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Prostatitis is a common disease in adult males, with characteristics of a poor treatment
response and easy recurrence, which seriously affects the patient’s quality of life. The
prostate is located deep in the pelvic cavity, and thus a traditional infusion or other
treatment methods are unable to easily act directly on the prostate, leading to poor
therapeutic effects. Therefore, the development of new diagnostic and treatment
strategies has become a research hotspot in the field of prostatitis treatment. In recent
years, nanomaterials have been widely used in the diagnosis and treatment of various
infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of
diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug
release; and 4) multimode collaborative treatment, which is expected to be applied in the
diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the
diagnosis, prevention and treatment of prostatitis. However, as a new research area,
systematic reviews on the application of nanomaterials in the diagnosis and treatment of
prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for
and challenges associated with prostatitis and describe the advantages of functional
nanoparticles in improving treatment effectiveness and overcoming side effects.

Keywords: prostatitis, functional nanoparticle, inflammatory microenvironment, engineering strategy, reactive
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BACKGROUND

Prostatitis is one of the most common urogenital diseases and mainly manifests as hypogastrium,
perineum, scrotum, urethra and penis pain, and even bladder irritation, seriously affecting the
patient’s quality of life (Krieger et al., 2008; Brede and Shoskes, 2011; Kogan et al., 2018). According
to statistics, approximately half of males have ever suffered from prostatitis, and prostatitis outpatient
services account for approximately 25% of services provided by urology clinics. Prostate cancer and
benign prostatic hyperplasia mainly occur in older males, while prostatitis occurs in males of all ages,
especially in young and middle-aged males (Drake et al., 2021). It is the third most common urinary
disease in males (Khan et al., 2017).

Prostatitis is mainly divided into 2 class I acute bacterial prostatitis, class II chronic bacterial
prostatitis, class III chronic prostatitis/chronic pelvic pain syndrome, and class IV asymptomatic
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inflammatory prostatitis (Krieger et al., 1999). In addition,
chronic prostatitis/chronic pelvic pain syndrome accounts
for 90-95% of prostatitis cases (Sharma and Kumar, 2021).
In 2008, the National Institutes of Health (NIH)-affiliated
National Institute of Diabetes, Digestive and Kidney Disease
established the Map Research Network to guide researchers in
more disciplines to participate in collaborative research on
chronic pelvic pain and to update and improve its definition
and treatment standards. Currently, the pathogenic factors
causing chronic prostatitis in the clinic are controversial.
Traditional treatments for prostatitis include antibiotics,
antioxidants, and surgery (Vahlensieck et al., 2013; Ihsan
et al., 2018). Many patients have turned to alternative
therapies because of the limited effectiveness of traditional
therapies and recurrence. In recent years, physical therapies
for prostatitis have included biofeedback, hyperthermia, and
magnetic therapy, but the efficacy and side effects are
controversial (Hu et al., 2019; Birowo et al., 2020).
Therefore, studies exploring the etiology and pathogenesis of
prostatitis and identifying new strategies to improve its
therapeutic effectiveness are needed. This review highlights
the treatment approaches for and challenges associated
prostatitis and describes the advantages of functional

nanoparticles in improving treatment effectiveness and
overcoming side effects.

MAIN FACTORS CAUSING PROSTATITIS

The pathogenesis of prostate disease is complex with numerous
influencing psychological factors, including pathogen infection,
sex hormone imbalance, urination dysfunction, inflammation,
and abnormal immune response (Sharp et al., 2010), among
which the inflammatory response is the key pathological
mechanism of prostatitis, and the inflammatory
microenvironment determines the process of prostatitis,
(Crocetto et al., 2020; Huang et al., 2020) as schematically
depicted in Figure 1.

Pathogen Infection
Viruses, fungi, bacteria and other pathogenic
microorganisms can cause prostatitis, and bacterial
infection is an important pathogenic factor causing
prostatitis (Delcaru et al., 2016; Khan et al., 2017). Most of
the pathogens detected in patients with prostatitis are gram-
negative bacteria, and 60% of the bacteria are Escherichia coli

FIGURE 1 | Possible causes of prostate inflammation. (A) Pathogen infection. (B) Sex hormone imbalance. (C) Urination dysfunction. (D) Neuroregulatory
mechanisms. (E) Abnormal immune response.
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(Barzelai and Whittem, 2017; Zhao et al., 2019; Su et al.,
2020). In anti-infection treatment, because the pathogenic
bacteria increase or exert an inhibitory effect on the defense
function of the patient, pathogenic bacteria exist for a long
time and cannot be eradicated (Benway and Moon, 2008).
Bacterial infection may be the trigger rather than the cause of
the clinical syndrome.

Sex Hormone Imbalance
The prostate is a sex accessory organ, and pathological changes in
the prostate and the progression of prostatitis are closely related
to sex hormones and their receptors (Letkiewicz et al., 2020). In
addition, prostate gland lesions and the occurrence and
development of prostatitis are closely related to sex hormones
and their receptors, and a sex hormone imbalance is the main
reason for class IIIB prostatitis (Lan et al., 2017).

Urination Dysfunction
Uric acid is filtered through the glomerulus and is the product of
nucleic acid decomposition, cell metabolism and purine
metabolism in the body. Most urate is reabsorbed through the
proximal convolution tubule, but an accumulation of urate
crystals in the tissue leads to an inflammatory reaction that
produces high-frequency contraction and spasm of the
urethral sphincter. These changes cause an imbalance in
bladder detrusor and sphincter synergism or bladder outlet
obstruction and urine reflux.

Neuroregulatory Mechanisms
Neuroregulatory mechanisms are closely related to prostatitis. In
patients with prostatitis (Park et al., 2015; Shulyak et al., 2019),
inflammation is stimulated and may cause long-term nervous
system damage that result in, clinical symptoms with a spinal
nerve segmental dominance. Prostate pain may be the cause of
spinal nerve segmental secondary lesions. Some prostatitis pain
may be caused by constant pain in spinal nerve segmental nerves,
but scholars have also indicated that prostatitis pain may be due
to the abnormal state of the chronic neuroregulatory mechanism
caused by multiple factors or a single cause, which may be related
to spinal cord glial cells or spinal cord nerve cells (Shih et al.,
2020).

Abnormal Immune Response
Relevant studies have suggested that prostatitis is likely an
autoimmune disease (Motrich et al., 2007). People with
normal immune function generally do not experience
inflammation after an infection, while those with low immune
function are prone to inflammation. Some scholars also proposed
that the prostate is an immune organ with more than 90% T
lymphocytes, which exist in the epithelial stromal area of the
gland, along with a small number of other inflammatory cells
(Motrich et al., 2020). T lymphocytes produce IFN-γ and
stimulate the production of IL-15 in the prostate, and this
paracrine signaling is the cause of chronic inflammation
(Handisurya et al., 2001). Both prostatic epithelial cells and
stromal cells express cytokine receptors, participate in local
immune regulation as anti-inflammatory presenting cells

(Carlo et al., 2007; Penna et al., 2009; Fibbi et al., 2010; De
Nunzio et al., 2011), and secrete pro-inflammatory cytokines such
as IL-1α, IL-1β and IL-6 (Kramer et al., 2003; Beadling and Slifka,
2006; Magri et al., 2019). Prostatitis is considered an autoimmune
disease (Li et al., 2019).

CHALLENGES IN THE CLINICAL
TREATMENT AND DIAGNOSIS OF
PROSTATITIS
Currently, ideal treatment and diagnostic methods for prostatitis
are still lacking, and thus new drug delivery systems and
diagnostic strategies for prostatitis are urgently needed.

Challenges in the Treatment of Prostatitis
The etiology of prostatitis is unclear due to the numerous
symptoms with no specificity (Verze et al., 2016). In recent
years, some experts have proposed the concept of prostatitis
syndrome, a clinical syndrome with different etiologies,
clinical manifestations, disease processes and responses to
treatment (Ramakrishnan and Salinas, 2010). Antibiotics,
nonsteroidal anti-inflammatory analgesics and alpha-
blockers are used in the traditional clinical treatment of
prostatitis (Xiong et al., 2021). In addition, pharmacological
treatments remain largely ineffective due to the difficulty in
penetrating the prostatitis microenvironment. Prostatitis is
characterized by inflammatory hyperplasia, a high pH,
bacterial accumulation and a disruption of the blood-
prostate barrier (El Meliegy and Torky, 2015). These four
characteristics and properties are analyzed in the remainder
of the article.

Inflammatory Hyperplasia
Prostatitis is accompanied by inflammatory hyperplasia,
leading to prostatic hyperplasia and edema, prostate duct
stenosis or obstruction caused by pressure in the gland, and
the blood circulation barrier obstructs the entry of drugs
(Ravindran et al., 2020). At the same time, inflammatory
exudates extravasate around the prostate due to high
pressure, causing or exacerbating symptoms of pelvic and
urinary tract irritation.

High pH
In addition, prostatitis increases the pH of the prostate and
decreases drug dispersion, and the concentration of drug that
penetrates the prostatic canal, acini and prostatic fluid is
insufficient. Recurring episodes of prostatitis lead to the
formation of calcified plaques in the prostate.

Bacterial Accumulation
Bacteria accumulate inside or on the surface of calcified plaques
(Dibb et al., 2001), exist andmultiply sustainably under protective
biofilms. Calcified spots can develop into stones, whichmay block
the prostate gland duct and induce infection. Therefore, calcified
spots and stones are important factors affecting the effectiveness
of prostatitis treatment, leading to repeated attacks.
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Blood-Prostate Barrier
Rectal administration is one of the most common methods used
in prostate treatment, but some drugs are unable to pass through
the blood-prostate barrier and do not reach effective therapeutic
concentrations in the prostate tissue and acinus. (El Meliegy and
Torky, 2015) Direct injection into the prostate solves the problem
of the prostate anatomical barrier, but invasive treatment easily
causes damage to the nerve and vascular tissues of the perineum
and aggravates local inflammation.

Challenges in the Diagnosis of Prostatitis
The NIH classifies prostatitis into four subtypes (Sharma and
Kumar, 2021), and the main cause of type I and II prostatitis
is pathogen infection. According to the type of pathogen,
the choice of appropriate antibiotics results in a better
treatment effect. Type IV prostatitis is difficult to detect due
to a lack of clinical symptoms, relevant pathogenesis and
treatment studies. Among the CP/CPPS, is the most
common, accounting for more than 90% of chronic
prostatitis cases. (Holt et al., 2016) The diagnostic criteria
are that the patient has persistent or recurrent pain in the
pelvic area for at least 3 of the past 6°months. However, the
definition of prostatitis is still relatively vague, the
classification is complex, the diagnostic method is also quite
controversial, and reliable physical and chemical indicators are
lacking. No unified standard for the clinical diagnosis and
evaluations of the curative effect are available, and the curative
is generally difficult to evaluate and analyze (Coker and
Dierfeldt, 2016).

APPLICATION OF FUNCTIONALIZED
NANOMATERIALS IN PROSTATITIS

Many pathogenic factors contribute to prostatitis (Delcaru
et al., 2016), and lesions induced by different factors require
different detection and treatment methods, which
undoubtedly increases the difficulty of diagnosing and
treating prostatitis. At the same time, urethral inflammation
has a long disease course, and traditional diagnostic and
treatment methods are invasive, which will exert a certain
effect on the patient’s body and mind (Mangir and Chapple,
2020). For example, the most commonly used mode in clinical
practice, rectal administration, may damage the intestinal
mucosa due to unstable drug absorption. Therefore, the
treatment of prostatitis requires good imaging performance,
strong compatibility and high universality of imaging
technology, and a high bioutilization of pharmaceutical
preparations.

The inflammatory response is the core pathological
mechanism of prostatitis and the key link affecting the disease
process (Motrich et al., 2018). Methods to effectively alleviate the
inflammatory microenvironment are the key to improving the
clinical efficacy of prostatitis treatments. In addition, prostatitis is
often accompanied by a microbial infection. For prostatitis
caused by a microbial infection (Kogan et al., 2018), treatment
with anti-infectious agents is the most direct and effective

method. Inflammation and infection are also major diagnostic
indicators of urethral inflammation, including prostatitis.

Nanotechnology refers to the study and application of
materials at the nanoscale, and its application in the medical
field is called nanomedicine (Richardson and Caruso, 2020).
Advances in nanotechnology have facilitated the development
of delivery systems to treat prostate-related disorders. Advantages
of nanocarrier preparations include the combination of a variety
of drugs, including biomacromolecule drugs; reduced
degradation of unstable drugs for slow and controlled release;
and increased residence time of relevant drugs to avoid frequent
injections and meet the needs of prostatitis treatment (Thakur
and Agrawal, 2015; Liu et al., 2020; Liu et al., 2020; Wang et al.,
2020; Lin et al., 2021; Liu et al., 2021). More importantly, the
modular design and preparation characteristics of
nanotechnology endow nanomaterials with intelligent
characteristics (van der Meel et al., 2019). Smart NPs are
designed to respond to environmental or external stimuli that
trigger drug release after passive or active accumulation, as
schematically depicted in Figure 2.

Nanotechnology is a powerful tool for developing new
treatments and diagnoses for prostatitis and is expected to
continue to grow in the future. In recent years, a number of
nanomaterials with anti-inflammatory and antimicrobial
properties have emerged,including CuFeO2 and Fe3O4 NPs,
nanohydrogels, photosensitive H2-generated nanosystems, and
polydopamine nanoparticles (Salari et al., 2018; Yu et al., 2018;
Zhao et al., 2018; Antonoglou et al., 2019; Zhang et al., 2019).
Nanomaterials with anti-inflammatory and anti-infective
properties show good application prospects in the treatment of
prostatitis. We will summarize the applications of functionalized
nanomaterials in prostatitis and evaluate the advantages and
disadvantages (Table 1).

The Application of Functionalized
Nanomaterials in Prostatitis
Inorganic Nanomaterials
Inorganic nanomaterials have been widely used in biomedical
fields because of their easy availability and stable properties.
Inorganic nanomaterials generally refer to the incorporation of
metal and nonmetal elements, metal oxides, salts and other
components into nanoparticles alone or in combination (Rao
et al., 2007). These nanomaterials have different physical and
chemical properties due to their different compositions and
structures. Thus, different inorganic nanomaterials have
different applications (Liang et al., 2014). In UTI (including
prostatitis), inorganic nanomaterials are mainly used in the
scenarios described below.

Inflammation is associated with oxidative stress and can be
alleviated by antioxidants (Czarny et al., 2018). A variety of
inorganic nanomaterials have been found to possess
antioxidant activity. Iron nanoparticles, such as Fe3O4

nanoparticles, reduce oxidative pressure by catalyzing the
degradation of H2O2 (Alavi and Karimi, 2019). Fe3O4 is also
considered a magnetic nanoparticle with good biocompatibility
and anti-inflammatory activity (Xie et al., 2019). Fe3O4
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nanoparticles have been combined with various anti-
inflammatory drugs as a new strategy for the treatment of
prostatitis (Kojima et al., 2018). Nanoparticles composed of
another metal oxide, zinc oxide, are also widely used to treat
urethral inflammation (Ihsan et al., 2018; Hosseini et al., 2019;
Abd Elkodous et al., 2020). Zinc oxide nanoparticles have a good
antioxidant function in combination with other components
(García-López et al., 2018). In recent years, the development
of enzymology has provided an effective tool for the removal of
reactive oxygen species, and some inorganic nanoenzymes with
an inherent antioxidant capacity have also been developed as
neuroprotective therapeutic drugs, among which CeO2 is the
most promising (Kwon et al., 2018; He et al., 2020). Hirst et al.
documented the anti-inflammatory properties of CeO2

nanoparticles for the first time in 2009, as these nanoparticles
inhibited the expression of iNOS in LPS-induced macrophages
(Hirst et al., 2009). Soh et al. prepared a cerium oxide-zirconia
compound nanoenzyme and found that it eliminated ROS
production to inhibit sepsis (Soh et al., 2017). Therefore,
inorganic nanomaterials with enzyme-like effects scavenge free
radicals and exert anti-inflammatory effects by producing
enzymatic reactions.

In addition, inorganic nanoparticles have good performance
in fighting microbial infections. Gold nanoparticles improve the
antibacterial activity of antibiotics through the targeted delivery
of antibiotics (Patil and Kim, 2017). Meanwhile, the
photothermal effect of gold nanoparticles irreversibly
destroys the bacterial membrane structure and then kills
bacteria (Hu et al., 2017). Silver, magnesium and iron
particles, when reduced to nanosize, were suggested to
exhibit antibacterial activity against E. coli and S. aureus
(Yousefshahi et al., 2018; Videira-Quintela et al., 2020).

Nanosilver is widely used in the medical field because of its
strong antibacterial activity, lack of drug resistance and safety.
Silver NPs target the respiratory system and cell division of
microorganisms that eventually result in cell death (Panáček
et al., 2018). Copper nanoparticles have a similar antibacterial
mechanism in urinary tract infection (Al-Enizi et al., 2018).
Titanium dioxide nanoparticles have also been used to destroy
bacterial cells (Zheng et al., 2018). The antimicrobial activity is
based on the photocatalytic property of TiO2 NPs (Guo et al.,
2019). The production of reactive oxygen species (ROS) by TiO2

was also reported (Yousefshahi et al., 2018). In addition to their
direct anti-infective effects, nanoparticles can also be loaded
with antibiotics. Biocompatible Fe3O4 nanoparticles increase
the efficacy of amoxicillin against gram-positive and gram-
negative bacteria through magnetic targeting (Lu et al.,
2017). Sulfur nanoparticles enhance the killing of urethral
pathogens by delivering antibiotics (Paralikar et al., 2019).
Notably, the metabolism of inorganic nanoparticles remains
controversial, especially those containing heavy metals, which
have the risk of metabolic toxicity (De Matteis, 2017). These
nanomaterials have important application prospects in the
treatment of urethral infectious inflammation.

Organic Nanomaterials
In the field of medicine, hydrogels have great potential for
development. The structure determines the properties, and the
biocompatibility, biodegradability and nanometer compound
properties of hydrogels are commonly used in the medical
field (Fuchs et al., 2020). Therefore, hydrogels are widely used
in the medical field as drug release carriers and corneal contact
lenses, in bone tissue and soft tissue regeneration, and in
reconstruction and burn treatment (Chen et al., 2019). Sun

FIGURE 2 | Smart nanoparticles for prostatitis.
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Xiaoyong conducted clinical trials, and patients with prostatitis
were divided into two groups, a group treated with terazosin
hydrochloride combined with levofloxacin, another group treated
with nanosilver hydrogels and silver nanoparticles through the
anal route, and premature ejaculation grading and erectile
function index were evaluated in the two groups of patients
before and after treatment to assess sexual function and
quality of life (Sun et al., 2019). He observed improvements in
these indicators in patients treated with the nanosilver hydrogel
(Sun et al., 2019). Although hydrogels have good sustained release
and anti-inflammatory effects, chemical cross-linking reagents
are often needed.

In addition to hydrogels, organic nanoemulsions are also
commonly used as drug carriers. PLGA nanoparticles show
excellent antibacterial properties against urethral pathogens by
delivering trimethoprim (Brauner et al., 2020). Liposomes are
widely used in biomedical research, especially in nucleic acid
delivery research. Zhao et al. reported that the in vivo delivery and
expression of hBD-2 via liposomes reduced mucosal damage,
interstitial edema and inflammatory cell infiltration in animal
models of UTI (Zhao et al., 2011). Active peptide nanoparticles
have also been used in prostate therapy. According to Cao et al.,

nanoparticles coupled with the autoantigen peptide T2 display
improved efficacy against CP/CPPS, which would improve the
treatment approach (Cao et al., 2019).

In recent years, biologically derived nanomaterials, including
extracellular vesicles, have been widely used in the field of
biomedicine (Fan et al., 2019; Fan et al., 2019; Jiang et al.,
2020; Wang et al., 2020). Extracellular vesicles are
phospholipid bilayer membrane vesicles that are released by
cells and transmit information between cells. They also play
an important role in regulating inflammation in the body.
Extracellular vesicles derived from neutrophils exert an anti-
inflammatory effect because they express inflammatory
cytokine receptors that bind to and clear inflammatory
cytokines (Gao et al., 2017; Li et al., 2020). Researchers found
that extracellular vesicles from other cellular origins also exert
anti-inflammatory effects (Liu et al., 2020; Gao et al., 2021).
Extracellular vesicles derived from mesenchymal stem cells
inhibit inflammatory phenotypes by regulating immune cell
signal transduction in individuals with chronic prostatitis
(Peng et al., 2021). In addition, bionic extracellular vesicles are
widely used in anti-inflammatory and anti-infection research.
Jiang et al. achieved endotoxin and exotoxin cleanup and

TABLE 1 | The application of functionalized nanomaterials in prostatitis.

Nanocarrier Therapeutic
strategy

Model Effective
constituent

Advantages Disadvantages Refs.

silver NPs Antimicrobial for
multidrug-
resistant bacteria

Urinary tract
infections

Silver Inhibits biofilm formation,
inhibits the growth of UTI-
causing pathogens. Inhibits
multidrug-resistant bacteria

Metabolic toxicity (Divya et al., 2019)

(Lopez-Carrizales et al., 2018)
(Maharubin et al., 2019),

(Al-Ansari et al., 2020)(El-Batal
et al., 2019)

sulfur NPs Antimicrobial Urinary tract
infections

Sulfur Use as an antibacterial agent
alone or in combination with
antibiotics to exert synergistic
effects

Metabolic toxicity (Paralikar et al., 2019)

Zinc oxide NPs antioxidant
activity and
antibacterial
activity

Urinary tract
infections

Zinc oxide ZnO NPs displayed
antibacterial activities and
moderate antioxidant
potential.

none (Santhoshkumar et al., 2017;
Chandra et al., 2019; Hosseini
et al., 2019; Abd Elkodous
et al., 2020)

Extracellular
vesicles

Anti-inflammatory chronic
prostatitis

Extracellular
vesicles

Ameliorates chronic pelvic
pain, improves voiding
dysfunction, suppresses
inflammatory reactions, and
facilitates prostatic tissue
repair.

preparation is relatively
complicated and the
active ingredients are
complex

(Peng et al., 2021)

Nanoparticle-
conjugated
Autoantigen
Peptide T2

Anti-inflammatory Autoimmune
prostatitis

Autoantigen
Peptide T2

Ameliorates the manifestations
of CP/CPPS that will improve
the effectiveness of
therapeutic approaches.

autoimmune risk (Cheng et al., 2019)

Selenium NPs Antimicrobial Urinary tract
infection

Selenium Increased percentage of
biofilm. Efficient inhibition of S.
aureus, P. aeruginosa, and
E. coli.

none (El-Sayyad et al., 2020)

copper NPs Antioxidant and
antibacterial

Urinary tract
infection-causing
pathogens

Copper Proved to effectively kill or
significantly inhibit the activity
of urinary tract infection-
causing pathogens and
exhibits excellent antioxidant
activity.

Metabolic toxicity (Malarkodi and Rajeshkumar,
2017; Al-Enizi et al., 2018)

PLGA
nanoparticles

Antimicrobial Urinary tract
infections

Trimethoprim No effects on metabolism and
good histocompatibility

One function of the
carrier

(Brauner et al., 2020)
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antimicrobial effects by constructing hybrid bionic extracellular
vesicles targeting bacteria (Jiang et al., 2021). These studies
provide new insights into the treatment of urethral inflammation.

Nanomaterials for the Diagnosis of
Prostatitis
Nanomaterials have been widely used in biosensors, molecular
diagnosis, medical imaging and other research fields (Liu et al.,
2014; Deng et al., 2017; Liao et al., 2018; Liu et al., 2019; Liu et al.,
2020) and have wide application prospects in the diagnosis of
prostatitis (Qindeel et al., 2021). In particular, in medical
imaging, nanomaterials have been used as contrast agents to
guide the treatment of prostatitis. Contrast agents enter the body
through surface coupling or encapsulation in nanoparticles,
which increase the acoustic reflectivity and form clearer
images with increased brightness (Wu et al., 2019; Fan et al.,
2021). Magnetic resonance (MR) produces an image of resonance
signals caused by radioexcited external magnetic fields based on
the spin of protons. MNPs have been used as contrast agents to
modulate the undulation of T2 of water molecules to form the
“target-MNP” polymer. At this point, MNPs and target molecules
form a magnetic cluster through the specific binding of high-
affinity ligands, resulting in faster attenuation of the NMR signal
or a shorter transverse relaxation time (Polackwich and Shoskes,
2016). Compared with GMP, MTJ and μHall sensors effectively
shorten the time required to complete immunoassays [58].
Computed tomography (CT) uses X-rays to create cross-
sectional and three-dimensional images of different tissue
decay states. The CT contrast medium plays a key role in
distinguishing similar attenuation coefficients. Two types of
CT contrast agents are composed of nanoparticles. One is an
iodine-based nanosynthetic drug in which nanoparticles act as
carriers of iodine (Xu et al., 2019), such as liposomal iodine [59].
The second category is metal-based contrast agents, which are
composed of nanoparticles derived from various metals with high
X-ray attenuation factors, including gold and zirconia. Nano-CT
contrast agents are widely used in biomedical imaging. For
example, gold nanoparticles are engulfed by red blood cells to
form blood flow images (Han et al., 2019). CT pulmonary
angiography is a minimally invasive angiography technique
that rapidly infuses an iodine contrast agent into the
pulmonary artery through the superior vena cava, the right
atrium and the right ventricle through the superior vena cava
and then to the pulmonary artery. Scanning using spiral CT or
electron beam CT has been used as a first-line clinical screening
method for acute pulmonary embolism.

With the rapid development of biomedical imaging
technology in the 21st century, this technology has become an
important method for the clinical diagnosis and detection of
prostatitis. The field of biomedical imaging expanded from the
initial X-ray imaging to magnetic resonance imaging (MRI),
computed tomography (CT), and ultrasound used today after
a long period of exploration and growth. Although these imaging
techniques have different imaging principles, they all observe tiny
lesions in a noninvasive manner, providing excellent images of
humans due to their unique advantages. However, they have

some inherent limitations. For example, magnetic resonance
imaging has an insufficient spatial resolution, leading to low
sensitivity [46]. Therefore, many contrast agents have been
developed to improve the contrast between normal tissue and
prostate lesions and thus improve the diagnostic accuracy.

The cause of prostatitis is multifactorial, and the disease course
is long. The most commonly used mode in clinical practice, rectal
administration, may cause damage to intestinal mucosa due to
unstable drug absorption. Therefore, the treatment of prostatitis
requires good imaging performance, strong compatibility, a high
universality of imaging technology, and a high bioutilization of
pharmaceutical preparations. Advances in nanotechnology have
facilitated the development delivery systems to overcome
prostate-related disorders. Advantages of nanocarrier
preparations include the combination of a variety of drugs,
including biomacromolecule drugs; reduced degradation of
unstable drugs and slow and controlled release; and increased
residence time of relevant drugs to avoid frequent injections to
meet the needs of prostatitis treatment (Thakur and Agrawal,
2015). In addition, an increasing number of nanomaterials have
attracted attention due to their excellent imaging performance.
Currently, many nanomaterials have been successfully developed
as contrast agents for clinical use (Lu et al., 2017; Hu et al., 2018;
Song et al., 2018). For example, iron oxide nanoparticles and
manganese oxide nanoparticles are used as MRI contrast agents
because of their unique magnetic properties (Waddington et al.,
2020). Gold nanorods have been used in photoacoustic imaging
(PAI) due to their unique surface plasmon resonance properties
(Huang et al., 2019). Surface engineering modification is often
performed to maintain or improve their biocompatibility,
colloidal stability and disease targeting and to achieve the
more effective use of nanocontrast agents (Fan et al., 2021).
Zhao Meng prepared a series of inorganic nanoparticles
with a uniform morphology and imaging performance using
polyglycol for ligand exchange to improve the colloidal
stability and biocompatibility of the nanoparticles (Zhao
et al., 2020). Then, the inappropriate groups were modified
with spermidine, and finally, the targeted nanocontrast agent
based on supramolecular chemical surface modification was
obtained. Various methods were used to measure its
properties, and the prepared contrast agents displayed good
dispersiveness, colloid stability, and targeting, and the surface
modification method was universal [51]. Surface engineering
modifications based on supramolecular chemistry provide a
new design idea and experimental basis for the future design
and development of targeted prostatitis-related nanoagents.
MR has the advantages of a high soft tissue resolution and
no ionizing radiation, and thus it could be used in the diagnosis
of prostatitis.

Nanomaterials for the Prevention of
Prostatitis
The key to preventing and controlling infectious diseases is to
control the source of infection, cut off the transmission route and
protect vulnerable groups (Nii-Trebi, 2017). Nanoantibodies can
eliminate pathogenic microorganisms in animals, control the
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source of infection or cut off the transmission route to prevent
diseases and protect people. Campylobacter infection is one of
the most common foodborne infections in humans, and
broilers are the main source of Campylobacter infection
(Kelly et al., 2017; O’Brien, 2017). Nanoantibodies
specifically target the outer membrane proteins of
Campylobacter jejuni and Campylobacter coli in broilers,
inhibit the fixed value of Campylobacter jejuni and block
bacterial transmission (Vanmarsenille et al., 2017).

Passive immunity refers to the provision of pathogen-specific
foreign antibodies to susceptible populations to achieve rapid
protection in the short term. Traditional monoclonal antibodies
are derived from the serum of humans or immunized animals, the
manufacturing process is complicated, and the cost is high. Some
animal-derived monoclonal antibodies easily cause adverse
reactions. Nanoantibodies have become an alternative to
existing passive immune antibodies. Many pathogens and
external harmful substances enter the human body through
the gastrointestinal mucosa. Vaccines targeting the mucosal
surface can induce a mucosal immune response and prevent
gastrointestinal infection. Oral vaccines are the most attractive
route of treatment. However, vaccine antigens in the intestine
often fail to reach potential immune-inducing sites, leading to a
poor immune response. Aminopeptidase N (APN) is a receptor
expressed on small intestinal cells and antigen-presenting
cells (APCs). The combination of APN-specific targeting
drugs with vaccine antigens significantly stimulates the
immune response in the intestinal mucosa. Bakshi [53]
constructed an anti-porcine APN nanoantibody with the Fc
domain of conventional antibodies to form a bivalent fusion
protein that triggered the intestinal IgA response after oral
administration and confirmed the potential of vaccine
antigen carriers (Wu et al., 2020). Modern bioengineering
technology can help construct a variety of expression systems
for nanoantibodies, improve the biosafety of nanoantibodies
and promote their popularization and application. Rotavirus is
the main cause of severe diarrhea in infants and young children,
and specific therapeutic drugs are still lacking. Researchers have
constructed expression systems in yeast, lactobacillus and
transgenic rice to produce anti-rotavirus nanoantibodies that
prevent rotavirus-induced diarrhea (Vandervaart et al., 2006;
Martín et al., 2011). Transgenic rice were consumed by mice
to absorb the nanoantibody expressed and stored in rice and
to subsequently prevent diarrhea. These measures all suggest that
nanoantibodies can be used as a complement to current vaccine-
based infectious disease prevention measures (Tokuhara et al.,
2013).

Nanomaterials for the Treatment of
Prostatitis
Anti-inflammatory and antimicrobial agents are the two main
strategies for the treatment of urethral inflammation. We will
summarize the application of nanomaterials in the treatment
of prostatitis from antibacterial and anti-inflammatory
aspects.

Application of Antimicrobial Nanomaterials in
Prostatitis
Pathogenic microorganisms such as viruses, fungi and bacteria
cause prostatitis, among which bacterial infection is the main
pathogenic factor causing prostatitis. The number of
antimicrobials used to eradicate type II chronic bacterial
prostatitis is very limited. Treatment of CBP is hampered and
challenging because most antimicrobial agents have a poor ability
to penetrate infected prostate fluids and tissue (Charalabopoulos
et al., 2003). Another reason is the lack of an active transport
mechanism. Some drugs reach the prostate and achieve a
minimum inhibitory concentration, but they also run the risk
of bacterial resistance (Yu et al., 2018). Nanomaterials or
nanoparticles may exhibit antimicrobial properties alone or
enhance the efficiency of antibiotic administration.
Antimicrobial NPs consist of metals and metal oxides,
antimicrobial compounds, surfactant-based nanoemulsions and
carbon-based nanomaterials. These nanoantibiotics may damage
pathogens through several mechanisms: a) they may produce
reactive oxygen species, damaging microbial cell components; b)
theymay degrade the cell walls of pathogens; c) theymay interfere
with energy transduction mechanisms; and d) they may slow or
hinder DNA synthesis (Yoon et al., 2011; Kumar and Das, 2017;
Fernando et al., 2018; Raza et al., 2019). Nanoantibiotics would be
more useful in eradicating intracellular infections. While
conventional antibiotics are effective at suppressing bacterial
growth, they are least effective against bacteria that remain in
quiescent cells. Urinary tract pathogens often take advantage of
this limitation and cause urinary tract infections to recur after
antibiotics have failed. Nanoantibiotics target residual bacteria in
cells to avoid recurrence mechanisms.

Bacterial biofilms are an important barrier that promote
bacterial self-protection and an important mechanism of
therapeutic tolerance. Nanomaterials have shown
unprecedented advantages in destroying bacterial biofilms. Li
et al. realized the antimicrobial effect of the biofilm
microenvironment response by designing antibiotic quantum
dots (Li et al., 2020). In urethral infections, well-designed
nanoparticles inhibited the production of biofilms, thereby
inhibiting infection. For instance, Hosseini et al. reported that
ZnO nanoparticles exert inhibitory effects on the biofilms of both
isolates (Hosseini et al., 2018). These findings confirm the
potential of zinc oxide as a treatment for catheter-associated
urinary tract infections. In comparison, research into the
antibiofilm effects of silver nanoparticles is more extensive and
mature (Martinez-Gutierrez et al., 2013). Silver nanoparticles
inhibit the formation of biofilms in organisms, including the
natural marine environment (Fabrega et al., 2011), wastewater
(Sheng and Liu, 2011) and mammals (Qin et al., 2014). The
oxidation of silver ions is widely recognized as an antimicrobial
mechanism. However, recent studies have shown that other
mechanisms may exist. Saleh et al. found that Ag
nanoparticles downregulated the expression of Proteus novelis
and Proteus vulgaris fliL genes, which are clinically useful for
urinary tract infections, thus exerting an anti-infection effect
(Saleh et al., 2019). As in-depth research is conducted, the
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antibacterial mechanism of nanomaterials will be expanded,
which will provide a more detailed basis for the antibacterial
application of nanomaterials.

Induction of the Immune Response by Nanomaterials
in Prostatitis
A large number of experiments have proven that the pathogenesis
of prostatitis is closely related to the inflammatory
microenvironment (Rees et al., 2015). However, the
pathogenesis of prostatitis is complex, and the efficacy of
monotherapy is limited. A treatment combining
immunotherapy, antioxidant therapy and functional
nanomaterials shows advantages. T2 is a specific peptide
sequence isolated from the TRPM8 protein, which is encoded
by prostate-specific genes (Miller et al., 2007), and has the ability
to induce antigen-specific immune tolerance to antigenic
peptides (Cheng et al., 2019). A prostatitis model was
established in male C57 mice by intravenously injecting
0.2°mL of normal saline and 0.2°mL of a mixture of PLGA,
PLGA-OVA and PLGA-T2. The PLGA-T2 group had a higher
pain threshold, a lower frequency of urination and a
significantly lower level of CPR than the other groups.
Novel peptide T2-binding functional nanoparticles with
autoantigens have been suggested to successfully alleviate
or even cure prostatitis (Shandilya et al., 2020). Cao used
antigen T2 combined with polyethylene-maleic anhydride-
modified biodegradable PLGA nanotherapy, including the
synthesis of biodegradable nanoparticles and conjugation to
antigen T2 peptide, to induce immune tolerance in CP/CPPS
mouse models (Cao et al., 2019). Mice treated with PLGA-
PEMA-T2 showed increased pain thresholds, and reduced
urination and prostate pathology. Compared with the other
groups, serum levels of inflammatory mediators (TNF-α and
CRP) were decreased and the level of the anti-inflammatory
cytokine IL-10 was increased in the PLGA-PEMA-T2 group.
PLGA-PEMA-T2 nanoparticles improved disease
manifestations and upregulated IL-10 in mouse CP/CPPS
models. The experiment confirmed the feasibility of using
biodegradable nanoparticles combined with T2 antigen to
treat prostatitis.

In addition, oxidative stress and inflammation are closely
related to the immune responses that maintain homeostasis in
the body. Oxidative stress is not only an important feature of
inflammation but also a cause of inflammation (Czarny et al.,
2018), (Liu et al., 2020). Selenium, a trace element in the
human body, is a component of glutathione peroxidase and
has the ability to inhibit the production of reactive oxygen
species (Rao et al., 2019). In recent years, selenium
nanoparticles bound to functional nanocomposites have
developed rapidly. Yang, B-Y et al. eliminated oxidative
stress after wound healing in the prostatic urethra following
transurethral prostatectomy (TURP) using a multivoid Se@
SiO2 nanosphere. A randomized beagle dog TUPR model was
used to observe the level of oxidative stress during wound
healing. Porous Se@SiO2 nanoballs promoted prostate urethral
epithelial changes, enhanced the antioxidant capacity by
inducing Ikk expression in macrophages, where I kappa B

predominates, and p65 phosphorylation to inhibit oxidative
stress and induce macrophages to differentiate into M2
phenotypes, reducing inflammatory reactions (Yang et al.,
2019). Nanoselenium has been studied in combination with
antibiotics for the treatment of urinary tract infections. El-
Sayyad et al. synthesized gentamicin-assisted fungal-derived
selenium nanoparticles under γ-ray irradiation to inhibit the
resistance of urinary tract infection-causing pathogens (El-
Sayyad et al., 2020).

SUMMARY AND OUTLOOK

The causes of prostatitis are complex and include pathogen
infections, inflammation, free radicals, an abnormal immune
response, sex hormone imbalance and so on. The treatment
and diagnosis of prostatitis is facing great challenges.
Nanomaterials with anti-inflammatory effects, such as CeO2,
Fe3O4 and nano silver hydrosol, have been experimentally
proven to be useful in the prevention, diagnosis and
combined treatment of prostatitis. Although nanomaterials
have achieved impressive results in experimental studies,
their clinical conversion still faces significant obstacles. First
of all, the metabolic pathway of some inorganic nanomaterials
in vivo is not clear, and the cumulative toxicity is high. For
example, silver nanoparticles, commonly used in urinary tract
infections, accumulate in the body and cause liver and kidney
toxicity. Secondly, traditional nanomaterials, as exogenous
substances, are easy to trigger the immune response of the
body, and are easily cleared by the immune system. In addition,
nanomaterials as contrast agents also have the defects of
low resolution and limited imaging depth. These problems
greatly limit the application of nanomaterials in the clinical
diagnosis and treatment of prostatitis. How to overcome the
above obstacles has become the current research focus of
nanomedicine.

The latest research progress summarized in this review, and
it is not hard to find out the future research direction in
this field. First, nanotechnology will promote the
development of clinical diagnosis of prostatitis, especially
molecular imaging research based on multimodal imaging
technology will further improve the sensitivity and
specificity of diagnosis. At the same time, nanotechnology
will also facilitate the development of liquid biopsies, which
are called upon to combine body fluid detection with
medical imaging. Secondly, nanomedicine will break away
from the traditional nanomaterials to the clinical
application, which mainly depends on the development of
new organic or biological sources of nanomedicines. The
emergence of natural nanocarriers, such as exosomes,
eliminates the immunogenicity and metabolic risks of
traditional nanomaterials, making their clinical applications
possible. Third, nanotechnology combined with
machine learning can help achieve multifunctional
integration and personalized diagnosis and treatment.
Nanomedicine will undoubtedly revolutionize prostatitis
diagnosis and treatment.
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