today
for treating it (Ribeiro et al., 2016; Wardill et al., 2019). What
treatments that do exist aim at reducing secondary
complications to treatment, such as pain and diarrhoea.
Consequently, no single treatment to date substantially
transforms the clinical management of CIM, despite
numerous promising preclinical investigations. This
cements the fundamental role of stem cell proliferation in
mucosal health and homeostasis, and suggests that its
disturbance by chemical agents is so fundamental that no
single intervention can readily compensate. Unless any
novel breakthrough occurs in this regard, it is our belief
that combinations of treatments are necessary to generate
any substantial clinical breakthrough in CIM management.
A few example of successful additive combinations treatments
for alleviating CIM in preclinical models include GLP 1 and 2
(Hytting-Andreasen et al., 2018), troxerutin and celecoxib (De
Miranda et al., 2020), amifostine and calcium folinate (Chen
et al., 2013). The combinations with the most potential to be
successful (high positive ratio of effect/safety) remain to be
investigated, validated, and established. An optimal
intervention would likely target the pre-treatment phase of
CIM with prophylactics (e.g., antibiotics/probiotics), the acute
phase with anti-oxidants and anti-inflammatory agents, and
the recovery phase, by stimulation of cell proliferation.

CONCLUSIONS

Gastrointestinal injury and symptoms following
chemotherapy in cancer patients remains an unsolved
clinical issue. As there are currently no effective treatment
options for chemotherapeutics-induced intestinal mucositis,
there is no way to help these patients other than by lowering
the dose of the cytotoxic drug. However, recent progress in the
understanding of the molecular and functional pathology of
CIM provides many new potential targets and treatment
opportunities. We believe that the best possibility for
success is to pursue combination treatments that target
different aspects of the complex pathological mechanisms
involved in intestinal mucositis.
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