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INTRODUCTION

Autoimmune disease is characterized by several organ injuries due to abnormal immune responses.
Disease-specific autoantibodies influence neutrophils to induce neutrophil extracellular traps (NETs)
in systemic lupus erythematosus (SLE) and anti-neutrophil cytoplasmic antibody (ANCA)-
associated vasculitis (AAV). The formed and excessive NETs could serve as autoantigens that
produce autoantibodies against NETs and accelerate the immune response via the type I interferon
signaling pathway (Gupta and Kaplan, 2016). Moreover, cytotoxic NET-components as damage-
associated molecular patterns (DAMPs) injure the surrounding cells and provoke both innate and
acquired immunity to exacerbate disease severity (Nakazawa et al., 2019). NETs have been associated
with the development of various autoimmune diseases. However, recent studies have suggested the
significance of neutrophil diversity, including phenotype, function, and development of
inflammatory conditions, which also influence the characteristics of NETs (Jariwala and Laxer,
2021). In particular, human normal density neutrophils (NDNs) attempt to undergo cell lytic NETs
via the stimulation of ANCA serum, leading to vascular necrosis (Kessenbrock et al., 2009; van Dam
et al., 2019). On the other hand, low-density neutrophil subsets in patients with lupus, which are
distinct from NDNs, form pro-inflammatory NETs leading to vascular damage (Carmona-Rivera
and Kaplan, 2013), which might be involved in the development of immunological abnormalities,
atherosclerosis, and thrombotic events (Carlucci et al., 2018). In this opinion article, we provided an
overview of neutrophil diversity in autoimmune diseases and discussed therapeutic strategies based
on the pathogenesis.

Neutrophil Subsets and Its Function
Neutrophils are abundant white blood cells in mammals that act as innate host defenses. Peripheral
neutrophils mobilize from the bone marrow to the circulation with a short life span. Mechanistically,
in human and mice, the balance between CXC- chemokine receptor 2 (CXCR2) and CXCR4
regulates neutrophil mobilization and maintains an appropriate storage pool of neutrophils. Under
homeostasis, surface CXCR4 on neutrophil and stromal cell-derived CXCL12 attempts to reserve as
immature neutrophils in the bone marrow (De Filippo and Rankin, 2018). In bone marrow,
neutrophils with reduced CXCR4 and increased CXCR2 expression are recruited into circulation as
matured neutrophils (Eash et al., 2010). In circulation, aging neutrophils express CXCR4, triggering
their homing back to the bone marrow and their apoptotic processes (Jaillon et al., 2020) (Furze and
Rankin, 2008). As such, the mobilization and maturation occurs depending on the neutrophil-
intrinsic programming and the surrounding environment. The phenotypic diversity contributes to
the neutrophil physiology, including the immune response, the production of neutrophil
extracellular traps (NETs), and their own clearance (Casanova-Acebes et al., 2013; Jaillon et al.,
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2020). In addition to the classification based on surface molecules,
low-density granulocytes (LDGs) were identified as discrete
population that remains in the fraction of peripheral blood
mononuclear cells (PBMC) after density gradient separation.
LDGs display immunosuppressive or proinflammatory
properties according to the disease (Ley et al., 2018). In
particular, proinflammatory LDGs are increased in
autoimmune disease (SLE or psoriasis) and spontaneously
undergo NETs formation (Teague et al., 2019), suggestive a
role of the development of autoimmune disease and vascular
injury. Although the precise physiological roles of phenotypic
features of LDG subsets remain poorly understood because of the
lack of their specific markers, the dysregulated LDGs might
contribute to the pathology of autoimmune related vascular
disease (Goel and Kaplan, 2020). AAV and SLE develop with
autoantibodies against NET components, ANCAs, and anti-DNA
antibodies, respectively. In human and mice, ANCAs affect
normal density neutrophils (NDNs) to induce cell-lytic NETs
formation, while LDGs in SLE develop spontaneous NETs.
Although apoptotic neutrophils are cleared by phagocytic cells
via silent immunological procedure, NETs might be insufficiently
processed during destruction as a form of necrotic cells, where
cytoplasmic organelles leak out and become auto-antigens
(Nakazawa et al., 2012; Nakazawa et al., 2019). Future studies
are necessary to understand how these different types of NETs
develop and are cleared by phagocytic system in autoimmune
diseases. Xie et al. (Xie et al., 2020) revealed neutrophil
heterogeneity and maturation in the bone marrow, spleen and
peripheral blood using mouse neutrophil single-cell RNA
sequencing analysis. Neutrophils differentiate into mature
types by acquiring antimicrobial capability. In the peripheral
blood, three transcriptionally distinct neutrophil subsets were
identified as the following. 1) The migration and inflammatory
response-related genes expressing neutrophils (namely, PMNa)
can arise from both mature and immature neutrophils. 2) The
interferon-stimulated genes (ISGs) expressing neutrophils
(PMNb) mainly arise from bone marrow mature neutrophil.
3) Relatively aging neutrophils (PMNc) are gradually
developed from PMNa and PMNb. Interestingly, under
microbial infectious conditions, the transforming of PMNa
from immature neutrophil were suppressed and immature
neutrophil predominantly differentiated into mature
neutrophils, suggesting that the dynamic transition in a series
of neutrophil differentiation occurs to terminate the crisis. The
scRNA-seq analysis of human peripheral blood also showed
similar neutrophil population including ISGs-expressing
neutrophils (PMNb). Although the relationship between these
three subsets and LDGs/NDNs remains unclear, this study
provides a better understanding of neutrophil diversity and
kinetics in autoimmune disease areas, because the LDG
enrichment in SLE would be likely a consequence of increased
granulopoiesis (Kegerreis et al., 2019).

The Characteristics of LDG-NETs in SLE
SLE is characterized by systemic autoimmune disease and the
presence of autoantibodies against nucleic acid-protein auto-
antigens. Patients with SLE histologically show immune

complexes (ICs)-mediated tissue injury underlying a chronic
inflammatory response. In SLE, ICs bind to Fcγ receptors on
human neutrophils to activate mitochondrial ROS, subsequently
resulting in NET formation (Lood et al., 2016; van Dam et al.,
2019). In human studies, the formed NETs are reportedly
resistant to hemostatic clearance due to the deficiency or
acquired insufficiency of deoxyribonuclease (DNase), and
dysregulated NETs serve auto-antigens, producing further
autoantibodies (Hakkim et al., 2010). NETs components
damage organs with complement activation (Leffler et al.,
2012) and induce acquired immunity via toll-like receptors
(Desai et al., 2016; Nakazawa et al., 2018). During the past
decade, NETs in patients with SLE occur predominantly in the
LDGs subset, which displays morphologically and genetically
immature characteristics and is involved in SLE development
(Mistry et al., 2019). The human SLE-LDGs impair phagocytic
function; instead, they show pro-inflammatory properties and
injure the endothelium, indicating the involvement of
cardiovascular disease development in SLE (Denny et al., 2010;
Rahman et al., 2019; Bashant et al., 2021). Furthermore, the
human LDGs comprise two subpopulations of CD10-negative
immature and CD10-positive intermediate mature types based on
transcriptomic and epigenetic analyses. In patients with SLE, the
formers do not appear to have various kinds of canonical
neutrophil functions, including phagocytosis, but they
transcriptionally display an active phenotype, expressing cell
cycle progression (Mistry et al., 2019). The latters show the
high expression of type I IFN-stimulated genes and underwent
NET formation with mitochondrial DNA release. These findings
suggest that each subset of LDGs might be involved in the
development of SLE vascular disease, via immune cell
recruitment into inflammatory vascular sites and plaque
instability via matrix metalloproteinase. The understanding of
origin of LDGs in SLE might contribute to the elucidation of the
pathogenesis. The biological analysis of gene expression and
phenotypic data indicated that the enrichment of human and
mice LDGs gene signature in SLE was likely to be a consequence
of increased granulopoiesis, which might be caused by alternative
granulopoiesis pathway (Kegerreis et al., 2019; Grigoriou et al.,
2020). Further investigations of the regulatory mechanism in
LDGs might offer novel therapeutic options.

The Pathogenicity of ANCA-NETs in AAV
Anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV) is an autoimmune disease characterized by
multiple organ damage, clinically manifested by rapidly
progressive glomerulonephritis and pulmonary hemorrhage. In
human and mice studies, the pathogenic ANCA serum is
involved in NET formation and mediated endothelial necrosis
(Nakazawa et al., 2014; Watanabe-Kusunoki et al., 2020), causing
necrotizing vasculitis. The formed NETs serve as autoantigens
against ANCA at the site, which produces further ANCA, leading
to a vicious circle (Kraaij et al., 2018). Myeloperoxidase (MPO)-
ANCA binds to MPO expressed on primed human neutrophils,
and the Fc region of ANCA interacts with Fcγ receptor to induce
ROS production and peptidylarginine deiminase 4 (PADI4)
activation, resulting in NET formation (Kusunoki et al., 2016;
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Watanabe-Kusunoki et al., 2020). It has been reported that
ANCA predominantly influences human NDNs, forming lytic
NETs with extracellular genomic DNA and cytoplasmic
compositions, while human LDGs show hyposensitivity against
MPO-ANCA stimulation (Ui Mhaonaigh et al., 2019). However,
patients with active phase AAVs showed increased LDGs in
peripheral blood, implying the possibility that the expansion
might be due to the reaction of acute inflammation or similar
to SLE, which acts as a pro-inflammatory mediator and is
involved in disease development. Genetic analysis using bulk
neutrophils in patients with AAV revealed the upregulation of
MPO and PR3 transcripts; however, in the steady-state, these
granule genes are only expressed on immature neutrophils in the
bone marrow, not peripheral floating neutrophils after
differentiation (Yang et al., 2004; Xie et al., 2020). Thus, these
findings raise several questions. These immature neutrophils with
the expression of primary granules are NDNs or LDGs? What is
the origin of immature neutrophils from the bone marrow? or
circulating mature neutrophils are re-expressed in response to the

surrounding environment. How and where are these neutrophils
and NETs mobilized and cleared by phagocytic cells? In line with
these issues, we review the potential novel treatment in the
Discussion section.

DISCUSSION

Accumulating evidence supports the significance of neutrophil
heterogeneity and disease-specific NETs in autoimmune diseases.
The elucidation of different NET pathogenicity and signaling
pathways would provide new insights into the development of
therapeutic targets. The most common autoimmune diseases
require glucocorticoid (GC) therapy to induce disease
remission at onset/or flare and prevent relapse for a long time.
However, GCs are a main cause of toxicity, including diabetes,
infections, fractures, and atherosclerosis (Ruiz-Irastorza and
Bertsias, 2020), leading to impaired quality of life and
decreased survival in patients with autoimmune disease. In

FIGURE 1 | The characteristics of SLE-NETs and AAV-NETs. SLE, Systemic lupus erythematosus; AAV, ANCA, anti-neutrophil cytoplasmic antibody; AAV, ANCA-
associated vasculitis; IC, immune complex; ROS, reactive oxygen species; mtROS, mitochondrial ROS; mtDNA, mitochondrial DNA, LDG, low density granulocyte;
NDN, normal density neutrophil; NE, neutrophil elastase; MPO, myeloperoxidase; PADI, Peptidylarginine Deiminase; RIPK, receptor-interacting serine/threonine protein
kinase; MLKL, mixed lineage kinase domain-like; JAK/STAT, Janus kinase-signal transducer and activator of transcription; TLR, toll like receptor.
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particular, cardiac involvement and chronic kidney disease
underlying atherosclerosis are frequently seen in patients with
SLE and AAV due to their own disease and off-target effects of
GCs (Kronbichler et al., 2020). Accordingly, recent studies have
focused on the challenges in replacing GCs, including the use of a
sparing agent in the treatment of autoimmune diseases. Targeting
neutrophils could not only provide an alternative therapeutic
strategy, but also contribute to the prevention of vascular damage
via the avoidance of exposure to GCs and the inhibition of pro-
inflammatory neutrophils against the endothelium. In human
SLE, spontaneous LDGs-NETs were suppressed by MitoTEMPO
(mitochondrial superoxide scavenger) in vitro studies (Lood et al.,
2016). The LDGs in human SLE and psoriasis interacted with
activated platelet via CD40 ligand exacerbating vascular disease,
suggesting the potential targeting of platelet (Duffau et al., 2010;
Teague et al., 2019). In MRL/lpr lupus-prone mice, the pan-PADI
inhibitor ameliorated organ injuries by reducing NETs formation
(Knight et al., 2015), but the genetic deletion of PADI4 in lupus
model mice (Kienhöfer et al., 2017) and human neutrophil
in vitro studies (pan-PADI inhibition in immune complexes-
mediated NETs) (van Dam et al., 2019) showed conflicting data.
The role of PADI4 of NDNs and LDGs in SLE remains unclear
and the targeting PADI4 should be addressed with caution. JAK
inhibitor improved the disease activity of MRL/lpr lupus-prone
mice via the NETs inhibition (Furumoto et al., 2017). In the
clinical setting, hydroxychloroquine (HCQ) improves disease
activity in patients with SLE and allows the reduction of GC
dose, which could lead to the improvement of survival. These
favorable findings might be due to the effect of HCQ on the
regulation of NETs. Mechanistically, HCQ inhibited mice NET
formation via the PADI4 and Rac2 expression by blocking toll-
like receptor nine and ameliorating liver ischemia reperfusion
injury in a mouse model (Zhang et al., 2020). Thus, further
detailed studies are needed to elucidate howHCQ influences SLE-
neutrophil heterogeneity and kinetics, which might suggest a
more appropriate usage of HCQ. Of note, based on novel insights
into neutrophil diversity and kinetics, targeting LDGs in SLE
could become an option as a GC sparring agent and directly
prevent atherosclerotic events. Similar to SLE, AAV requires a
novel GC replacement strategy because intensive
immunosuppressive therapy, including high-dose GCs as
standard therapy for AAV, is critically relevant to adverse
event-associated mortality and morbidity (Little et al., 2010)

and could also increase atherosclerosis in AAV patients. In
terms of NET control, human and mice studies indicate that the
inhibition of PADI4 (Kusunoki et al., 2016; van Dam et al.,
2019) and receptor-interacting serine/threonine protein kinase
(RIPK) three signlaing (Schreiber et al., 2017; van Dam et al.,
2019) could be a therapeutic candidate via NDN-NETs
inhibition. Based on experimental animal studies, the
inhibition of chemoattractants such as CXCL2 and CXCL8
might lead to the resolution of inappropriate neutrophil
mobilization and NETs induction, leading to the
improvement of vasculitis and atherosclerosis (Summers
et al., 2010; Kanzaki et al., 2016; An et al., 2019). Human
histological findings in patients with AAV revealed the
involvement of extracellular myeloperoxidase in glomerular
injury (O’Sullivan et al., 2015). The inhibitor of complement
5a (C5a) receptor, whose effect is shown in human (clinical
phase three trial (Jayne et al., 2021)) and mouse study (Xiao
et al., 2014), directly affects NDNs to inhibit C5a mediated-
neutrophil priming and activation, inducing clinical remission.
Elucidating the mechanistic effects of C5a on heterogeneous
neutrophil/NET biology may provide a better understanding
and convincing evidence. Taken together, unraveling neutrophil
physiology and NETs characteristics could help establish novel
strategies and address the unmet needs of autoimmune disease
(Figure 1).
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