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Objective: Hypopituitarism (Hypo-Pit) is partial or complete insufficiency of anterior
pituitary hormones. Besides hormone metabolism, the global metabolomics in Hypo-
Pit are largely unknown. We aimed to explore potential biomarkers to aid in diagnosis and
personalized treatment.

Methods: Using both univariate and multivariate statistical methods, we identified 72
differentially abundant features through liquid chromatography coupled to high-resolution
mass spectrometry, obtained in 134 males with Hypo-Pit and 90 age matched healthy
controls.

Results: Hypopituitarism exhibits an increased abundance of metabolites involved in
amino acid degradation and glycerophospholipid synthesis, but decreased content of
metabolites in steroid hormone synthesis and fatty acid beta-oxidation. Significantly
changed metabolites included creatine, creatining, L-alanine, phosphocholines,
androstenedione, hydroprenenolone, and acylcarnitines. In Hypo-Pit patients, the
increased ratio of creatine/creatinine suggested reduced creatine uptake and impaired
creatine utilization, whereas the decreased level of beta-hydroxybutyrate, acetylcarnitine
(C2) and a significantly decreased ratio of decanoylcarnitine (C10) to free carnitine
suggested an impaired beta-oxidation. Furthermore, the creatine/creatinine and
decanoylcarnitine/carnitine ratio were identified as diagnostic biomarkers for Hypo-Pit
with AUCs of 0.976 and 0.988, respectively. Finally, we found that the creatinine and
decanoylcarnitine/carnitine ratio could distinguish cases that were sensitive vs. resistant to
human chorionic gonadotropin therapy.

Conclusion: We provided a global picture of altered metabolic pathways in Hypo-Pit, and
the identified biomarkers in creatine metabolism and beta-oxidation might be useful for the
preliminary screening and diagnosis of Hypo-Pit.
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INTRODUCTION

Hypopituitarism (Hypo-Pit) is a chronic endocrine illness with
partial or complete insufficiency of the anterior pituitary caused
by varied etiologies with a prevalence of 300-455 per million
(Ascoli and Cavagnini, 2006), which has a high risk of
cardiovascular morbidity and infertility (Stieg et al, 2017).
Clinical manifestations of Hypo-Pit are variable and might be
affected by the cause of hypopituitarism, age of onset, and the
speed and degree of hormone secretion loss. Although a partial
hormone deficiency that progresses slowly can go undetected for
years, the sudden and complete loss of hormone secretion results
in an emergency situation that requires immediate medical
attention. Therefore, early diagnosis and prompt treatment is
necessary.

The diagnosis of hypopituitarism is made by measuring basal
hormone levels based on the morning fasting status or
performing stimulation tests if necessary. Pituitary hormones
can be diagnosed with basal hormone measurement. The
diagnosis of growth hormone (GH) or adrenocorticotropic
hormone (ACTH) deficiency requires provocation tests of the
hypothalamic-anterior pituitary-target organ axis. However,
there are several contraindications to these tests (Fleseriu
et al., 2016). For example, an insulin tolerance test (ITT) is
contraindicated in patients with ischemic heart disease, seizure
disorders, or severe pituitary deficiency (Ghigo et al., 2008).
Meanwhile, ITT has the potential risk of inducing severe
hypoglycemia, convulsions, and coronary heart disease
(Gémez et al, 2002), and there have even been reports of
death in pediatric patients (Price, 1992). Easy and non-
invasive diagnosis methods are needed as an alternative for
special patients. As one of them, the determination of cortisol
content in human scalp hair was recently used (Ibrahim and Van
Uum, 2014). Metabolomics studies provide novel tools in
identifying biomarkers of diseases early diagnosis and
treatment efficacy (Taylor Fischer et al, 2019). Dooijeweert
et al. found that untargeted metabolomics in dried blood spots
is a useful tool for pyruvate kinase deficiency diagnosis (Van
Dooijeweert et al, 2020). Souto-Carneiro et al. used serum
metabolome and lipidome to identify potential biomarkers for
rheumatoid arthritis and psoriatic arthritis (Souto-Carneiro et al.,
2020). These suggested that evaluate the metabolic status of the
Hypo-Pit patients may uncover the mechanisms of the diseases
development and identify novel early diagnosis biomarkers and/
or novel therapeutic targets.

Specific glucose and lipid profiles and biochemical changes
have been identified in patients with growth hormone deficiency
(Lopez-Oliva et al., 2009; Sharma, 2018). Due to the lack of
growth hormone, Hypo-Pit patients might suffer reduced lean
body mass, increased body adiposity, reduced muscle strength,
and abnormal lipid metabolism (Curto and Trimarchi, 2016).
Abnormal lipid metabolism might further lead to an increased
prevalence of cardiovascular risk factors (Kearney et al., 2001;
Cannavo et al, 2011). Gonadotrophin deficiency can induce
spermatogenesis in men (Fang et al,, 2019) and an increased
risk of pregnancy complications for females (Du et al., 2014). GH
has various regulatory influences on the metabolism of glucose
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and lipids via complex interactions with insulin and insulin-like
growth factor-1 (Krsek, 2016). Mert et al. found dramatic
reductions in oxygen consumption, carbon dioxide production,
and energy expenditure in GH-releasing hormone (GHRH)—-/-
mice compared to those in wild-type mice, which might mediate
the increased lifespan (Icyuz et al, 2020). Charlotte et al.
discussed the possibility of serum metabolome in diagnosis of
GH deficiency and for monitoring GH replacement. Although
they found 13 metabolites useful in differentiating GH deficiency
patients from controls, but large of them could not be structurally
annotated (Hoybye et al.,, 2014). Benefit from database assisted
structure identification for metabolite identification, this problem
can be solved to some extent (Menikarachchi et al., 2016). In this
study, we aimed to identify metabolic changes in Hypo-Pit to
explain its clinical phenotype and ultimately explore potential
biomarkers to aid in diagnosis and personalized treatment.

MATERIALS AND METHODS

Participant Recruitment

Patients and healthy controls were recruited at Ruijin Hospital
(Shanghai, China) between Jan 2016 and Dec 2018. Eligible
patients were clinically diagnosed with hypopituitarism based
on clinical history, symptoms, biochemical parameters, and brain
magnetic resonance imaging (MRI) tests. For congenital Hypo-
Pit, patients were diagnosed with multiple pituitary hormone
deficiency at a young age (~6-12 years of age). The MRI scan
suggested the presence of a transected or interrupted
hypothalamic-pituitary stalk or pituitary hypoplasia. For
acquired Hypo-Pit, patients were secondary to pituitary
tumors, traumatic brain injury, pituitary irradiation, or a clear
diction of dystocia history. For the healthy control group,
participants were selected from local residents receiving annual
physical examination, were free of acute or chronic diseases
(including diabetes, cancer, and cardiovascular diseases), and
had no symptoms of growth and developmental abnormalities.
In order to alleviate the interference of gender in the serum
metabolome (Dunn et al., 2015), and evaluate the effectiveness of
hormone replacement therapy, we only selected young male
patients in the current study. The discovery set included
135 Hypo-Pit patients and 90 age-matched male controls. The
external validation set included another 122 male Hypo-Pit
patients. The recruitment of the validation set followed the
same protocols as described for the discovery set and was
conducted between June 2018 and July 2019. The study
protocol was approved by the Committee on Human Research
at Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, China. All patients provided informed written
consent to participate in the study.

Gonadotropin Treatment and Follow-Up

For Hypo-Pit, physiologic dosages of glucocorticoids and thyroid
hormone were administered after diagnosis. Recombinant
human GH was also recommended. Then, intramuscular
human chorionic gonadotropin (hCG; 2000 IU, Livzon
Pharmaceutical Co., Guangdong, China) was administered
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twice weekly for at least 24 months. Regular follow-ups were
conducted at an interval of 3-6 months. Testicular size, serum
gonadotrophins, testosterone, and sperm count were measured at
each visit. Testicle volume was measured by two-dimension
ultrasound. Patients with a mean testicle size >6 ml during
gonadotrophin treatment at follow-up were considered
sensitive to hCG therapy. Otherwise, patients were considered
as resistant to the therapy. The experimental design of this study
is summarized in Figure 1.

Sample Collection and Preparation

Peripheral blood was collected in 7 ml blood collection vacuum
tubes with separating gel and centrifuged for 15 min (1,500% g,
4°C) at fasting state. A serum sample aliquot (150 pL) was stored
at —80°C until use. 100 pL of serum was transferred to EP tubes,
mixed with 400 puL of methanol/acetonitrile (1:1, v/v), incubated
for 10 min at —20°C, and then centrifuged at 14,000x g for 15 min
at 4°C. The supernatants were dried with nitrogen and dissolved
in 100 uL acetonitrile/water (1:1, v/v). To monitor the stability
and repeatability of instrument analysis, quality control (QC)
samples were prepared by pooling 30 pL of each sample. 13 QC
samples were inserted every 18 real samples to monitor the ultra-
performance liquid chromatography-quadrupole-time of flight-
mass spectrometry (UPLC-Q-TOF-MS) response in real-time.

UPLC-Q-TOF/MS Analysis

Metabolic profiling of serum samples was performed on an
Agilent 1,290 Infinity LC system (Agilent Technologies, Santa-
Clara, CA, United States) coupled with an AB SCIEX Triple TOF
6600 system (AB SCIEX, Framingham, MA, United States) (Zhou
et al, 2019; Xu et al, 2021). Chromatographic separation was
performed on an ACQUITY HSS T3 1.8 um column (2.1 X
100 mm) for both positive and negative ion modes. The mobile
phase was set as follows: A = 0.1% formic acid in water, B = 0.1%
formic acid in acetonitrile, C = 0.5 mM ammonium fluoride in
water and D = acetonitrile. In the positive (negative) mode, the
elution gradient started with 1% B (D) for 1min, linearly
increased to 100% B (D) at 8 min, maintained for 2 min, and

then returned to 1% B (D) for approximately 2min of
equilibrium. The delivery flow rate was 300 uL/min, and 2 uL
aliquots of each sample were injected into the column.
Electrospray ionization source conditions on Triple TOF were
set as follows: ion source gas 1, 60 psi; ion source gas 2, 60 psi;
curtain gas, 30 psi; source temperature, 600°C; and ionspray
voltage floating, +5500 V. Information-dependent acquisition,
an artificial intelligence-based product ion scan mode, was
used to detect and identify MS/MS spectra. The parameters
were set as follows: collision energy, 35V + 15 eV; declustering
potential, 60 V (+) and —60 V (-); exclude isotopes within 4 Da,
candidate ions to monitor per cycle, 10. The LC-MS platform
analysis was conducted with the assistance of Applied Protein
Technology Co., Ltd. (Shanghai, China).

Metabolomics Data Analysis

Raw UPLC-Q-TOF/MS data were converted to mzXML format
using the Proteo Wizard MS converter tool and processed using
XCMS online software. For peak picking, the following
parameters were used: centwave m/z = 25 ppm, peakwidth = ¢
(10, 60), prefilter = c (10, 100). For peak grouping, bw = 5, mzwid
=0.025, and minfrac = 0.5 were used. After normalization of total
peak intensity, processed data were imported into SIMCA-P
(version 14.1, Umetrics, Umea, Sweden) and subjected to
multivariate data analysis, including Pareto-scaled principal
component analysis (PCA) and orthogonal partial least-
squares discriminant analysis (OPLS-DA). Seven-fold cross-
validation and response permutation tests were used to
evaluate the robustness of the model. The variable importance
in the projection (VIP) value of each variable in the OPLS-DA
model was calculated to indicate its contribution to class
separation. Metabolites with VIP >1 were further analyzed
with the univariate student’s t-test to measure the significance
of each metabolite, and p-values < 0.05 were considered
statistically significant. The relative expression of studied
metabolites was used to perform hierarchical clustering
analysis using Cluster 3.0 and Java Treeview software (http://
jtreeview.sourceforge.net).
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TABLE 1 | Clinical characteristics of the participants in identification study population.

Characteristics® Congenital hypopituitarism

(n =83)
Basic information
Gender (male/female) 83/0
Age (year) 25.42 + 5.79
Height (cm) 166.41 + 8.51
Weight (kg) 65.88 + 12.88
BMI (kg/m?) 23.69 + 3.64

Pituitary hormone deficiency
GH deficiency
LH/FSH deficiency
TSH deficiency
ACTH deficiency

100% (82/82)
97.6% (80/82)
91.5% (75/82)
90.2% (74/82)

Serum Metabolomics in Hypopituitarism

Acquired hypopituitarism Control group p-value
(n = 51) (n =90) —
51/0 90/0 -
22.88 + 6.04 22.87 +2.13 0.061
169.61 + 11.65 167.59 + 5.47 0.102
72.33 + 19.50 66.20 + 10.97 0.008
2481 + 4.74 23.53 + 4.64 0.057

98.0% (50/51)
96.1% (49/51) - -
96.1% (49/51)
94.1% (48/51)

4The data are the mean + SD for continuous variables and n (%) for categorical variables. Abbreviations: BMI, body mass index; GH, growth hormone; LH, luteinizing hormone; FSH, follicle-

stimulating hormone; TSH, thyrotropin; ACTH, adrenocorticotropic hormone.

Bioinformatics Analysis and Biomarker

Identification

We compared the metabolic phenotypes of Hypo-Pit patients and
healthy controls with a VIP value >1 and p-value < 0.05 to
identify differential metabolites and to reveal perturbed metabolic
pathways. KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway enrichment analyses (www.metaboanalyst.ca) and the
human metabolome database (https://hmdb.ca/) were used to
perform biological function analyses based on Fisher’s exact test.
Only pathways with p-values under 0.05 were considered
significant. The same strategy was used to identify differential
metabolites between congenital vs. acquired Hypo-Pit and
between Hypo-Pit patients sensitive or resistant to hCG
treatments. To identify potential diagnostic biomarkers, a
receiver-operating characteristic curve (ROC) analysis was
performed to quantify the diagnostic performance of
individual metabolites. The area under the curve (AUC) was
calculated with R software (version 4.0.3; www.r-project.org).
Similar analyses of significant metabolites in gonadotropin
replacement sensitive and gonadotropin replacement resistant
congenital Hypo-Pit were performed to identify biomarkers of
sensitivity to hormone substitute therapy.

Statistical Analysis

Continuous variables were presented as the mean + SD for
normally distributed variables or median with interquartile
range (IQR) for the skewed variables. The Kolmogorov-
Smirnov statistical test was used to assess data normality.
Student’s t-test, Mann-Whitney U-test and the Pearson chi-
square test were used where appropriate. All analyses were
performed with SPSS software version 23.0 (SPSS Inc,
Chicago, IL, United States ). Significance tests were two tailed,
and a p < 0.05 was considered statistically significant.

RESULTS

The discovery cohort included 83 individuals with congenital
Hypo-Pit (mean age: 25.42 + 5.79), 51 with acquired Hypo-Pit

(mean age: 22.88 + 6.04), and 90 heathy controls (mean age:
22.87 + 2.13). In congenital Hypo-Pit, 25 patients were sensitive
to gonadotropin treatment, whereas 58 patients were resistant.
The clinical and laboratory characteristics and baseline
comparison are summarized in Table 1. Beside weight, no
significant difference was identified between the patients with
Hypo-Pit and controls for age, height, and body mass index
(BMI). Compared with the controls, Hypo-Pit patients had
significantly lower levels of the hormones secreted by the
pituitary gland (Table 1). The external validation set included
another 122 male congenital Hypo-Pit patients (mean age:
25.75 + 6.15), with 52 patients sensitive to gonadotropin
treatment, whereas 70 patients were resistant. There is no
significant  difference between hCG-sensitive group and
resistant group of GH deficiency, LH/FSH deficiency and the
level of testosterone. In hCG-sensitive group, a decreased TSH
and ACTH deficiency, and a relatively higher serum creatinine
level was noticed (Table 2).

Metabolic Characteristics of

Hypopituitarism Patients

In total 6,380 positive-mode and 6,577 negative-mode unique
metabolite features were identified between 135 Hypo-Pit patients
and 90 controls. After log transformation and scaling, QC samples
clustered tightly in PCA score plots in both positive and negative
modes with CV% of all metabolites (4.45%, range 1.1-44.07%),
indicating  satisfactory reproducibility (Figures 2A,B). The
supervised orthogonal partial-least square discriminant analysis
(OPLS-DA) plots identified distinct metabolic profiles between
Hypo-Pit patients and healthy controls for both positive and
negative modes (Figures 2C-F). In total, 72 annotated metabolites
were identified with VIP >1 and p < 0.05 between Hypo-Pit and
healthy control groups (Supplementary Table S1). Of them, 25
(34.7%) metabolites belong to the subclass of amino acids, 17
metabolites belong to fatty acids, 12 metabolites belong to glycerin
phospholipid, four metabolites belong to steroids, three metabolites
belong to nucleic acid, and two metabolites belong to bile acids and
the others (Supplementary Figure S1). The heatmap for the top 28
differential metabolites was presented in Figure 3. These included the
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TABLE 2 | Clinical characteristics of the participants in validation cohort.

Characteristics®

Basic information
Gender (male/female)
Age (year)
Height (cm)
Weight (kg)
BMI
Pituitary hormone deficiency
GH deficiency
LH/FSH deficiency
TSH deficiency
ACTH deficiency
Serum creatinine (umol/L)
Testosterone (ng/ml)

Serum Metabolomics in Hypopituitarism

Total hCG-sensitive group hCG-resistant group p-value
(n =122 (n = 52) (n =70) —
122/0 52/0 70/0 -
25.75 + 6.15 22.88 + 6.04 25.69 + 6.79 0.883
165.65 + 8.35 165.90 + 7.15 165.46 + 9.19 0.767
65.88 + 13.04 67.94 + 12.89 64.34 + 13.08 0.131
23.91 + 3.79 24.58 + 3.77 23.41 + 3.74 0.090
100% (122/122) 100% (52/52) 100% (70/70) —
98.4% (120/122) 98.1% (51/52) 98.6% (69/70) 0.673
89.3% (109/122) 82.7% (43/52) 94.3% (66/70) 0.040
82.0% (100/122) 71.2% (37/52) 90.0% (63/70) 0.007
69.7 + 10.7 72.5 + 10.9 67.7 +10.2 0.016
<0.1 (<0.1-0.25) <0.1 (<0.1- < 0.1) <0.1 (<0.1-0.47) —

4The data are the mean + SD or median (quartile 1-3) for continuous variables and n (%) for categorical variables. Abbreviations: hCG, human chorionic gonadotropin; BMI, body mass
index; GH, growth hormone; LH, luteinizing hormone; FSH, follicle-stimulating hormone; TSH, thyrotropin; ACTH, adrenocorticotropic hormone.
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following: steroids: androstenedione, hydropregnenolone sulfate,
pregnenolone sulfate, 7-oxocholesterol; amino acids: proline,
alanine, valine, arginine, glutamate, creatinine, creatine and
taurine;  glycerophospholipids: ~ diethanolamine, 1-palmitoyl-2-
hydroxy-sn-glycero-3-phosphoethanolamine, 1-myristoyl-sn-
glycero-3-phosphocholine, 1-palmitoyl-sn-glycero-3-
phosphocholine, 1-stearoyl-2-hydroxy-sn-glycero-3-
phosphocholine, 1-stearoyl-2-arachidonoyl-sn-glycerol; fatty acids:
carnitine, decanoylcarnitine, acetylcarnitine, beta-hydroxybutyric
acid, palmitic acid, azelaic acid, arachidic acid, and
chlorohippuric acid.

OPLS-DA plots identified distinct metabolic profiles between
congenital and acquired Hypo-Pit groups (Supplementary
Figure S2). 57 annotated metabolites were identified with VIP
>1 and p < 0.05 (Supplementary Table S2). There are 32
metabolites shows significant difference (p < 0.05) both in the
comparison of Hypo-Pit vs. healthy controls and comparison of
congenital Hypo-Pit vs. acquired Hypo-Pit patients (Table 3).
The expression pattern of typical differential metabolites
including  L-alanine, creatine, creatinine, L-arginine,
L-glutamine, L-lysine, L-valine and acetylcarnitine was shown
in Figure 4.
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TABLE 3| Differential metabolites shared in comparisons of comparison A (Hypo-Pit vs. healthy controls), comparison B (congenital vs. acquired Hypo-Pit), and comparison
C (hCG-sensitive vs. hCG-resistant).

Name

M114T170
M132T350_2
M1247294_2
M175T506_2
M188T502
M1167298
M1647255_2
M203T256
M128T300_2
M156T433
MO0T350
M118T303
M130T309
M391T151
M165T154
M496T191_3
Mb524T187_3
M468T195
M628T193
M1417342_2
M162T355_2
M89T100
M277748
M120T260_2
M169T56
M281T101_2
M165T79
M1377290
M188T197
M70T315
M149T119

Metabolites®

Creatinine

Creatine

Taurine

L-Arginine

L-Lysine

L-Valine

L-Phenylalanine

L-Tryptophan

L-Pyroglutamic acid

L-Histidine

L-Alanine

Betaine

L-Leucine

Chenodeoxycholate

Dihydrothymine
1-Palmitoyl-sn-glycero-3-phosphocholine
1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine
1-Myristoyl-sn-glycero-3-phosphocholine
1-Stearoyl-2-arachidonoyl-sn-glycerol
2-Oxoadipic acid

L-Carnitine

DL-lactate

Al cis-(6,9,12)-Linolenic acid
Tyramine

3-Hydroxycapric acid

Oleic acid
3-(2-Hydroxyphenyl)propionic acid
1-Methylnicotinamide
DL-Indole-3-lactic acid
Diethanolamine

D-Lyxose

@Differential metabolites selection criteria: VIP >1 and p < 0.05.
bA, congenital hypopituitarism; B, acquired hypopituitarism; AP, hCG-sensitive group with congenital hypopituitarism; AN, hCG-resistant group with congenital hypopituitarism; HC, health

controls.

Metabolic Perturbed Pathways in

Hypopituitarism Patients
Using KEGG pathway enrichment analyses by metaboanalyst
software, the 25 differential amino acids clustered to pathways of

(AN + AP + B) vs. HCs® (AN + AP) vs. B® AP vs. AN®
VIP Fold P VIP Fold P VIP Fold P
9.68 0.74 0.00 7.37 0.90 0.01 6.36 1.07 0.04
5.95 9.28 0.00 8.20 2.46 0.00 — — —
455 1.24 0.00 413 1.17 0.00 — — —
4.30 1.29 0.00 1.71 1.07 0.02 1.31 0.92 0.01
415 0.34 0.00 2.98 0.59 0.00 — — —
4.04 1.57 0.00 3.13 1.22 0.00 — — —
3.60 1.43 0.00 2.86 1.20 0.00 3.02 0.89 0.04
2.18 1.52 0.00 2.20 1.27 0.00 — — —
4.02 1.28 0.00 1.28 0.83 0.04 — — —
1.61 1.49 0.00 1.43 1.25 0.01 — — —
1,57 7.97 0.00 227 2.51 0.00 — — —
1.48 1.38 0.00 2.18 1.32 0.00 — — —
1.01 1.156 0.00 3.30 1.20 0.01 117 0.88 0.04
2.74 2.54 0.00 1.60 1.25 0.01 — - -
1.99 0.76 0.00 1.10 1.13 0.00 — — —
28.91 1.31 0.00 — — — 23.27 0.93 0.01
20.89 1.35 0.00 5.77 1.06 0.03 — — —
5.03 2.66 0.00 — — — 7.12 0.59 0.00
2.87 1.61 0.00 3.18 1.36 0.00 — — —
16.87 1.09 0.00 10.37 1.05 0.00 — — —
5.56 1.12 0.00 — — — 4.70 0.92 0.01
6.87 1.33 0.00 1.00 1.25 0.01 — — —
2.46 1.22 0.01 3.29 1.29 0.01 — — —
2.16 1.14 0.01 — — — 1.93 0.88 0.01
1.62 0.63 0.00 1.27 1.23 0.00 — — —
1.49 1.10 0.03 1.02 1.12 0.04 — — —
1.42 418 0.00 2.49 3.21 0.03 — — —
1.05 2.38 0.00 1.10 1.55 0.02 — — —
1.43 2.50 0.00 1.57 1.81 0.00 — — —
1.39 1.43 0.00 — — — 112 0.87 0.05
1.27 0.73 0.00 2.68 0.81 0.03 —

aminoacl-tRNA biosynthesis, D-glutamine and D-glutamate
metabolism,

valine,

leucine

and glutamate metabolism,

nitrogen metabolism, and arginine and proline metabolism

(Figure 5A). The 48 non-amino acid metabolites clustered to
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pathways of phosphonate and phosphonate metabolism,
biosynthesis of unsaturated fatty acids, lysine degradation and
glycerophospholipid metabolism (Figure 5B).

In arginine and proline metabolism, significant differential
metabolites included creatine (VIP = 5.94, FC = 9.28),
creatinine (VIP = 9.68, FC = 0.74), and L-arginine (VIP =
4.30, FC = 1.29). In valine, leucine, and isoleucine degradation
pathways, significant differential metabolites included r-alanine
(VIP = 1.57, FC = 7.96) and ketoisocaproic acid (VIP = 3.92, FC =
0.76). In unsaturated fatty acid metabolism, significant
differential metabolites included carnitine (VIP = 5.56, FC =

1.12), decanoylcarnitine (VIP = 4.90, FC = 0.15), and
acetylcarnitine (VIP = 267, FC = 057). In
glycerophospholipid ~ metabolism,  significant  differential

metabolites included 1-palmitoyl-sn-glycero-3-phosphocholine

(VIP = 2891, FC = 1.31) and 1-stearoyl-2-hydroxy-sn-glycero-
3-phosphocholine (VIP = 20.89, FC = 1.35). In steroid hormone
biosynthesis, significant differential metabolites included
androstenedione (VIP = 248, FC = 0.08)
hydropregnenolone sulfate (VIP = 2.45, FC = 0.21).

and

Biomarkers for Diagnostics Hypo-Pit

To identify potential biomarkers for Hypo-Pit diagnosis, ROC
analyses were performed to quantify the diagnostic performance
of metabolites. Sixteen metabolites with AUCs greater than 0.8
are shown in Table 4. The L-alanine, decanoyl-L-carnitine,
creatine, hydropregnenolone-sulfate, L-lysine, androstanedione,
L-glutamine, arachidic-acid, L-glutamate and L-valine were
identified as potential diagnostic biomarkers for Hypo-Pit with
AUC >0.9. Interestingly, the diagnostic performance of the

Frontiers in Pharmacology | www.frontiersin.org

July 2021 | Volume 12 | Article 684869


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Zhang et al.

Serum Metabolomics in Hypopituitarism

TABLE 4 | Biomarkers for diagnostic of hypopituitarism and biomarkers for prediction of gonadotropin replacement therapy.

Metabolites

Creatine

Creatinine
L-Arginine
Creatine/Creatinine
L-Alanine

L-Valine

L-Lysine
L-Glutamate
L-Glutamine
Arachidic-acid
Androstanedione
Hydroxypregnenolone
L-Carnitine
Decanoyl-L-carnitine
Acetylcarnitine

Decanoyl-L-camitine
/L-Carnitine

(A + B) vs. HCs?

AUC
(95%Cl)

0.89
(0.85-0.94)
0.86
(0.81-0.86)
0.82
(0.77-0.88)
0.98
(0.96-0.98)
0.98
(0.96-0.98)
0.89
(0.85-0.94)
0.96
(0.94-0.96)
0.90
(0.86-0.90)
0.92
(0.88-0.92)
0.91
(0.87-0.91)
0.96
(0.93-0.98)
0.97
(0.95-0.98)
0.82
(0.76-0.88)
0.98
(0.96-0.99)
0.85
(0.79-0.91)
0.98
(0.97-0.99)

Threshold

94,506

2,947,373

1,256,933

0.03

6,305

239,591

60,229

60,398

14,157

25,893

20,059

31,817

6,775,600

90,526

139,630

0.01372

Sensitivity Specificity PPV

0.82

0.75

0.95

0.97

0.77

0.89

0.87

0.93

0.82

0.94

0.93

0.73

0.96

0.87

0.97

0.93

0.88

0.76

0.92

0.91

0.90

0.94

0.84

0.88

0.85

0.90

0.90

0.88

0.92

0.77

0.92

0.89

0.70

0.69

0.94

0.94

0.72

0.96

0.89

0.92

0.89

0.93

0.94

0.68

0.95

0.85

0.95

NPV

AP vs. AN?

AUC Threshold Sensitivity Specificity PPV NPV
(95%Cl)

0.72 2,687,014 0.84 0.59 0.47 0.89
(0.59-0.72)

0.69 1,349,494 0.56 0.84 0.60 0.82
(0.56-0.69)

0.67 6,966,037 0.64 0.70 0.48 0.82
(0.54-0.67)

0.71 0.00783 0.56 0.78 0.52 0.80
(0.59-0.71)

@A, congenital hypopituitarism, B, acquired hypopituitarism; AP, hCG-sensitive group with congenital hypopituitarism; AN, hCG-resistant group with congenital hypopituitarism; HC, health
controls. Abbreviations: ROC, receiver operator characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
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FIGURE 6 | Figure 6A. The ROC curves of decanoylcarnitine/L-camitine ratio, L-alanine, creatine/creatinine ratio, hydroprenenolone sulfate, L-lysine and
L-glutamine for hypopituitarism diagnosis. Figure 6B. ROC curves of serum L-alanine, creatine and creatinine for discrimination of congenital from acquired Hypo-Pit
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creatine/creatinine ratio was better than that of creatine or
creatinine alone, with an AUC of 0.976 (95% CI 0.957-0.994)
compared to 0.894 for creatine and 0.857 for creatinine,
respectively (p < 0.05). A similar pattern was observed for the
decanoylcarnitine/carnitine ratio, with an AUC of 0.988
compared to that of 0.981 for decanoylcarnitine and 0.822 for
carnitine (Figure 6A and Table 4). For the discrimination of
congenital out of acquired Hypo-Pit, metabolites of L-alanine,
creatine, L-lysine, L-valine, and creatine/creatinine were
identified as biomarker with well accuracy (AUC >0.9;
Figure 6B and Supplementary Table S3).

Metabolic Profiles Reflect Sensitivity to
Gonadotropin Replacement

To explore metabolite profiles in relation to clinical phenotype,
OPLS-DA were performed to distinguished hCG-sensitive and
hCG-resistant groups (Supplementary Figure S3). A total of 12
differential metabolites were identified with VIP >1 and p < 0.05
(Supplementary Table S4). According to the ROC analyses,
creatinine and decanoylcarnitine/L-carnitine ratios were shown
to be moderate predictors of gonadotropin replacement in
discriminating hCG-sensitive and hCG-resistant patients with
AUCGCs of 0.72, and 0.71, respectively (Table 4; Figure 6C).
Creatinine usually detected by alkaline picrate method in
medical Retrospectively —analysis shows
creatinine has a better AUC of 0.75. In further, creatinine was
evaluated in an external validation cohort including hCG-
sensitive (n = 52) and hCG-resistant (n = 70) patients.
Patients in the hCG-sensitive group had higher levels of serum
creatinine than those in the resistant group (72.5 + 10.9 vs. 67.7 +
10.2, p < 0.001, Table 2) with an AUC of 0.716 (95% CL
0.608-0.825).

services. serum

DISCUSSION

General Aspects

The study revealed the metabolic profiles of patients with Hypo-Pit
and identified potential biomarkers for diagnosing or predicting
the outcomes of gonadotropin therapy. Diagnosis of Hypo-Pit in
the elderly or patients with severe heart disease or seizures is
challenging, as the standard hormone provocation tests hold
higher risks. Here, we found that amino acids, unsaturated fatty
acids, glycerophospholipids and steroid hormone biosynthesis
were significantly altered and closely associated with the clinical
phenotype. These might serve as potential biomarkers for the early
detection of Hypo-Pit, especially in patients who cannot tolerate
the standard hormone provocation test. Importantly, the
metabolites, especially creatinine could also be used in the early
prediction of hCG therapy efficacy, which could guide clinicians to
use increased dosages of hCG in advance for the patients who are
considered resistant.

Increased Degradation of Amino Acids
In 25 differential amino acids metabolites, a large proposition
(17/25) is significantly increased in Hypo-Pit, which suggested an

Serum Metabolomics in Hypopituitarism

increased degradation of amino acids, similar to finding of growth
hormone receptor deficient pig model (Riedel et al., 2020). In the
arginine and proline metabolism pathway (Figure 7A), creatine
and upstream precursor substances (glutamate, proline, and
arginine) significantly increased. In contrast, creatinine, which
is converted by non-enzymatic dehydration and cyclization from
creatine and phosphocreatine, significantly decreased. Creatine
phosphate provides energy of motion to promote muscle mass
and strength (Jowko et al, 2001). Consistent with this, both
muscle mass and strength decreased in the Hypo-Pit group
(Table 5). As verification, serum creatinine detected by the
alkaline picrate method was lower in the Hypo-pit cohort
(70.1 £ 9.6 pmol/L vs. 88.5 + 26.5 umol/L, p < 0.001), which is
consistent with results detected by the untargeted metabolomics
method. Creatine is physiologically provided in the diet via by
endogenous synthesis from arginine, glycine, and methionine in
the kidneys and liver. In our study, the creatine concentration was
significantly increased, but creatinine was decreased in the
peripheral  blood. With no evidence of creatine
supplementation from diet, a creatine utilization disorder in
Hypo-Pit is likely. Creatine is mainly used in muscle and
brain and is regulated through SLC6A8-mediated active
uptake (Colas et al., 2020). The mechanisms mediate the
functions of SLC6A8 are not fully understood. Previous
studies showed that SLC6A8 can be modulated by substrate
availability (Zervou et al, 2013), kinases and phosphatases
(Kristensen et al., 2011), and the modulation of mature
protein function (Brown et al., 2014; Ndika et al., 2014). The
role of sex hormones is currently hypothetical, which might
explain unexpected sex-based differences in metabolic patterns
of urinary excretion of creatine and guanidinoacetate (Joncquel-
Chevalier Curt et al., 2013). In a hypophysectomized rat model,
creatine content in muscle was greatly decreased and normalized
after GH administration, indicating that GHs might have a role in
controlling creatine uptake by muscle (Tan and Ungar, 1979).
Thyroid hormone treatment resulted in an approximately 50%
reduction in intracellular creatine and creatine phosphate and a
reduction in SLC6A8 mRNA (Queiroz et al., 2002). In addition,
insulin and insulin-like compounds have been reported to have a
direct stimulatory effect on creatine uptake by muscle (Tomcik
et al., 2017). Therefore, creatine uptake might be regulated by
pituitary-secreted hormones.

Decreased Steroid Hormone Biosynthesis

In the steroid hormone biosynthesis pathway (Figure 7B), the
synthetic precursors of steroid cholesterol (7-oxocholesterol) and
chenodeoxycholate increased, but steroid hormones and
metabolites, including hydropregnenolone sulfate,
pregnenolone sulfate, and androstenedione, were remarkably
decreased. In clinical findings, Hypo-Pit patients had
significantly higher total cholesterol, detected by the enzymatic
method (5.05 + 1.27 mmol/L vs. 4.02 + 1.69 mmol/L, p < 0.001),
and obvious testosterone deficiencies (Table 5). It was reasonable
that precursors or metabolites of steroid hormones were
remarkably decreased, which is similar to the finding that men
with Hypo-Pit have very severe overall steroid hormone
deficiency (Giton et al., 2015). The steroid hormone deficiency
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FIGURE 7 | Perturbed metabolism signaling pathways in hypopituitarism. (A). Perturbed arginine and proline metabolism; (B). Perturbed steroid hormone
synthesis; (C). Perturbed fatty acid metabolism; (D). Perturbed glycerophospholipid synthesis. Metabolites in blue increased in the serum, and metabolites in red

TABLE 5 | Anthropometric and biochemical characteristics of the study

population.
Characteristics Hypopituitarism Control p-value
group group
(n =134) (n = 90) -
Muscle Mass
Soft lean mass 42.79 + 8.87 47.69 + 7.42 0.005
Skeletal muscle mass 26.70 + 5.62 32.15 + 4.68 0.004
Muscle strength
Handgrip strength 33.62 + 10.65 47.65 + 2.75 <0.001
Serum creatinine 70.1 £ 9.6 88.5 + 26.5 <0.001
(umol/L)
Lipid profile (mmol/L)
Triglycerides 2.42 +2.98 1.13 £ 0.57 <0.001
Total cholesterol 5.056 +1.27 4.02 +1.69 <0.001

also supports the credibility of experimental data detected by
untargeted metabolomics.

Decreased Fatty Acid p-oxidation

For the fatty acid metabolism pathway (Figure 7C), decreased level of
B-hydroxybutyrate, acylcarnitine (C2) and a significantly decreased
ratio of decanoylcarnitine (C10) to free carnitine suggested an impaired
B-oxidation. The ketone body B-hydroxybutyrate was produced from
the incomplete B-oxidation of fatty acids in the liver, to provides an
essential carrier of energy from the liver to peripheral tissues (Newman
and Verdin, 2017). Acylcarnitine (C2) is the end-products of different
long-chain fatty acid oxidation in mitochondria. The decreased level of
acylcarnitine (C2), and accumulations of disease-specific acylcarnitines
due to blockage in the carnitine cycle were frequently observed in fatty
acid B-oxidation disorder (Law et al, 2007). Abnormal carnitine
metabolism is related to fatty acid oxidation disorder (Rattray et al,
2019). Reduced {-oxidation was observed in the Hypo-pit group with
the clinical phenotype of hyperlipidemia and increased triglycerides

detected by the enzymatic method (Table 5). Our data show that
Hypo-Pit is a type of hyperlipidemia with lipid metabolism disorder, in
which the levels of 3-hydroxycapric acid, palmitic acid, arachidic acid,
azelaic acid, and B-hydroxybutyrate are decreased. These fatty acids are
substrates or by-products in [} fatty acid oxidation pathways (Moczulski
et al,, 2009). We suspected at least two obstacles in triglyceride (TG)
utilization. One was in adipose lipid mobilization; its rate-limiting
enzyme hormone-sensitive triglyceride lipase (HSTL) is a hormone-
sensitive lipase regulated by hormones, such as ACTH (Dichek et al,,
2006). The other was in the carnitine shuttle system and
mitochondrion B-oxidation. The movement of long-chain fatty acid
into mitochondrion depending enzyme carnitine palmityl transferase I
(CPT-I) activity (Bremer and Norum, 1967). CPT-I can be regulated by
hormone stimulation, such as by insulin (Dobbins et al., 2001; Obici
et al,, 2003), glucagon (Brady and Brady, 1989), and thyroid hormones
(Zhang et al., 2004). carnitine and acetylcarnitine are important in the
acquisition and maintenance of sperm motility. Combining carnitine
and acetylcarnitine with micronutrients has been investigated as a
treatment for infertility in men (Li et al., 2005). Recently, a double blind,
randomized, placebo-controlled trial on the effect of carnitine and
acetylcarnitine on sperm parameters in men with idiopathic
oligoasthenozoospermia showed that combined treatment was
beneficial for male infertility (Micic et al, 2019). Gonadotrophin
deficiency and male infertility is a common symptom in young
men with Hypo-Pit (Rottembourg et al,, 2008). It is important to
evaluate whether Hypo-Pit can benefit from combined acetylcarnitine
treatment to improve fertility.

Increased Glycerophospholipid

Biosynthesis

In glycerophospholipid metabolism (Figure 7D), serine,
diethanolamine, phosphatidylethanolamine, phosphatidylcholine,
and diacylglycerol are substrates or by-products in the
glycerophospholipid pathway. They were increased in the Hypo-
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Pit group as compared to levels in healthy controls. The increased
glycerophospholipid biosynthesis in Hypo-Pit may be due to
increased level of triglyceride.

Biomarkers for Diagnostics Hypo-Pit and

Gonadotropin Replacement Sensitivity

In clinical applications, decanoylcarnitine/L-carnitine ratio, L-alanine,
and creatine/creatinine ratio reached promising diagnostic accuracy
(AUC >0.95) in hypopituitarism diagnosis. Of them, creatinine and
decanoylcarnitine/L-carnitine also find effective to predict the
outcomes of gonadotropin replacement therapy. Interestingly, these
biomarkers have relationship with mitochondrial function. Lactate
and L-alanine are widely used clinically as biomarkers of
mitochondrial dysfunction (McMillan et al., 2014). Mitochondrion
is a key organelle in cellular bioenergetics. Mitochondrial dysfunction
can not only rooted form inherited disorders, but also secondary MD-
related diseases (e.g., type 2 diabetes, obesity and neurodegenerative
diseases) (Ostojic, 2017). As growth hormone (GH) and the insulin-
like growth factor-1 (IGF-1) has function on mitochondrial
biogenesis, respiration and ATP production, oxidative stress,
senescence, and apoptosis (Poudel et al, 2020). Thus, it was
possible that hypo-pit patients may have secondary MD-related
diseases. Creatine is a universal energy currency for cell
metabolism, which is partly synthesized in mitochondria. When
mitochondria become dysfunctional, creatine synthesis or
utilization might be disturbed, with creatine perhaps discharged to
the blood (Barbieri et al., 2016). In respiratory chain disease, creatine
found to be reproducibly elevated in two independent cohorts,
exceeding lactate and alanine in magnitude of elevation and
statistical significance (Shaham et al., 2010).

Several limitations should be acknowledged in this study. First,
creatine and creatinine were determined in the serum of the patients,
but intracellular creatine and creatine phosphate in muscles could
not be tested in patients due to ethical considerations. Second, our
study focused on the efficacy of hCG therapy, instead of human
menopausal gonadotropin because of economic factors. Third,
B-oxidation was not clearly described as acylcarnitine profiling
assay was not present available for us.

In summary, increased degradation of amino acids and
glycerophospholipid biosynthesis, decreased steroid hormone
biosynthesis and fatty acid P-oxidation were identified by
untargeted metabolism. These perturb pathways support the
pathophysiology of Hypo-Pit with respect to decreased muscle
strength and content, male infertility, hyperlipidemia, and obesity.
The increased creatine and L-alanine in serum may indicate
mitochondrial dysfunction in Hypo-pit. Moreover, the identified
biomarkers in creatine metabolism and p-oxidation might be
useful for preliminary screening and predicting the sensitivity of
gonadotropin hormone substitution therapy for Hypo-Pit.
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