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Post-translational modifications such as ubiquitination play important regulatory roles in
several biological processes in eukaryotes. This process could be reversed by
deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from
target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related
processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated.
Dysregulation of DUBs can cause dramatic physiological consequences and a variety of
disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple
factors, such as transcription and translation of associated genes, and the presence of
accessory domains, binding proteins, and inhibitors have been implicated in several
aspects of DUB regulation. Beyond this level of regulation, emerging studies show
that the function of DUBs can be regulated by a variety of post-translational
modifications, which significantly affect the abundance, localization, and catalytic
activity of DUBs. The most extensively studied post-translational modification of
DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation,
acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we
summarize the current knowledge on the regulatory effects of post-translational
modifications of DUBs.
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INTRODUCTION

Ubiquitination is an essential post-translational protein modification mediated by the ubiquitin
(Ub)-conjugating system, which is composed of a Ub-activating enzyme, E1, Ub-conjugating
enzyme, E2, and Ub ligase, E3 (Hershko and Ciechanover, 1998). The human genome encodes
more than 600 E3 ligases. The E2 enzyme is specific for this type of ligation and co-ordinately
functions with multiple E3 ligases. Thus, the series of enzyme combinations determine the diversity
of the ubiquitination process. Therefore, ubiquitination drives diverse biological signals that regulate
the fate and function of a plethora of intracellular proteins (Reyes-Turcu et al., 2009).

Ubiquitination is a reversible process because the conjugated Ub molecule can be trimmed away
from the target protein by deubiquitination enzymes (DUBs). The human genome encodes several
kinds of DUBs, which can be divided into seven subfamilies (Nijman et al., 2005). Among these, six
subfamilies include Ub-specific proteases (USPs), Ub C-terminal hydrolases (UCHs), ovarian
tumour proteases (OTUs), Machado-Josephin domain-containing proteases (MJDs), MIU-
containing novel DUB (MINDY), and zinc finger-containing ubiquitin peptidase 1 (ZUP1)
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(cysteine-dependent proteases). In contrast, the seventh family,
Jab1/MPN domain-associated metallopeptidase (JAMM/MPN+),
comprises of zinc-dependent metalloproteinases (Mizuno et al.,
2007; Mevissen and Komander, 2017).

The human genome encodes a relatively small number of
DUBs compared to Ub ligases; multiplicity does not seem to exist
in DUBs. However, a large amount of regulatory mechanisms
precisely expand the functions of DUBs in various Ub-related
processes to ensure accurate biological responses (Sahtoe and
Sixma, 2015). The regulatory mechanisms of DUBs can be
globally classified into post-translational modifications (PTMs),
substrate-induced changes, scaffold or binding protein-induced
changes (Cannavo et al., 2007; Hsu et al., 2017), and inhibitor-
induced changes (Nijman et al., 2005; Sahtoe and Sixma, 2015). The
regulation of DUBs mainly involves control of catalytic activity,
abundance, and localization of DUBs. Dysregulation of DUBs can
cause a variety of disorders, such as cancer, and neurodegenerative
and inflammatory diseases (Todi and Paulson, 2011; Lopez-Castejon
and Edelmann, 2016; Pinto-Fernandez and Kessler, 2016).

With the advancement of analytical tools such as mass
spectrometry, PTM sites of DUBs have been identified. Recently,
the regulation of DUBs by PTMs and its physiological relevance
have been revealed. Studies showed that PTMs can regulate the
function of DUBs by altering factors such as its stability,
localization, abundance, and catalytic activity, in addition to its
involvement in the cell signalling pathway (Kessler and Edelmann,
2011). Here, we will review the regulatory effects of PTMs onDUBs,
and its potential therapeutic role in tumour growth (Table 1).
PTMs mainly consist of phosphorylation, ubiquitination,
SUMOylation, acetylation, oxidation and hydroxylation, all of
which have critical roles in the regulation of DUBs (Figure 1).
Analysis of these regulatory processes may provide evidence for
elucidating the function of DUBs and their potential as targets in
novel therapeutic strategies.

PTMSREGULATETHEABUNDANCEOFDUBS

The most straightforward mechanism affecting the biological
function of a given protein is its intracellular concentration.
Like other signalling proteins, this fact is also applicable to
DUBs. The quantity of DUBs is cell or tissue-specific; UCHs
subfamily of DUBs are highly abundant in neurons (Liu et al.,
2009). In contrast, DUBs such as USP30 show relatively low
expression levels in neurons. Therefore, this highlights the
specific spatial and temporal functional of DUBs in different
cells or tissues (Clague et al., 2015). In addition, the abundance of
DUBs is strictly controlled by regulation of its transcription,
translation, PTMs, and degradation. In the following sections,
we summarize how PTMs such as phosphorylation and
ubiquitination regulate the abundance of DUBs (Das et al., 2020).

Regulation of DUB Stability and Abundance
by Phosphorylation
Phosphorylation is an important kind of PTM that influences the
essential physiological role of DUBs, and exerts its effect by

elevating, stabilizing, or reducing its abundance.
Phosphorylation can elevate DUB protein levels by altering
their self-assembly and interaction with other partners. Results
have shown that AKT-mediated phosphorylation of USP4 at the
Ser445 residue is essential for it to form a complex with itself or
with other protein partners, such as USP15 or TβRI (Zhang et al.,
2012). In particular, when USP4 was co-expressed with USP15,
an elevated USP4 protein level was detected. Additionally, AKT-
induced phosphorylation of USP4 is required for maintaining the
stability of USP4, thereby enhancing TGF-β-induced pro-
tumorigenic responses in breast cancer cells. TGF-β-induced
migration of MDA-MB-231 cells is inhibited by USP4
knockdown and PI (3) K–AKT signalling inhibitors, indicating
that phosphorylation of USP4 plays a critical role in AKT-
mediated breast cancer cell migration (Zhang et al., 2014;
Wang W. et al., 2020). Therefore, phosphorylation is essential
for stabilizing and maintaining the protein levels of USP4 and
plays a potential role in breast cancer pathogenesis (Zhang et al.,
2012).

Furthermore, protein kinase CK2-induced phosphorylation of
USP7 at the Ser18 residue plays a major role in maintaining the
stability of USP7 protein (Khoronenkova et al., 2012).
Phosphorylation can prevent the ubiquitination of USP7 and
prevent its degradation by the proteasome. The
dephosphorylation of USP7 decreased its stability and makes it
prone to proteasomal degradation. Generally, large amounts of
USP7 are phosphorylated by CK2 and remain active in unstressed
cells (Olsten and Litchfield, 2004). This promotes the
deubiquitination and stabilization of Mdm2, which in turn
leads to the degradation and downregulation of p53. However,
when DNA damage occurs, USP7 is dephosphorylated by
PPM1G, which induces p53 stabilization due to Mdm2
degradation, which suggests that inhibition of the
phosphorylation of USP7, as a part of the DNA damage
response (DDR), may exhibit a potential therapeutic effect
(Fernández-Montalván et al., 2007; Khoronenkova et al., 2012;
Pozhidaeva and Bezsonova, 2019).

On the contrary, phosphorylation can also reduce DUB
protein levels by altering the degradation pathway of DUBs.
For instance, SYK-dependent phosphorylation of USP25 at
residue Tyr740 can sharply reduce its protein levels. This is
not caused by proteasome-dependent degradation because
addition of a proteasome inhibitor did not rescue USP25
proteins levels (Figure 3A). Therefore, it is reasonable to
assume that SYK-dependent phosphorylation may activate
other pathways, such as lysosomal degradation, to alter USP25
protein levels (Cholay et al., 2010; Kim et al., 2015).

Ubiquitination Induces the
Auto-Deubiquitination of DUBs
Ubiquitination and deubiquitination are two types of important
PTMs. Usually, DUBs play a critical role in the Ub proteasome
system (UPS) by deubiquitinating the protein substrate
(Komander et al., 2009). Interestingly, DUB can also be
ubiquitinated itself to alter its destiny either by promoting or
decreasing its degradation. For example, many DUBs undergo

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6850112

Wang and Wang Post-translational Modifications of DUBs

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 1 | Summary of DUBs localization, PTMs and interaction profile.

DUB
family

DUB (H.
sapiens)

Localization PTMs Interactors Correlation of
PTMs with

DUBs

References

UCHs UCHL1 Endoplasmic reticulum
membrane, lipid anchor,
Cytoplasm

Ubiquitination,
glycosylation, Oxidation,
phosphorylation,
Prenylation, Lipoprotein

Ubiquitin, SNCA,
COPS5

Monoubiquitination of UCHL1 inhibit
the binding of ubiquitin to UCHL1.
Others were unknown

Das et al. (2006); Liu et al.
(2009)

UCHL3 Cytoplasm Phosphorylation Di-ubiquitin Unknown Dephoure et al. (2008);
Misaghi et al. (2005)

BAP1 Nucleus, Cytoplasm Phosphorylation,
ubiquitination

UBE2O, BRCA1,
HCFC1, FOXK1,
FOXK2

UBE2O interact with BAP1 and
promote the ubiquitination of BAP1.
Others were unknown

Okino et al. (2015)

OTUs OTUB1 Cytoplasm Phosphorylation,
hydroxylation

UBE2N/UBC13,
RNF128, USP8,
FUS, ESR1

Hydroxylation of OTUB1 promote
the interaction of OTUB1 with
metabolism-associated proteins,
such as UBE2N/UBC13. Others
were unknown

Van Damme et al. (2012);
Scholz et al. (2016)

OTUD1 Unknown Oxidation SMURF1, IRF7 Unknown Zhang et al. (2018)
OTUD3 Cytosol, cytoplasm Oxidation NEDD4-1, RPF1 Unknown Yuan et al. (2015); Zhou et al.

(2013a)
OTUD4 Nucleus, cytoplasm Phosphorylation K63-linked ubiquitin

chain, MYD88,
ALKBH3, USP7,
USP9X

Phosphorylation of OTUD4 promote
the binding and hydrolysis of OTUD4
to K63-linked ubiquitin chain. Others
were unknown

Zhao et al. (2015); Zhao et al.
(2018)

OTUD5 Cytosol Phosphorylation, oxidation Ubiquitin, TRAF3 Phosphorylation of OTUD5
increased the recognition and
binding of OTUD5 to ubiquitin.
Others were known

Huang et al. (2012)

OTULIN Cytoplasm Phosphorylation RNF31, DVL2,
β-catenin, LUBAC

Phosphorylation of OTULIN enhance
the binding of OTULIN to β-catenin,
while block the binding of OTULIN to
LUBAC. Others were unknown

Damgaard et al. (2016);
Keusekotten et al. (2013);
Wang et al. (2020b)

A20 Lysosome, nucleus, cytoplasm Phosphorylation,
ubiquitination

TNIP1, TAX1BP,
TRAF2

Unknown Song et al. (1996)

Cezanne Nucleus, cytoplasm Hydroxylation Ubiquitin, ZAP70,
EGFR

Hydroxylation of cezanne inhibit the
binding of ubiquitin to cezanne.
Others were unknown

Pareja et al. (2012)

Cezanne2 Nucleus,cytoplasm Methylation,
phosphorylation

TRAF6, UBC Unknown Xu et al. (2014)

MJDs Ataxin3 Nucleus matrix, nucleus Phosphorylation,
ubiquitination,
SUMOylation

Ubiquitin, CASP7,
UBR2

Ubiquitination of ataxin3 enhance its
binding to ubiquitin. Others were
unknown

Scaglione et al. (2013);
Weishäupl et al. (2019)

JosD1 Cell membrane, cytoplasm Ubiquitination Ubiquitin, beta-
actin/ACTB

Ubiquitination of JosD1 enhance its
binding to ubiquitin. Others were
unknown

Seki et al. (2013)

JAMMs PSMD7 Cytosol, extracellular region or
secreted, nucleus, proteasome
complex, proteasome regulatory
particle

Acetylation, ubiquitination TRIM5, 26S
proteasome

Unknown Choudhary et al. (2009)

PSMD14 Cytosol, extracellular region or
secreted, nucleus, proteasome
accessory complex, Proteasome
complex

Phosphorylation TXNL1 Unknown Zhou et al. (2013a)

EIF3H Cytoplasm Ubiquitination,
phosphorylation

eIF-3, DHX33 Unknown Zhang et al. (2015a)

BRCC36 Cytoskeleton, nucleus,
cytoplasm

Acetylation,
phosphorylation

ABRAXAS1,
BRCA1

Unknown Zhou et al. (2013a)

AMSH Nucleus, early endosome,
membrane, cytoplasm

Phosphorylation SMURF2, RNF11 Unknown Li and Seth. (2004)

AMSH-LP Cytosol, Endosome, Membrane Acetylation,
Phosphorylation

INCA1, RAB2A Unknown Van Damme et al. (2012)

MPND SWI/SNF complex Acetylation,
phosphorylation

E7 Unknown Gaudet et al. (2011)

PRPF8 Nucleus, nucleus speckle Acetylation, methylation,
phosphorylation

U5 snRNP,
SNRNP40

Unknown Bertram et al. (2017); Olsen
et al. (2010)

USPs USP1 Nucleus Phosphorylation UAF1, FANCD2,
PCNA, WDR48

Phosphorylation of USP1 influence
the interaction of USP1-UAF1 and
promote the binding of USP1 to
FANCD2 and PCNA.

Huang et al. (2006)

(Continued on following page)
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TABLE 1 | (Continued) Summary of DUBs localization, PTMs and interaction profile.

DUB
family

DUB (H.
sapiens)

Localization PTMs Interactors Correlation of
PTMs with

DUBs

References

USP4 Nucleus, cytoplasm Phosphorylation,
ubiquitination

CtIP/MRN,
ADORA2A, RB1,
USP15 or TβRI

Phosphorylation of USP4 promote
its binding to USP15 and TβRI. Auto-
deubiquitination of USP4 is required
for USP4 to interact with CtIP/MRN.

Uras et al. (2012); Wijnhoven
et al. (2015)

USP6 Cell membrane, endosome,
cytoplasm

Ubiquitination Ca2+/Calmodulin,
RAC1, CDC42

Ubiquitination of USP6 promote its
binding to Ca2+/Calmodulin. Others
were unknown

Shen et al. (2005a)

USP7 Nucleus, PML body, cytoplasm,
chromosome

Phosphorylation, oxidation,
ubiquitination

FOXO4, MDM2 Phosphorylation of USP7 promote
the stabilization of MDM2 through
deubiquitinating it

Fernández-Montalván et al.
(2007)

USP8 Nucleus, endosome membrane,
membrane protein, cell
membrane, peripheral
membrane protein, cytoplasm

Phosphorylation 14-3–3 protein,
LC3, STAM2

Phosphorylation of USP8 promote
its binding to 14-3–3 protein. Others
were unknown

Dephoure et al. (2008); Row
et al. (2009)

USP9X Cytoplasm, growth cone Phosphorylation ZAP70,
SMAD4, DCX

Phosphorylation of USP9X promote
the deuibiquitination of ZAP70.
Others were unknown

Homan et al. (2014); Zhou
et al. (2013b)

USP10 Early endosome, Nucleus,
cytoplasm

Phosphorylation TRF6, p53, AMPK Phosphorylation of USP10 promote
the deuibiquitination and stabilization
of p53 and AMPK.

Wang et al. (2015a); Yuan
et al. (2010)

USP11 Nucleus, cytoplasm,
chromosome

Ubiquitination NFKBIA, BRCA2 Unknown Schoenfeld et al. (2004);
Wiltshire et al. (2010)

USP13 Cytosol, nucleoplasm Phosphorylation Aurora B, RAP80,
c-Myc, SIAH2,
BAG6

Phosphorylation of USP13 promote
its interaction with aurora B, RAP80,
and c-Myc. Others were unknown

Esposito et al. (2020);
Scortegagna et al. (2011);
Zhou et al. (2020)

USP14 Cell membrane, peripheral
membrane protein, cytoplasm

Phosphorylation Ubiquitin, CXCR4,
fANCC

Phosphorylation of USP14 promote
its binding to ubiquitin. Others were
unknown

Mines et al. (2009); Zhou et al.
(2013a)

USP15 Nucleus, mitochondrion,
cytoplasm

Phosphorylation,
ubiquitination

SMAD1, SMAD2 Auto-deubiquitination of USP15
promote its interaction with SMAD1

Cornelissen et al. (2014); Inui
et al. (2011)

USP19 Endoplasmic reticulum
membrane, single-pass
membrane protein

Oxidation c-IAP1, c-IAP2,
RNF123

Unknown Mei et al. (2011)

USP25 Cytoplasm, nucleus, cytoplasm Phosphorylation,
ubiquitination,
SUMOylation

SYK, Sumo1,
Sumo2, TRiC, ub
chains

SYK-dependent phosphorylation of
USP25 promote the stabilization of
TRiC, SUMOylation of USP25 inhibit
its binding to ub chains

Cholay et al. (2010); Denuc
et al. (2009)

USP28 Nucleoplasm SUMOylation, oxidation ZNF304, Fbw7 Unknown Popov et al. (2007a); Popov
et al. (2007b); Zhang et al.
(2006)

USP30 Mitochondrion outer membrane Ubiquitination EAP1, POMK Unknown Bingol et al. (2014); Huttlin
et al. (2017)

USP36 Nucleolus, cytoplasm Phosphorylation C-myc, NEDD4L Unknown Sun et al. (2015)
USP37 Nucleoplasm, nucleus Phosphorylation FZR1/CDH1, CDT1 Phosphorylation of USP37 enhance

its binding to the substrate adaptor
CDH1. Others were unknown

Huang et al. (2011)

USP39 Unknown SUMOylation Tri-snRNP, LRRK2 SUMOylation of USP39 promote its
interaction with tri-snRNP.

Liu et al. (2015a)

USP44 Nucleus Phosphorylation,
ubiquitination

CETN2, EZH2 Unknown Lan et al. (2016); Suresh et al.
(2010); Visconti et al. (2012)

USP47 Cytoplasm Acetylation,
phosphorylation

BTRC, FBXW11,
POLB

Unknown Parsons et al. (2011);
Peschiaroli et al. (2010)

USP49 Nucleus Phosphorylation RUVBL1, PSMC5 Unknown Zhang et al. (2013)
CYLD Cytoskeleton, centrosome,

spindle cilium basal body,
plasma membrane, cytoplasm
perinuclear region

Phosphorylation,
SUMOylation, oxidation

TRAF2, SPATA2,
MAP3K7

Phosphorylation or SUMOylation of
CYLD inhibit its interaction of TRAF2.
Others were unknown

Eguether et al. (2014); ji et al.
(2018); Schlicher et al. (2016)

USPL1 Cajal body Phosphorylation ELL Unknown Hutten et al. (2014); Schulz
et al. (2012)
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mono/poly-ubiquitination modification processes, and are then
subjected to proteasomal degradation, resulting in a decrease in
DUB protein levels (Wada et al., 2006). However, several DUBs
have an auto-deubiquitination mechanism to prevent its
degradation. Studies have shown that USP4 is a stable DUB
protein because it can deubiquitinate itself after being
ubiquitinated by Ro52 (Wada and Kamitani, 2006; Zhang
et al., 2012). Similar to that of USP4, the self-deubiquitination
of USP25 confers a protection mechanism to prevent it from
proteasomal degradation (Figure 3A) (Denuc et al., 2009).

PTMS CAN REGULATE THE
LOCALIZATION OF DUBS

The subcellular localization of DUBs is also a key factor in
determining the function of DUBs (Clague et al., 2015). If
both the enzyme and the substrate circulate freely, they will be
diluted in the cytoplasm or separated into different subcellular
organelles, which will not allow the enzyme-catalysed reaction to
occur at an appropriate enzymatic rate. Currently, the localization

of DUBs is garnering attention as a vital regulatory mechanism
(Mevissen and Komander, 2017).

Indeed, the subcellular localization of some DUBs is tightly
controlled so as to facilitate its biological functions. In previous
studies involving systematic large-scale proteomic analyses, the
subcellular distribution of GFP-labelled DUBs was analysed in
HeLa cell lines (Urbé et al., 2012) (Figure 2A). DUBs such as
USP1, USP7, and USP11 were located in the nucleus, whereas
other DUBs were localized in specific cellular compartments.
Briefly, approximately nineteen DUBs were localized in the
endoplasmic reticulum, twelve in the endosomes, eight in the
mitochondria, and fifteen in the plasma membrane (Urbé et al.,
2012; Clague et al., 2015). It is precisely because of these diverse
localizations that the unique biological functions of DUBs are
inferred. For example, the localization of USP36 in the nucleus
allows it to specifically interact with the transcription factor
c-Myc and deubiquitylate it (Sun et al., 2015). In the same
way, USP30 located in the outer mitochondrial membrane can
regulate mitochondrial morphology and plays a critical role in
Parkin-mediated mitophagy (Nakamura and Hirose, 2008).
Moreover, in lung cancer cells, the nucleus-localized USP15 can
deubiquitylate histone H2B and inhibit degradation of the RE1-
silencing transcription factor (REST) on the ribosome, which plays
a pivotal role in cell cycle oscillations (Faronato et al., 2013).

More interestingly, recent studies have shown that the
localization of DUBs in cells can be dynamically regulated to
facilitate their complex biological functions (Kessler and
Edelmann, 2011; Leznicki and Kulathu, 2017; Mevissen and
Komander, 2017; Das et al., 2020). For example, PTMs can
regulate and alter the localization of DUBs in a variety of
ways, including PTM-induced DUB translocation from the
cytoplasm to the nucleus, PTM-induced excretion of DUBs
from the nucleus, and PTM-induced DUB translocation to the
cell membrane (Figure 2B). All of these factors contribute to the
functional diversity and substrate specificity of DUBs.

Phosphorylation Regulates the Interactome
and Localization of DUBs
Phosphorylation can also affect the function of various DUBs by
altering its localization or interactome. Phosphorylation can
cause some DUBs to be exported from the nucleus
(Figure 2B). For instance, dephosphorylated USP4
accumulates in the nucleus, whereas the AKT-mediated
phosphorylated form of USP4 (at residue Ser445) was
primarily localized in the cytoplasm and cell membrane. The
phosphorylation of USP4 prolongs its half-life on the plasma
membrane, and activates TGF-β cell signalling through binding
and deubiquitination of TGF-β receptors, which plays a crucial
role in tumour cell migration and metastasis. This highlights the
potential therapeutic role of USP4 phosphorylation in tumour
progression (Zhang et al., 2012; Wang Y. et al., 2020). Recent
studies have also shown the forms of USP15 phosphorylated at
Thr149 and Thr219 residues are predominantly localized in the
cytoplasm. In contrast, dephosphorylated USP15 relocates to the
nucleus and plays an important role in spliceosome dynamics
(Das et al., 2019).

FIGURE 1 | PTMsmediated ubiquitination and deubiquitination process.
Protein Ubiquitination is a cascade reaction catalysed by E1 activating, E2
conjugating and E3 ligating enzymes. This can lead to the formation of distinct
types of ubiquitin modifications, all of which can be reversed by
deubiquitylating enzymes (DUBs). DUBs are regulated strictly by various post
translational modifications (PTMs), including phosphorylation, ubiquitination,
SUMOylation, acetylation, oxidation and hydroxylation. Numbers in brackets
indicate the number of enzymes in each family.
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Furthermore, phosphorylation can induce the translocation
of specific DUBs into the nucleus (Figure 2B). For example,
after DNA damage, Ataxia telangiectasia mutated (ATM)-
induced phosphorylation of USP10 at residues Thr42 and
Ser337 can promote the stability of USP10 and facilitate its
translocation from the cytoplasm to the nucleus. Furthermore,
phosphorylated USP10 can deubiquitinate and stabilize the
tumour suppressor protein p53 by reversing its nuclear export
and degradation viaMdm2. Therefore, phosphorylated USP10
can inhibit the growth of tumour cells without inducing
mutations in p53, which implies that phosphorylation of
USP10 has a potential therapeutic effect against tumours
(Mueller et al., 2009; Yuan et al., 2010; Herhaus et al.,
2015). Under oxidative stress, the phosphorylation of
Ataxin3 at Ser111 is required for its nuclear localization
(Costa and Paulson, 2012). Although progress has been
made on the phosphorylation-induced localization changes
of different DUBs, the understanding of the regulation

mechanisms associated with PTMs, particularly in relation
to DUB localization, is still limited.

Under certain conditions, phosphorylation-mediated changes in
DUB localization can be observed by altering DUB interactions.
Phosphorylation of USP1 on Ser313 can influence its interaction
with the cofactor USP1-associated factor 1 (UAF1). The complex
comprising of USP1 and UAF1 was localized in the cytoplasm. After
phosphorylation of USP1, the complex translocated to the nucleus,
where the recruitment of the Fanconi anemia protein FANCD2 and
PCNA substrates mediated by a SUMO-like domain occurs in
response to DNA damage (Huang et al., 2006; Garcia-Santisteban
et al., 2012; Villamil et al., 2012; Olazabal-Herrero et al., 2015).

Similarly, DNA damage-induced ABL1/c-Abl (ABL proto-
oncogene 1) activation can promote the phosphorylation of
OTULIN at Tyr56, which enhances its interaction with
β-catenin and blocks its binding to LUBAC (Keusekotten
et al., 2013; Elliott et al., 2014; Schaeffer et al., 2014). Then, an
increased OTULIN/β-catenin interaction promotes the

FIGURE 2 | Localization and PTMs induced translocation of DUBs. (A)DUBs have been reported to localize and function in almost every intracellular compartment,
such as nucleolus, cell membrane and mitochrondria etc., and have specific roles. Importantly, the function of DUB can be expanded by ensuring that a single DUB
localizes to distinct organelles as shown, for example, for JosD1, USP4 and USP25 etc. (B) PTMs, such as phosphorylation and ubiquitination, play an important role in
regulation the alternative localization of DUB. For example, phosphorylation of BAP1, USP4 and USP8 causes them to relocate from the nucleus to the cytosol. In
contrast, phosphorylation of OTUB1, Ataxin3, USP15, USP10, and USP1 triggers its translocation from cytosol to the nucleus. Additionally, ubiquitination of JosD1 leads
its translocation from cytosol to cell membrane. The figure was generated based on the reported studies.
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stabilization of β-catenin and activation of Wnt/β-catenin
signalling. This pathway plays a critical role in the progression
and metastasis of triple-negative breast cancer (TNBC),
metastasis, and resistance to cancer treatments. Therefore,
targeting OTULIN or OTULIN phosphorylation may serve as
an effective strategy for the treatment of patients with TNBC
(Wang W. et al., 2020; Wang and Wu, 2020). Additionally, a
study also reported that OTULIN is hyper-phosphorylated at
Tyr56 residues during necroptosis, which can modulate
ubiquitination of the receptor interacting protein kinase
(RIPK1) and promote cell death (Douglas and Saleh, 2019).

Furthermore, the kinase Aurora B plays an important role in
mitosis. The protein level of Aurora B varies during the course of
cell division. The abnormal regulation of Aurora B during
interphase leads to cell cycle defects, which are usually
associated with aberrant chromosomal condensation and
segregation (Gully et al., 2012). Studies have shown that
Aurora B phosphorylates USP13 at Ser114 and promotes its
interaction with USP13. USP13, in turn, deubiquitinates
Aurora B to protect it from proteasomal degradation, thereby
stabilizing the protein levels of Aurora B (Figure 3B). Therefore,
this ensures proper regulation of Aurora B and consequently the
cell cycle, thereby preventing several human cancers, especially
those cancers where Aurora B overexpression has been reported,
such as ovarian, lung, brain, and skin-melanoma related cancers
(Zeng et al., 2007; Chen et al., 2009; Esposito et al., 2020).

The receptor-associated protein 80 (RAP80) can recruit
BRCA1 to DNA double-strand breaks and induce a DDR
(Kim et al., 2007; Sobhian et al., 2007; Hu et al., 2011). Recent
studies have reported that the deubiquitinating enzyme USP13
can regulate DDR by targeting RAP80. Mechanistically, USP13 is
phosphorylated at Thr196 by ATM following DNA damage,
which facilitates the localization of USP13 at the double-strand
breaks. Then, USP13 can deubiquitinate RAP80 and stimulate its
recruitment to induce an adequate DNA DDR (Figure 3B).
Overall, USP13 functions as an essential regulator of DNA
repair, and plays a vital role in the resistance of ovarian
cancer cells to chemotherapy, and may provide a new
approach for the treatment of ovarian cancer (Li et al., 2017).

Moreover, a recent study also found that CDC-like kinase 3
(CLK3) or the cholangiocarcinoma-associated CLK3-Q607R
mutant can directly phosphorylate USP13 at Tyr708, and
promote its binding to c-Myc (Nayler et al., 1997; Zhou et al.,
2020) (Figure 3B). Therefore, this stabilizes c-Myc and activates
the transcription of genes related to purine metabolism
(Figure 3B). Thus, CLK3-mediated phosphorylation of USP13
at Tyr708 promotes cholangiocarcinoma progression by
activating c-Myc-induced purine synthesis, providing a new
and viable therapeutic target for the treatment of
cholangiocarcinoma associated with CLK3 mutations (Zhou
et al., 2020).

Ubiquitylation Induces Changes in the
Localization and Interactome of DUBs
Ubiquitination plays an essential role in numerous cellular
processes, such as protein degradation, cell cycle, and
transcriptional regulation (Reyes-Turcu et al., 2009). Similar to
protein phosphorylation, ubiquitination is a critical PTM
occurring in DUBs, which can alter the localization of DUBs
and regulate their physiological functions (Leznicki and Kulathu,
2017; Das et al., 2020).

Josephin domain containing 1 (JosD1), a DUB of the MJD
subfamily, mainly associates with the cytoskeleton. However,
when ubiquitination occurs on JosD1, it tends to localize on
the cell membrane (Figure 2B) and plays a vital role in membrane
dynamics, cell motility, and endocytosis (Seki et al., 2013; Zeng
et al., 2020).

FIGURE 3 | PTMs induced activity changes of DUBs. (A) Complex
crosstalks of different PTMs often occur on DUBs with different effects. For
example, USP25 can be modified by phosphorylation, SUMOylation and
ubiquitination, which affect the activity and stability of USP25. (B) Many
DUBs undergo one or more PTMs, such as USP13 can be phosphorylated at
Ser114, Thr196, Tyr708, leading to different biological events. (C) and (D)
DUB activities can also be changed by PTMs such as phosphorylation,
ubiquitylation, and SUMOylation. The arrow below shows the change in
DUBs’ enzyme activity after PTMs modification.
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Furthermore, BAP1, a member of the UCHs subfamily, is
predominantly located in the nucleus and functions as a tumour
suppressor (Cheung and Testa, 2017; Lee et al., 2020; Han et al.,
2021). The lysine residues near the nuclear localization sequence
(NLS) of BAP1 can be ubiquitinated, which leads to the
accumulation of ubiquitinated BAP1 in the cytosol. Moreover,
when BAP1 is co-expressed with UBE2O, it displays significant
cytoplasmic staining. This is also due to the ubiquitination of
BAP1 near the NLS by UBE2O. Studies have shown that the auto-
deubiquitination of BAP1 can counteract this process through
intramolecular interactions, thereby ensuring its function in
tumour suppression (Mashtalir et al., 2014; Okino et al., 2015).

Similar to phosphorylation of DUBs, ubiquitination can also
change the localization of DUBs, which can be detected by
changing the interaction partners of DUBs. However, auto-
deubiquitination, which is dependent on the catalytic activity
of DUBs, can counteract the effect of ubiquitination modification
and promote the interaction between DUB and its substrates. For
instance, USP4 can be ubiquitinated at multiple sites such as the
cysteine residues. Auto-deubiquitination can also occur at these
sites, which is required for USP4 to interact with CtIP/MRN and
promote DNA repair (Wada and Kamitani, 2006; Liu H. et al.,
2015; Wijnhoven et al., 2015). Moreover, there are other DUBs
such as USP11 and USP15 that also undergo ubiquitination
modification and alter their interaction with other proteins.
This process can be counteracted by auto-deubiquitination.
Studies have shown that the substrate SMAD2/3 can interact
withWTUSP15, and not with a catalytically dead USP15 mutant,
implying that there may be an auto-deubiquitination-dependent
interaction as well (Inui et al., 2011; Wijnhoven et al., 2015).
There are many other DUBs including USP18, USP21, USP30,
USP44, USP47, USP, PSMD7, PSMD14, AMSH, PRPF8, USPL1
etc which are tightly regulated by interactors (Choudhary et al.,
2009; Peschiaroli et al., 2010; Gaudet et al., 2011; Parsons et al.,
2011; Zhang et al., 2013; Hutten et al., 2014; Huttlin et al., 2017),
but it’s not clear whether the PTMs occurring on DUBs and
affecting their interactors (Li and Seth, 2004; Malakhova et al.,
2006; Olsen et al., 2010; Suresh et al., 2010; Visconti et al., 2012;
Khan et al., 2015; Lan et al., 2016).

Hydroxylation Alters the Localization of
DUBs
Hypoxia is a commonly encountered physiological stress that can
induce an active response in mammalian cells through a
transcription factor named hypoxia-inducible factor (HIF)
(Schofield and Ratcliffe, 2004; Semenza, 2009). Oxygen-
dependent hydroxylation (-OH) is also a functional PTM that
can impact the localization of DUBs by altering their interactome
(Sowa et al., 2009; Scholz et al., 2013). For example, when OTUB1
is hydroxylated at the Asn22 residue by factor inhibiting HIF
(FIH), the interactome and substrates of OTUB1 are elevated,
particularly its interaction with metabolism-associated proteins.
This suggests that OTUB1 may function as a possible link
between oxygen sensing and metabolic regulation. In addition,
the protein stability of OTUB1 is not changed by the
hydroxylation of Asn22 (Scholz et al., 2016; Van Damme

et al., 2012). Recent studies have identified Cezanne as a novel
substrate of the asparaginyl β-hydroxylase FIH1. Cezanne is
hydroxylated at Asn35 of the UBA domain in an oxygen- or
FIH1-dependent manner, which inhibits the binding of Ub to
Cezanne (Mader et al., 2020).

PTMS CAN REGULATE THE SPECIFICITY
AND ACTIVITY OF DUBS

DUBs are active and substrate-specific enzymes. However, certain
DUBs require Ub-binding or modulation to form their active
conformation. In a cellular environment, DUB activity is tightly
regulated because uncontrolled activation can be detrimental for
cells (Reyes-Turcu et al., 2009; Li and Reverter, 2021). Herein,
PTMs are a critical approach to regulate the activity and
specificity of DUBs, and also play an important role in DUBs-
related diseases.

Phosphorylation Induces DUB Activity and
Specificity
Phosphorylation is a central PTM that can regulate the function
of a variety of DUBs by directly influencing its catalytic activity
(López-Otín and Hunter, 2010). Phosphorylation of DUBs has
been shown to modulate, activate, and inhibit the activity of
various DUBs (Figure 3C).

Firstly, phosphorylation can activate or enhance the activity of
several DUBs. OTUD5 is a relatively well studied protease, and
phosphorylation is known to activate its catalytic activity
(Figure 3C). OTUD5 purified from E. coli is inactive, but can
be activated when the Ser177 residue of OTUD5 is
phosphorylated by CKII instead of by mimic phosphorylation
(Dephoure et al., 2008;Mayya et al., 2009). Phosphorylation alone
does not alter the structure of OTUD5, however, its structure
changes significantly upon Ub binding. Therefore,
phosphorylation is vital for the recognition of Ub by OTUD5.
Structural studies have shown that the phosphate group can form
a salt bridge with the distal end of the Ub substrate and the highly
inwardly oriented α6 fragment of the OUT domain (Figure 4A).
This pattern of substrate recognition is unique among DUBs
containing PTMs with known structures (Komander, 2010;
Huang et al., 2012). Interestingly, phosphorylation-driven
conformational changes are a typical feature of protein kinase
activation (Taylor and Kornev, 2011). OTUD5 activation is
similar to protein kinases. Therefore, OTUD5 is an archetype
that establishes a new connection between two critical post-
translational modifications, phosphorylation and ubiquitination.
The catalytic activity of DUB depends entirely on the
phosphorylation of a single suitable site (Huang et al., 2012).

USP14, a DUB that reversibly binds to the proteasome, can
negatively regulate the proteasome by trimming the Ub chain on
the proteasome-bound substrate. Purified and recombinant
USP14 is inactive and is largely activated when bound to the
proteasome (Borodovsky et al., 2001; Koulich et al., 2008; Lee
et al., 2010). However, a study found that proteasome-free forms
of USP14 do exist in the cell, and their physiological functions
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remain unknown (Zhou H. et al., 2013). Until 2015, studies
showed that AKT-induced phosphorylation of USP14 at
residue Ser432 or a mimetic phosphorylation at Ser432 can
significantly promote the activity of USP14 (Figure 3C). It
was able to hydrolyse K48, K63 di-Ub, Ub-AMC, but not
linear di-Ub (Di-Ub). Simultaneously, Ser432 phosphorylation
or binding to the proteasome can synergistically increase the
activity of USP14, suggesting that there are two different
mechanisms to regulate the activity of USP14 (Xu et al., 2015).
Therefore, upon phosphorylation at Ser432, USP14 can release
self-inhibition and promote hydrolysis of the Ub substrates
(Figure 4B). It is different from the mechanism by which the
proteasome activates USP14.

Furthermore, phosphorylation of USP37 is a cell cycle-
dependent event. It is induced in the G1 phase, peaks in the
G1/S phase, and is no longer phosphorylated in the later stages of
mitosis. Thus, USP37 plays an important role in cell cycle
regulation (Huang et al., 2011). USP37 binds to the substrate

adaptor CDH1 and removes the polyubiquitin chain, which is the
degradation signal, from cyclin A (Lukas et al., 1999). The USP37
activity maximizes when Ser628 of USP37 is phosphorylated by
CDK2 (Huang et al., 2011) (Figure 3C). One possible mechanism
is that phosphorylation can enhance the binding of USP37 to the
substrate by altering the conformation of its Ub interaction motif.
However, how Ser628 phosphorylation promotes the activity of
USP37 remains unknown. A detailed structural analysis of
phosphorylated USP37 may be required to reveal this
mechanism.

Studies have also reported that phosphorylation of A20 could
promote the cleavage of K63-linked polyubiquitin chains by its
OTU domain. Results showed that recombinant A20 purified
from E. coli failed to cleave K63-linked tetraubiquitin (Komander
and Barford, 2008), whereas A20 purified from mammalian cells
cleaved the K63-polyubiquitin chain. In fact, IκKβ-mediated
phosphorylation of A20 at the Ser381 residue plays an
essential role in facilitating cleavage of K63-linked

FIGURE 4 | Structure and model of PTMs-induced conformation changes of DUBs. (A). Phosphorylation induced conformation changes of OTUD5 after Ub
binding. (B). Phosphorylation induced direct conformation changes of USP14 (C). Phosphorylation induced partner binding of USP8. (D). Model of PTMs induced
conformation changes of DUBs. (a). phosphorylation-induced conformation changes (b). phosphorylation-induced allosterically regulated conformation changes (c).
phosphorylation-induced substrate (d) or protein partner (e) binding and conformation changes.
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polyubiquitin chains by A20 (Figure 3C). This also clarifies the
molecular mechanism of A20 in suppressing inflammation-
associated signalling pathways (Lin et al., 2008; Wertz et al.,
2015).

Similarly, USP10 purified from E. coli exhibits a defective
deubiquitinase activity. The deubiquitinase activity of USP10 was
significantly increased after USP10 was phosphorylated at the
Ser76 residue by AMPK under energy stress (Figure 3C).
Subsequently, it deubiquitinates AMPK and facilitates the
further activation of AMPK, forming a feedforward loop
(Hardie, 2011; Hornbeck et al., 2015). The phosphorylated
Ser76 site lies in a predicted unstructured region external to
the catalytic UCH domain of USP10 (Bhattacharya et al., 2020).
Phosphorylation may promote the activity of USP10 by inducing
conformational changes in USP10 or affecting the recognition
and binding of USP10 to Ub substrates. In this context, the
detailed structure of the phosphorylated form of USP10 is
important for elucidating the essential role of phosphorylation
in modulating the catalytic activity of USP10 (Deng et al., 2016).

TCR-dependent phosphorylation at residues Ser1600 of
USP9X enhances its catalytic activity (Figure 3C) and makes
it competent to deubiquitinate ZAP70 (LoGrasso et al., 1996;
Mayya et al., 2009; Mayya and Han, 2009; Naik et al., 2014).
Ser1600 lies within the UCH hydrolase domain of USP9X, and
phosphorylation at Ser1600 confers USP9X with an increased
catalytic activity (Paudel et al., 2019). USP9X functions as a
positive regulatory switch during T lymphocyte activation by
eliminating the monoubiquitination inhibition of ZAP70 (Naik
and Dixit, 2016).

In contrast, phosphorylation can also exhibit an inhibitory
effect on the catalytic activity of DUBs, as demonstrated in CYLD.
CYLD, a tumour suppressor (Massoumi, 2011), can remove K63-
linked Ub chains from a large number of inflammation-related
substrates, such as TRAF2 and TRAF6, and inhibit inflammatory
signalling and cell cycle progression by inactivating these
substrates (Brummelkamp et al., 2003; Kovalenko et al., 2003).
IKKε-induced phosphorylation at Ser418 of CYLD decreased its
activity (Figure 3C) and completely blocked CYLD-mediated
deubiquitination of TRAF2, thereby promoting tumorigenesis in
breast cancer cells (Hutti et al., 2009; Massoumi, 2011; Eguether
et al., 2014).

Compared to CYLD, VRK2 kinase-mediated phosphorylation
of USP25 at residues Thr680, Thr727, and Ser745 also suppresses
the deubiquitinating activity of USP25 (Kim et al., 2015)
(Figure 3A). Impaired USP25 destabilizes the molecular
chaperone TRiC protein, which is responsible for monitoring
protein misfolding. TRiC functions as the first line of defense to
prevent misfolded protein aggregation in neurodegenerative
diseases (Tam et al., 2006; Kim et al., 2014). This indicates
that inhibition of USP25 phosphorylation may have a
potential role in the treatment of neurodegenerative diseases
(Kim et al., 2015).

Additionally, aggregation of Ataxin3 can cause dendritic and
synaptic loss in cultured neurons, and is involved in
spinocerebellar ataxia type 3, also known as Machado-Joseph
disease (Kawaguchi et al., 1994). A study demonstrated that
glycogen synthase kinase 3β (GSK 3β)-induced

phosphorylation of Ataxin3 at Ser256 can regulate the
aggregation of Ataxin3 (Fei et al., 2007). The phosphorylation
of Ataxin3 at the Ser12 residue adjacent to the catalytic domain
can also counter the neuromorphological defects caused by the
decrease in deubiquitinase activity. Additionally, mutations in the
Ser12 residue can reduce protein aggregation, and neuronal and
synapse loss, and are implicated in neurodegenerative diseases
(Matos et al., 2016).

UCHL3 is phosphorylated at Ser75 and activated by ATM
upon DNA damage. In turn, UCHL3 deubiquitinates RAD51 and
promotes the binding between BRCA2 and RAD51, which play
an important role in DNA damage repair and the resistance of
cancer cells to radiation and chemotherapy (Davies et al., 2001;
Luo et al., 2016; Zhao et al., 2017). Therefore, inhibition of
UCHL3 activity or UCHL3 phosphorylation may provide new
insights in cancer therapy. Obviously, the biological role and
mechanism of UCHL3 phosphorylation has not been fully
understood yet, and this requires further research (Misaghi
et al., 2005).

Phosphorylation can inhibit the activity of USP8 in a cell
cycle-dependent manner. In the interphase stage of cell division,
the Ser680 residue of USP8 is phosphorylated, which enables
USP8 to bind to the 14-3-3 protein This binding in turn inhibits
the catalytic activity of USP8 (Mizuno et al., 2007) (Figure 3C).
Meanwhile, in the M phase, the dephosphorylation of USP8 at
Ser680 can enhance its catalytic activity (Mukai et al., 2008; Pohl
and Jentsch, 2008). Moreover, a mutation in the Ser680 residue
can also enhance the activity of USP8, including hydrolysis of
K48 or K63 polyubiquitin chains and intracellular substrates
both in vivo and in vitro. It is plausible that after the 14-3-3
protein allosterically binds to phosphorylated USP8; USP8
undergoes a conformational change from an active state to
an inhibitory state (Centorrino et al., 2018). It is also possible
that the binding of the 14-3-3 protein covers the catalytic
domain of USP8 and prevents the substrate from entering the
catalytic centre of the enzyme. Moreover, the binding site of
the 14-3-3 protein on USP8 is very close to the catalytic active
centre of USP8, which is only about 60 amino acids apart
(Mizuno et al., 2007; Ernst et al., 2013). Additionally, EGFR
kinase-induced phosphorylation of USP8 at Tyr717 and
Tyr810 residues elevates its activity and activates the EGF
receptor kinase-mediated inhibition of ciliogenesis. This
process plays a critical role in the regulation of ciliogenesis
in dividing cells (Row et al., 2009; Kasahara et al., 2018).
Therefore, further structural studies may provide us with
new insights into the molecular mechanism of
phosphorylation-dependent alterations in USP8 (Figure 4C).

Interestingly, phosphorylation can alter the specificity of
DUBs toward hydrolysis of Ub chains. A study found that
OTUD4 purified from E. coli tends to hydrolyse K48-linked
Ub chains, whereas OTUD4 purified from HEK293T cells
preferentially hydrolyse K63-linked Ub chains (Mevissen et al.,
2013; Zhao et al., 2015). Studies have confirmed that casein kinase
II (CK2) induces the phosphorylation of OTUD4 at residues
Ser202, which is adjacent to the catalytic OTU domain (Olsten
and Litchfield, 2004). Therefore, phosphorylation alters the
tendency of OTUD4 to hydrolyse Ub chains from that of
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K48- to K63-linked Ub chains. This process plays an essential role
in innate immune signalling pathways (Zhao et al., 2018).

Therefore, PTMs such as phosphorylation can alter the
activity of DUBs and its specificity towards Ub linkage types
(Table 2). This is an exciting new concept that may be widely
adopted in the future. Furthermore, it will provide a unique
perspective for understanding how DUBs regulate different
physiological processes through PTMs such as
phosphorylation. Ubiquitylation can both positively or
negatively regulate DUBs activity.

Ubiquitylation
DUBs can cleave the Ub chains on substrates and play an essential
role in many cellular processes. Interestingly, DUBs themselves
can also be subjected to ubiquitination modifications. This type of
modification is emerging as a critical regulator of DUB function
as it exhibits both negative and positive regulatory effects.

Studies have shown that ubiquitination can positively regulate
the activity of DUBs, such as that observed in the MJD subfamily
of DUBs. Ataxin3 is a member of the MJD subfamily and is a
DUB implicated in protein quality control. The activity of
Ataxin3 is closely related to neurodegenerative disorders
(Kawaguchi et al., 1994; Stevanin et al., 1995; Weishaupl et al.,
2019). The ubiquitination of Lys117 near the catalytic groove of
Ataxin3 can enhance its Ub chain cleavage activity (Figure 3D),
but does not alter its preference for K63-linked Ub chains (Todi
et al., 2010; Todi et al., 2009). JosD1, another member of the MJD
subfamily, exhibits limited cleavage activity toward K48- or K63-
linked Ub chains. In contrast, the ubiquitinated forms of JosD1 at
the Lys136 residue exhibit enhanced cleavage activity of Ub
chains (Figure 3D). This result indicates ubiquitination can
positively regulate the activity of JosD1, and that JosD1 plays
an important role in membrane dynamics (Seki et al., 2013).

Moreover, ubiquitination of DUBs can also negatively regulate
their activity. UCHL1, a member of the UCH subfamily of DUBs,
is highly expressed in neurons, and is involved in several
neurodegenerative diseases, including Alzheimer’s and
Parkinson’s disease (Bower et al., 1999; Leroy et al., 1998).
Studies have shown that the monoubiquitination of residues
near the active site of UCHL1 can restrict its enzymatic
activity (Figure 3D) by inhibiting the binding of Ub to
UCHL1. Therefore, the permanent monoubiquitination status
of UCHL1 prevents its deubiquitinase activity and reduces Ub
levels in cells. Interestingly, UCHL1 can intramolecularly
modulate its monoubiquitination status, which depends on its
hydrolytic activity (Osaka et al., 2003; Meray and Lansbury,
2007).

Interestingly, auto-deubiquitination can occur on some DUBs
after they are ubiquitinated. USP6, a member of the USP
subfamily, was initially identified as an oncogene (Madan
et al., 2016; Nakamura et al., 1992). A study demonstrated
that USP6 is mono- or poly-ubiquitinated, which promotes its
auto-deubiquitination through direct binding to Ca2+/
Calmodulin (Shen C. et al., 2005). USP4 was first identified as
a protein with a high sequence similarity to USP6 and has been
thought to function as a DUB (Gupta et al., 1993). Studies have
shown that wild-type USP4 is mono- or poly-ubiquitinated by

Ro52. The ubiquitination level of a mutated form of USP4 (at the
active site Cys311) was considerably elevated (Wada and
Kamitani, 2006). These results indicated that self-
deubiquitination occurred in wild-type USP4, and the
mutation may inhibit the self-deubiquitination activity of
USP4 (Wada and Kamitani, 2006). Simultaneously, a study
showed that USP7 can also be ubiquitinated at the Lys869
residue (Figure 3D), but its function is unclear (Fernández-
Montalván et al., 2007).

SUMOylation Inhibits the Activity of DUBs
SUMOylation is also an essential and reversible PTM with
significant roles in various cellular processes (Geiss-
Friedlander and Melchior, 2007). Similar to ubiquitination,
SUMOylation is a process involving the conjugation of a small
peptide SUMO to the substrates via a hierarchical interplay of
three enzymes: SUMO activating enzyme E1, SUMO-conjugation
enzyme E2, and SUMO-ligation enzyme E3 (Wilkinson and
Henley, 2010). The reversible deSUMOylation enzyme named
the SUMO-specific protease can deconjugate SUMO from
substrates in a process similar to that of the deubiquitylation
process (Kim and Baek, 2009). In addition, a recent study has
shown SUMOylation of DUBs usually inhibits its activity.

USP25, a member of the USP subfamily of DUBs, has been
reported to be associated with the immune response, cancer, and
other diseases (Li et al., 2014; Zhong et al., 2012). The N-terminus
of USP25 contains two tandem UIM domains, and SIM and UBA
domains (Denuc et al., 2009; Meulmeester et al., 2008). The target
proteins of PTMs such as ubiquitination, phosphorylation, and
SUMOylation are varied (Hecker et al., 2006; Song et al., 2004)
(Figure 3A). SUMOylation at residues Lys99 and Lys141 of the
UIM domain can inactivate USP25 and impair the ability of
USP25 to hydrolyse the Ub chain by inhibiting the binding of
USP25 to Ub chains in vitro (Figure 3C). Conversely, removing
the SUMO modification from USP25 can increase its binding to
the tetra-Ub chains (Meulmeester et al., 2008).

Coincidentally, USP28 is homologous to USP25 and is
upregulated in colon cancer cells and NSCLC cells (Popov
et al., 2007a; Valero et al., 2001; Li et al., 2014; Zhang L. et al.,
2015). It also contains one UBA and two UIM domains at the N
terminus that are responsible for the addition of SUMO (Zhen
et al., 2014). SUMOylation at the Lys99 residue of the UIM
domain could inhibit the activity of USP28 (Figure 3C),
indicating its potential role in cancer therapy (Diefenbacher
et al., 2014; Zhen et al., 2014; Zhang Y. et al., 2015).

CYLD, belonging to the USP subfamily, is ubiquitously
expressed and highly conserved, and negatively regulates NF-
κB activation by TNFR family members (Trompouki et al., 2003).
The SUMOylation of CYLD at the Lys40 residue of its
N-terminus can also reduce its activity against substrates
TRAF2 and TRAF6 (Figure 3C), and block the activation of
NF-kB signalling, which plays an essential role in inflammatory
reactions (Kobayashi et al., 2015).

Studies have also shown that USP39 plays a vital role in cancer
development, including breast cancer and hepatocellular cancer,
where upregulation of USP39 was observed (Liu S. et al., 2015;
Pan et al., 2015). Furthermore, USP39 can also undergo
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TABLE 2 | Summary of phosphorylation induced DUBs’ activity change.

DUBs Kinase Phosphorylation site Feature Structure Physiology References

OTUD4 CK2(casein
kinase II)

Ser202/Ser204 (adjacent to
the OTU domain, and
mimetic phosphorylation can
mildly promote the DUB
activity)

Convert to hydrolysis K63
from K48

No structure Regulate MyD88-
dependent NF-κB signaling

Zhao et al. (2018)

OTUD5 CK2(casein
kinase II)

Ser177 (lies in an
unstructured region of the
protein immediately
preceding the predicted core
OTU domain)

pSer177- OTUD5 showed
robust activity against K48/
K63 di-ub and good activity
against K11-linked
substrate, while linear di-ub
was not processed

Crystal (pSer177 does not
affect the structure of apo
OTUD5; phosphorylated
loop folds over the ub-al C
terminus to stabilize
enzyme and exclude water
from the active site

A regulator of innate
immunity

Huang et al. (2012)

OTULIN ABL1 (ABL
proto-
oncogene 1)

Tyr56 (adjacent to the OTU
domain)

Promote the interaction of
OTULIN/β-catenin and the
activation of wnt/β-catenin
signaling

Crystal structure of OUT
domain

Playing a critical role in the
triple-negative breast
cancer progression and
metastasis

Keusekotten et al.
(2013); Wang et al.
(2020a)

A20 IκKβ Ser381, Ser480, Ser565,
Thr625 (substitution of all four
residues alone attenuated
cleavage of K63-linked
tetraubiquitin)

Hydrolysis K48- or K63-
linked tetraubiquitin but not
linear tetraubiquitin

Crystal A20 phosphorylation
suppresses

Wertz et al. (2015)

FL OTU Inflammatory signaling

USP14 Akt Ser432 (within a catalytic
domain, located within BL2,
shifts its position over a
distance of 3–5 Å in pSer432
form compared with inactive
free form, and an adduct
between Ubal-USP14 and
S432E mimetic also promote
USP14 activity)

PSer432 and S432E
mimetic all promote K48/
K63 di-ub or Ub-AMC
deubiquitination activity,
while linear di-ub was not
cleaved

Crystal S432 phosphorylation and
interaction with proteasome
maybe

Xu et al. (2015)

USP domain Two different regulatory
mechanisms for USP14

USP37 CDK2 in G1/S
cell cycle

Ser682(within a catalytic
domain)

USP37 phosphorylation
correlated with its cell cycle-
specific DUB activity

No structure Cell cycle Huang et al. (2011)

USP8 Unknown USP8 is catalytically inhibited
in a phosphorylation-
dependent manner by 14-3-
3s protein binding during the
interphase, while the activity
is enhanced in the M phase
where usp8 was
dephosphorylated

Crystal structure with
USP8 specific inhibitor

Cell cycle Mizuno et al.
(2007)

USP15 CDKs Thr149/Thr219 (located at
the UBL domain, two sites
are in the linker of DUSP and
UBL domain, affects the
interaction of USP15 to other
protein)

Regulate localization and
interaction with SART3
protein and spliceosome
deubiquitination

Crystal structure of
SART3-USP15DUSP-UBL

Regulate spliceosome
dynamics

Das et al. (2019)

USP10 AMPK Ser76 Remove Lys63-linked
polyubiquitin from the
activation loop of AMPK

Unknown structure Energy stress Deng et al. (2016)

USP13 Aurora B Ser114 USP13 controls aurora B
stability via enzymatically
independent mechanisms

Unknown structure Cell cycle Esposito et al.
(2020)

ATM Thr196 USP13 regulates DNA
damage repair by targeting
RAP80

Unknown structure DNA repair Li et al. (2017)

CLK3 Tyr708 Enhancing c-Myc
stabilization

Unknown structure Cholangiocarcinoma
progression

Zhou et al. (2020)

USP4 AKT Ser445(located at the
minimal catalytic domain
USP4D1D2)

Redirect USP4 subcellular
localization to the plasma
membrane

Crystal structure TGF-β signaling, cancer Zhang et al. (2012)

USP7 CK2 Ser18 Required for the stability of
USP7

Crystal structure DNA damage repair Khoronenkova
et al. (2012)

(Continued on following page)
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SUMOylation at several sites, including Lys6, Lys16, Lys29,
Lys51, and Lys73 residues (Figure 3C). Inhibition of
SUMOylation of USP39 enhanced the proliferation of cancer
cells as it affected the recruitment of tri-snRNP, suggesting that
SUMOylation of USP39 plays an essential role in cancer therapy
(Wen et al., 2014; Wen et al., 2014).

The MJD subfamily member Ataxin-3 has been shown to
undergo SUMOylation at its N-terminal Lys166 residue.
SUMOylation does not alter subcellular localization, but
promotes apoptosis (Shen L. et al., 2005; Guzzo and Matunis,
2013). Furthermore, the SUMOylation of Lys356 can influence
the interaction between Ataxin-3 and p97, which implies its
potential role in tumours (Ge et al., 2015). However, the
precise mechanisms of this process are still unknown
(Dantuma and Hoppe, 2012; Zhou YF. et al., 2013; Almeida
et al., 2015).

Oxidation Inhibits the Catalytic Activity of
DUBs
Reactive oxygen species (ROS) and by-products of mitochondrial
oxidative metabolism are continuously produced in eukaryotic
cells (Poyton et al., 2009). Deregulated ROS levels are linked to
various human diseases, including cancer, Alzheimer’s disease,
and aging (Benhar et al., 2002; Butterfield and Boyd-Kimball,
2004; Hekimi et al., 2011). As most members of DUB families are
reduced cysteine proteases, it is reasonable that DUBs can be
regulated by ROS. Studies have shown that many members of the
OTU, UCH and USP subfamily of DUBs can be reversibly
inactivated by oxidation (Lee et al., 2013). Until now,
researchers have purified about 30% of known DUBs,
including members of the OTU, UCH and USP subfamilies,
and most of them did not show any significant activity due to
oxidation during purification. However, after DTT treatment, the
activity of the DUBs were enhanced, indicating that oxidation can
inhibit the catalytic activity of DUBs.

For example, purified USP19 exhibits a deubiquitinase weak
activity. However, it can be activated by DTT treatment under
reducing conditions and exhibits the ability to cleave K48-diUb or
Ub-AFC (Mei et al., 2011). Nevertheless, when treated with H2O2,

the deubiquitinase activity was completely abolished as oxidation
occurs on cysteine residues in the catalytic domain (Figure 3D).
At the same time, this inactivation process can be reversed by
addition of DTT (Lee et al., 2013).

Furthermore, some purified DUBs such as USP7, CYLD, and
UCHL1 are active, but their activities can be further enhanced by
adding DTT (Figure 3D). In contrast to USP19, USP7 and
UCHL1 were more resistant to inhibition by H2O2 at pH 7.4,
which indicates that the sensitivity of DUBs to oxidative
inhibition depends on the original activity during which the
deprotonation of cysteine in the catalytic domain occurs (Lee
et al., 2013).

Notably, there are some purified DUBs that have no
detectable activity with or without DTT, such as USP1,
USP14, and USP28. These DUBs may require certain
cofactors for their activity (Cohn et al., 2007). As for USP1,
its activation requires the cofactor UAF1. The purified UAF1-
USP1 complex was indeed active in the Ub-AFC assay, and the
activity was strongly and reversibly inhibited by H2O2.
Interestingly, the interaction of USP1 and UAF1 was not
affected by H2O2, suggesting that the inhibition is likely
caused by oxidation of the catalytic active site of USP1,
which is consistent with other DUBs (Cotto-Rios et al.,
2012; Huang et al., 2012; Lee et al., 2013).

Similar to that of the USP family, reversible oxidation can also
occur on the members of the OTU subfamily of DUBs, such as
OTUD7B, OTUD1, OTUD2, OTUD3, OTUD5, and OTUD6B.
This indicates that it is a common regulatory mechanism of
deubiquitinase activity (Kulathu et al., 2013).

THE THERAPEUTIC POTENTIAL OF
TARGETING PTMS IN DUBS

Many DUBs undergo one or more PTMs, including
phosphorylation, ubiquitination, SUMOylation, and
oxidation, leading to changes in activation, inhibition,
stability, or localization of these DUBs. These PTMs play a
crucial role in the regulation of DUB and dysregulation of this
process is associated with many diseases, including cancer,
DDR, inflammatory, and neurodegenerative diseases
(Table 3).

PTMs of DUBs Are Closely Related to
Cancers
PTMs in DUBs can promote cancer progression. A study
demonstrated that AKT-mediated phosphorylation of USP4

TABLE 2 | (Continued) Summary of phosphorylation induced DUBs’ activity change.

DUBs Kinase Phosphorylation site Feature Structure Physiology References

USP28 ATM Ser67/Ser714 Stabilize DNA damage
signaling protein

Crystal structure DNA damage repair Zhang et al. (2006)

USP25 SYK tyrosine
kinase

Thr680, Thr727, Ser745
(adjacent to the catalytic
domain)

Suppress the
deubiquitination activity

Crystal structure Protein stability Kim et al. (2015)

UCHL3 ATM Ser75 Regulate BRCA2-RAD51
pathway

Crystal structure DNA damage repair Luo et al. (2016)

CYLD IKKε Ser418 Inhibit the catalytic activity of
CYLD

Crystal structure Oncogenic transformation Hutti et al. (2009)

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 68501113

Wang and Wang Post-translational Modifications of DUBs

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 3 | PTMs of DUBs induced cellular effects and disorders.

Disorders DUBs PTMs Cellular effects Disorder type References

Cancer USP4 Phosphorylation
(tumor promoter)

PI (3)K–AKT; enhanced TGF-β- signaling Breast cancer Zhang et al. (2012)

USP10 Phosphorylation
(tumor suppressor)

ATM-Mdm2; down-regulated p53
signaling

Tumor without mutation of p53 Yuan et al. (2010)

OTULIN Phosphorylation
(tumor promoter)

ABL1/c-Abl; increased OTULIN/
β-catenin interaction; activation of wnt/
β-catenin signaling

Triple-negative breast cancer Wang et al. (2020b); Wang and
Wu (2020)

USP13 Phosphorylation
Ser114 (tumor
suppressor)

Aurora B phosphorylates USP13 and
promotes the interaction between
USP13 and aurora B. USP13, in turn,
can deubiquitinate aurora B, proper
regulation of aurora B on cell cycle

Cancers where aurora B
overexpression

Esposito et al. (2020)

USP13 Phosphorylation
Thr196 (tumor
promoter)

ATM induced phosphorylation form of
USP13 can deubiquitinate RAP80 and
prompt DNA damage repair response

Ovarian cancer Li et al. (2017)

USP13 Phosphorylation
Tyr708 (tumor
promoter)

Phosphorylation of USP13 at Tyr708
induced by CLK3 promotes the
cholangiocarcinoma progression by
activating c-Myc mediated purine
synthesis

Cholangiocarcinoma with CLK3
mutation

Zhou et al. (2020)

CYLD Phosphorylation
(tumor promoter)

IKKε-induced phosphorylation of CYLD
decreased the activity of it and
completely blocks the CYLD-mediated
deubiquitination of TRAF2, thereby
promoting the transformation and
progression of breast cancer cell

Breast cancer Hutti et al. (2009)

USP28 SUMOylation (tumor
suppressor)

SUMOylation at Lys99 residues of
USP28 could inhibit the activity of
USP28

Colon cancer cells and NSCLC
cells

Masoumi et al. (2016)

USP39 SUMOylation (tumor
suppressor)

Inhibition of the SUMOylation of USP39
can enhance the proliferation of cancer
cells via affecting the recruitment of tri-
snRNP

Breast cancer and
hepatocellular cancer

Masoumi et al. (2016); Liu et al.
(2015b); Pan et al. (2015); Wen
et al. (2014)

USP14 Unknown Protein turnover Ovarian and lung cancer Wang et al. (2015a); Wu et al.
(2013)

UCHL5 Unknown Protein turnover Esophageal and ovarian cancer Chen et al. (2012); Wang et al.
(2014)

USP11 Unknown Unknown Breast cancer Bayraktar et al. (2013)
USP8 Unknown Regulation of the recycle of receptor

tyrosine kinases, such as EGFR
Lung cancer Reincke et al. (2015)

UCH37 Unknown Unknown Carcinoma Chen et al. (2012)
USP15 Unknown Regulation of the TGFβ signaling

pathway
Breast cancer, ovarian cancer,
glioblastoma

Eichhorn et al. (2012); Inui et al.
(2011)

DNA damage
response

USP7 Phosphorylation (DNA
repair promoter)

CK2-Mdm2; down-regulated p53
signalling

DNA damage response Khoronenkova et al. (2012)

USP4 Auto-deubiquitination
(DNA repair promoter)

Auto-deubiquitination is required for
USP4 to interact with CtIP/MRN and
promote DNA repair

DNA repair Wijnhoven et al. (2015)

USP1 Phosphorylation (DNA
repair promoter)

After USP1 is phosphorylated, the
USP1/UAF complex translocated to the
nucleus and recruit FANCD2/PCNA
substrates to regulate DNA damage
response

Tanslesion DNA repair Garcia-Santisteban et al.
(2012); Olazabal-Herrero et al.
(2015)

UCHL3 Phosphorylation (DNA
repair promoter)

ATM-induced phosphorylation form of
UCHL3 deubiquitinates RAD51 and
promote its binding to BRCA2 after DNA
damage

DNA damage repair and
resistance of cancer cell to
chemotherapy

Luo et al. (2016)

USP11 Unknown Targeted PALB2 Homologous recombination Bayraktar et al. (2013)
USP9X Unknown Targeted claspin Replication checkpoint Murtaza et al. (2015)

Inflammatory A20 Phosphorylation
(positive regulator)

IκKβ-mediated phosphorylation of A20
at residue Ser381 facilitate A20 to cleave
K63-linked polyubiquitin chains

Suppress inflammatory
signalling

Wertz et al. (2015)

(Continued on following page)
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was associated with poor prognosis in breast cancer patients. A
building crosstalk between TGF-β and AKT signalling
pathways exists, which indicates a potential therapeutic role
(Zhang et al., 2012). Additionally, DNA damage-induced
ABL1/c-Abl (ABL proto-oncogene 1) activation can
promote the phosphorylation of OTULIN, which enhances

its interaction with β-catenin and promotes the activation of
Wnt/β-catenin signalling (Table 3) This mechanism plays a
critical role in the triple-negative breast cancer (TNBC)
progression, metastasis, and drug resistance to cancer
treatments (Douglas and Saleh, 2019; Wang Y. et al., 2020;
Wang and Wu, 2020).

TABLE 3 | (Continued) PTMs of DUBs induced cellular effects and disorders.

Disorders DUBs PTMs Cellular effects Disorder type References

USP9X Phosphorylation
(positive regulator)

TCR-dependent phosphorylation of
USP9X enhances its catalytic activity
and deubiquitinate ZAP70

T Lymphocyte activation Naik and Dixit (2016)

OTUD4 Phosphorylation
(positive regulator)

CKII-induced phosphorylation of OTUD4
promote it to hydrolyze the ubiquitin
chain changed from K48 to K63, playing
an essential role in innate immune
signalling

Innate immune signalling Zhao et al. (2018)

CYLD SUMOylation (positive
regulator)

SUMOylation of CYLD at Lys40 can
reduce its activity and block the
activation of NF-kB signalling

Inflammatory Masoumi et al. (2016)

OTULIN Unknown Targeted on NEMO and RIPK1/2 Inhibit NF-κB signaling Iwai et al. (2014)
USP18 Unknown Expression regulated by IFNγ Function in haematopoietic cell

differentiation
Malakhov et al. (2002)
Malakhova et al. (2006)

USP25 Unknown Expression regulated by IRF7 and IFN Regulation of innate immune
response to DNA and RNA virus

Lin et al. (2015)

USP7 Unknown Negative regulator of NF-κB activity Treg response Colleran et al. (2013)
USP21 Unknown Stabilize FOXP3 Treg response Zhang et al. (2013)
Cezanne Unknown Positive regulation of T cell receptor

signalling and deubiquitinate ZAP70
TH1 and TH17 response Hu et al. (2016)

TRABID Unknown Targeted JMJD2D Positive regulator of IL-22 and
IL-23 production

Jin et al. (2016)

USP4 Unknown Targeted TAK1 to downregulate NF-κB
activation

Highly expressed in CD4+ T cells
form rheumatic heart disease

Wang et al. (2013)

USP10 Unknown Stabilize T-bet Highly expressed in PBMCs
from patients with asthma

Pan et al. (2014)

USP17 Unknown Regulation the stability of IL-33 TH1 and TH17 response Chen et al. (2010); Ni et al.
(2015)

USP18 Unknown Regulate TAK1-TAB1 interaction Expression induced by
cytokines

Liu et al. (2013)

Neurodegenerative
diseases

USP25 Phosphorylation
(promoter)

VRK2 kinase-mediated phosphorylation
of USP25 suppresses the
deubiquitinating activity of USP25 and
stabilize the molecular chaperone TRiC
protein

Misfolded protein aggregation in
neurodegenerative disease

Kim et al. (2015)

Ataxin3 Ubiquitination
(suppressor)

Ubiquitination of Ataxin3 can enhance its
ubiquitin chain cleavage activity and
improve protein quality control

Closely related to the
neurodegenerative disorder

Todi et al. (2010)

Ataxin3 Phosphorylation
(suppressor)

Phosphorylation of Ataxin3 can regulate
its aggregation and counter the
neuromorphologic defects by
decreasing its deubiquitinase activity

Machado-joseph disease Fei et al. (2007; Matos et al.
(2016)

UCHL1 Ubiquitination
(promoter)

Monoubiquitination of the residues near
the active site of UCHL1 can restrict its
enzymatic activity by inhibiting the
binding of ubiquitin to UCHL1

Neurodegenerative diseases,
including Alzheimer’s and
Parkinson’s disease

Meray and Lansbury (2007)

USP7 Unknown Antagonizes ubiquitination of
α-Synuclein and regulation of REST
signaling and neuronal differentiation

Neurodegeneration disease Alexopoulou et al. (2016)

USP8 Unknown Regulates mitophagy by cleaving
ubiquitin from parkin

Neurodegeneration disease Durcan et al. (2014)

USP14 Unknown Promotes the clearance of tau or Ataxin3
protein involved in neurodegeneration

Mutation lead ataxia Wilson et al. (2002)

USP15 Unknown Counteract parkin-mediated mitophagy Glioblastoma Cornelissen et al. (2014)
USP30 Unknown Dysfunction of mitochondrial Neurodegeneration Bingol et al. (2014)
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Furthermore, CLK3-induced phosphorylation of the Tyr708
residue in USP13 promotes cholangiocarcinoma progression by
activating c-Myc-mediated purine synthesis (Zhou et al., 2020).
Moreover, ATM-induced phosphorylation of the Thr196 residue
in USP13 after DNA damage functions as an essential regulatory
event, and plays a critical role in the resistance of cancer cells to
chemotherapy by deubiquitinating RAP80, promoting
recruitment of complexes, and eliciting a DDR (Hu et al.,
2011; Li et al., 2017) (Table 3).

Additionally, in primary adult T-cell leukemia/lymphoma
(ATLL) samples and cell lines, increased IKK-induced CYLD
phosphorylation was observed. Both IKK inhibitors and
overexpression of kinase-inactive TBK/IKK can lower
CYLD phosphorylation and trigger cell death (Table 3).
These results indicated that phosphorylated CYLD is a
crucial regulator of ATLL survival and a potential novel
therapeutic target for pharmacologic modification in ATLL
(Xu et al., 2020).

In contrast, PTMs of some DUBs act as tumour suppressors.
For example, phosphorylated USP10 can deubiquitinate and
stabilize p53 by reversing its nuclear export and Mdm2-
induced degradation. Therefore, phosphorylated USP10 can
inhibit the growth of tumour cells without inducing mutations
in p53 (Table 3), which implies that phosphorylation of USP10
has potential therapeutic effects in tumours. Additionally,
kinase Aurora B induced phosphorylation of the Ser114
residue in USP13 prevents several major human cancers by
promoting its interaction with partners and stability (Esposito
et al., 2020). A study showed that SUMOylation at Lys99
residues of USP28 could inhibit the activity of USP28
(Table 3), indicating potential therapeutic role in colon
cancer cells and NSCLC cells (Diefenbacher et al., 2014;
Zhen et al., 2014; Zhang L. et al., 2015). Furthermore,
inhibition of the SUMOylation of USP39 can enhance the
proliferation of cancer cells including breast and
hepatocellular cancer via affecting the recruitment of tri-
snRNP, suggesting that SUMOylation of USP39 has an
essential role in cancer therapy (Wen et al., 2014; Liu H.
et al., 2015; Pan et al., 2015) (Table 3).

Additionally, there are many other DUBs which are closely
related to cancer and other diseases (Li et al., 2002; Xu et al., 2014;
Yuan et al., 2015; Harrigan et al., 2018). For instance,
dysregulation of USP14 can lead ovarian and lung cancer
(Mines et al., 2009; Wu et al., 2013; Wang Y. et al., 2015), and
abnormal of UCHL5 can also cause ovarian and esophageal
cancer (Chen et al., 2012; Wang et al., 2014). Study found
dysregulation of USP11 is related to breast cancer, but the
mechanism underlying that is not clear (Bayraktar et al.,
2013). Also, dysregulation of the recycle of tyrosine kinase like
epidermal growth factor receptor (EGFR) by USP8 cause the
development of lung cancer (Reincke et al., 2015). Moreover,
abnormal regulation of the TGFβ signaling pathway by USP15
can lead the occurrence of glioblastoma, breast cancer, and
ovarian cancer (Inui et al., 2011; Eichhorn et al., 2012; Hayes
et al., 2012). In addition, the expression of UCH37 is closely
related to the progression of human esophageal squamous cell
carcinoma (Chen et al., 2012). However, if they are PTMs-

mediated disorders or not and which kind of PTMs mediated
the disorder was still not clear. Therefore, further investigations
need to be done to clarify the corelation between DUBs-related
disorders and PTMs.

PTMs of DUBs Promote DNA Repair
PTMs of DUBs plays vital roles in DNA repair after exposure to
genotoxic agents or chemotherapy. Studies have shown that USP7
phosphorylation promotes the deubiquitination and stabilization
of Mdm2, which in turn leads to the degradation and
downregulation of p53 (Table 3) (Khoronenkova and Dianov,
2012; Khoronenkova et al., 2012). Also, the auto-deubiquitination
of USP4 is required for USP4 to interact with CtIP/MRN and
promote DNA repair (Wada and Kamitani, 2006; Wijnhoven
et al., 2015). Additionally, ATM-induced phosphorylation of
UCHL3 occurs after DNA damage, which in turn
deubiquitinates RAD51 and promotes the binding between
BRCA2 and RAD51 (Table 3). Thus, these processes play an
important role in DNA damage repair and the resistance of
cancer cells to radiation and chemotherapy (Adelina A. et al.,
2001; Luo et al., 2016; Zhao et al., 2017). There are some other
DUBs such as USP11, USP28 and USP9X were reported to be
closely related to DNA repair, but if it is the PTMs induced or
not was not clear until now (Zhang et al., 2006; Wiltshire et al.,
2010; Bayraktar et al., 2013; Homan et al., 2014; Murtaza et al.,
2015).

PTMs of DUBs Positively Regulate
Inflammation
PTMs of DUBs can positively regulate the function of DUB in the
process of inflammation. Firstly, IκKβ-mediated phosphorylation
of A20 at residue Ser381 plays an essential role in facilitating
cleavage of K63-linked polyubiquitin chains by A20, indicating
the potential role of A20 in suppressing inflammation-associated
signalling (Song et al., 1996; Wertz et al., 2015) (Table 3). In
addition, TCR-dependent phosphorylation of USP9X enhances
its catalytic activity and makes it competent to deubiquitinate
ZAP70, which functions as a positive regulatory switch during T
lymphocyte activation by removing the monoubiquitination
inhibition of ZAP70 (Naik and Dixit, 2016) (Table 3).
Furthermore, CKII-induced phosphorylation of OTUD4
promoted the preferential hydrolysis of the Ub chain changed
from K48- to K63-linked chains, which plays an essential role in
innate immune signalling (Zhao et al., 2018). Similarly, the
SUMOylation of CYLD at Lys40 residue can also reduce its
activity and block the activation of NF-kB signalling, playing
an essential role in inflammation (Kobayashi et al., 2015)
(Table 3).

There are many other DUBs have been demonstrated to have
important role in the inflammation. However, whether PTMs of
DUBs occurs and promote its involvement in inflammation
response were unclear (Zhang et al., 2018). For example,
OTULIN can inhibit the NF-κB signaling by targeted on
NEMO and the receptor-interacting protein kinase 1/2
(RIPK1/2) (Iwai et al., 2014; Damgaard et al., 2016). And the
expression of USP18 was regulated by interferon gamma (IFNγ)
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and play an important role in haematopoietic cell differentiation
(Malakhov et al., 2002). Meanwhile, expression of USP25 was
regulated by interferon regulatory factor 7 (IRF7) and IFN, and
have critical role in the innate immune response to DNA and
RNA virus (Lin et al., 2015). USP7 and USP21 play an important
role in regulatory T cell (Treg) response by negatively regulate NF-
κB activity and stabilize the forkhead box p3 (FOXP3)
respectively (Colleran et al., 2013; Zhang et al., 2013).
Moreover, Cezanne can positively regulate T cell receptor
signaling, playing important role in T helper cell 1 (TH1) and
TH17 response (Pareja et al., 2012; Hu et al., 2016). TRABID can
positively regulate the production of interleukin 22 (IL-22) and
IL-23 by targeting on JMJD2D (Jin et al., 2016). Furthermore,
USP4 targeted on TGFβ-activated kinase 1 (TAK1) to
downregulate NF-κB activation, which was highly expressed in
CD4+ T cell from rheumatic heart disease (Wang et al., 2013).
Similarly, USP10 can stabilize T-bet and highly expressed in the
peripheral blood mononuclear cells (PBMCs) from patients with
asthma (Pan et al., 2014). USP17 play important role in TH1 and
TH17 response by stabilizing IL-33 (Burrows et al., 2009; Chen
et al., 2010; Ni et al., 2015). USP18 can regulate TAK1-TAB1
interaction, and the expression was induced by cytokines
(Burkart et al., 2012; Liu et al., 2013). Therefore, DUBs
were closely involved in the inflammatory signaling
pathway and inflammatory disease. However, if PTMs
promote and take part in this process or not still need
further study in the future.

PTMs of DUBs Is Closely Related to
Neurodegenerative Diseases
Dysregulation of DUBs can cause various neurodegenerative
diseases, including Alzheimer’s and Parkinson’s disease
(Harrigan et al., 2018). Studies demonstrated that PTMs of
DUBs can either promote or suppress the progression
of neurodegenerative diseases. VRK2 kinase-mediated
phosphorylation of USP25 suppressed the deubiquitinating
activity of USP25 and stabilized the molecular chaperone
TRiC (Table 3), leading to the aggregation of misfolded
proteins in neurodegenerative diseases (Kim et al., 2014;
Kim et al., 2015). Studies showed that the ubiquitination
of Lys117 near the catalytic groove of Ataxin3 can enhance its
Ub chain cleavage activity and this activity is closely related
to neurodegenerative disorders (Todi et al., 2009; Todi et al.,
2010) (Table 3). Additionally, studies demonstrated that
phosphorylation of Ataxin3 influences its aggregation and
counters the neuromorphologic defects occurring due to it
by decreasing its deubiquitinase activity (Lim et al., 2006;
Scaglione et al., 2013). This mechanism plays an important
role in the development of Machado-Joseph disease (Fei et al.,
2007; Matos et al., 2016) (Table 3). Monoubiquitination of the
residues near the active site of UCHL1 can restrict its
enzymatic activity by inhibiting the binding of Ub to
UCHL1 (Table 3), promoting the progression of
neurodegenerative diseases, including Alzheimer’s and
Parkinson’s disease (Das et al., 2006; Meray and Lansbury,
2007; Liu et al., 2009).

Additionally, there are many other DUBs which can lead
neurodegenerative diseases. For example, study showed that
USP7 is also involved in the neurodegeneration through
antagonize the ubiquitination of α-synuclein and regulate the
RE1 silencing transcription factor (REST) signaling pathway
(Alexopoulou et al., 2016). Similarly, USP8 is closely related to
the development of neurodegeneration via regulating the
mitophagy by cleaving the ubiquitin from Parkin (Durcan
et al., 2014; Alexopoulou et al., 2016). USP14 can promote the
clearance of Tau or Ataxin3 protein which is aggregated in
neurodegeneration (Wilson et al., 2002; Homma et al., 2015).
Moreover, USP15 plays an important role in glioblastoma by
counteracting Parkin-mediated mitophagy (Cornelissen et al.,
2014). Study also showed that USP30 is involved in the
neurodegenerative disease by leading mitochondrial
dysfunction (Bingol et al., 2014). However, whether the
regulation effect of PTMs on these DUBs is the reason that
lead the occurrence of DUBs-related neurodegenerative diseases
still need further study.

DISCUSSION

Generally, single PTMs regulate the function of DUBs via
allosteric regulatory effects that lead to conformation
changes or by exposing a new binding site by abolishing
original protein-protein interactions (Figure 4D). For
example, phosphorylation of USP4 is essential for protein
stability, or for forming a complex with itself or another
protein partner such as USP15. Meanwhile, phosphorylation
can prevent USP4 from being localized in the nucleus and
play a vital role in DDR.

Moreover, complex crosstalk between post-translationally
modified proteins often occurs; a well-described example are
kinases. Under certain conditions, phosphorylation is often
necessary to trigger subsequent phosphorylation,
ubiquitination, or SUMOylation, and the ubiquitination or
methylation of histones may be essential for its acetylation
(Hunter, 2007). The crosstalk of post-translationally modified
DUBs can be either positive or negative. For instance, the
N-terminal of USP25 is a target of a variety of PTMs,
including phosphorylation, ubiquitination, SUMOylation, and
acetylation (Figure 3A). Phosphorylation of USP25 can
decrease its protein level in a proteasomal degradation-
independent manner by inhibiting the ubiquitination of
USP25. Ubiquitination and SUMOylation occur at the same
Lys99 residue of USP25. In addition, ubiquitination and
SUMOylation can occur at the same Lys99 residue of USP25.
Therefore, there is a potential for opposing functions of activation
and inhibition due to the negative crosstalk that might exist
between ubiquitination and SUMOylation. At the same time,
phosphorylation can promote the interaction of USP1 and its
cofactor UAF1, whereas the binding of OTULIN to LUBAC is
blocked by phosphorylation.

Recent literature clearly highlights the importance of PTMs in
modifying the function of DUBs, and its role in promoting or
decreasing the occurrence of diseases. PTMs are therefore
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emerging as a pivotal regulator of DUBs and may provide
novel insights toward the biological functions of DUBs.
However, the biological role of PTMs on DUBs has not
been fully understood yet, and this requires further
research. Structural studies will be particularly important in
elucidating the biological role of PTMs in DUBs. There is no
doubt that these studies will drive DUB-targeted drug
discovery (Harrigan et al., 2018).

Recently, several small molecule inhibitors targeted toward
different members of DUB subfamilies have been reported. Until
now, there are few target-specific inhibitors that have been found
(Ritorto et al., 2014). In the last two years, several highly specific
inhibitors of USP7 and USP14 have been reported (Lee et al.,
2010; Turnbull et al., 2017; Gavory et al., 2018; Wang et al., 2018;
Clague et al., 2019). However, as many DUB members were
strictly conserved during evolution and have a high sequence
similarity between each other, new perspectives are still required
to facilitate the development of selective compounds targeted
toward DUB. Subsequently, novel insights into the PTMs-
mediated regulation of the function of DUBs might provide us
opportunities to develop efficient drugs targeting DUBs.
Combining inhibitors of DUBs and enzymes responsible for
regulatory PTMs, such as kinases or phosphatase inhibitors,
will provide more efficient entry points for pharmacological
intervention strategies. For instance, drugs targeting proteins
of the Ub/proteasome and SUMO pathways, such as DUBs
and SUMO metabolism enzymes, are either on the way or
have already entered clinical trials for cancer therapy
(Masoumi et al., 2016). A better understanding of the cross-
talk or interplay between these two pathways can lead to the
identification of novel anticancer tools for treating diseases in
which SUMOylation plays a significant role.

Moreover, several DUBs have been reported to be
overexpressed or mutated in cancer resulting in altered
activities. As PTMs can regulate the abundance and activity of

DUBs, it may serve as an effective target for novel cancer
therapeutic approaches. We anticipate that the outcome of
DUB-focused regulatory research will help decipher the
molecular basis of the pathogenesis of human disorders and
thus lead to novel or improved therapeutic strategies. We
hope that the paradigms presented in this commentary of how
diversification and regulation of PTMs in DUBs are achieved will
guide future research.
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