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The neurobiological bases of mood instability are poorly understood. Neuronal network
alterations and neurometabolic abnormalities have been implicated in the pathophysiology
of mood and anxiety conditions associated with mood instability and hence are candidate
mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic
interneurons modulate the activity of principal excitatory neurons through their
inhibitory action determining precise neuronal excitation balance. These interneurons
are directly involved in generating neuronal networks activities responsible for
sustaining higher cerebral functions and are especially vulnerable to metabolic stress
associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin
interneurons are therefore candidate key players involved in mechanisms underlying the
pathogenesis of brain disorders associated with both neuronal networks’ dysfunction and
brain metabolism dysregulation. To provide empirical support to this hypothesis, we
hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in
the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily
characterized by mood instability for which the pathophysiological role of mitochondrial
dysfunction has recently emerged as critically important. We then present a
comprehensive review of evidence from the literature illustrating the bidirectional
relationship between deficiency in mitochondrial-dependent energy production and
parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how
alterations in neuronal excitability, resulting from parvalbumin interneurons loss or
dysfunction, might manifest clinically as mood instability, a poorly understood clinical
phenotype typical of the most severe forms of affective disorders. The evidence we report
provides insights on the broader therapeutic potential of pharmacologically targeting
parvalbumin interneurons in psychiatric and neurological conditions characterized by
both neurometabolic and neuroexcitability abnormalities.
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INTRODUCTION

Mitochondrial Dysfunction and Alterations
in Neuronal Network Oscillatory Activity
Contribute to Affective Pathophysiology
In this review paper, we summarize and discuss the roles and
reciprocal interactions of alterations in mitochondrial energy
production and neuronal networks, and we propose that these
mechanisms are involved in the neurobiology of mood instability.
Mood instability is a subjective state characterized by oscillations
of intense affect and represents a psychopathological phenotype
that cuts across traditional categorical diagnostic boundaries. As
such, it fits research based on classification frameworks, such as
the Research Domain Classification (RDoC) (Insel et al., 2010),
which investigate neurobiological mechanisms underlying
clinical phenotypes that do not fully adhere to DSM
diagnoses. Mood instability tends to occur in the context of
several psychiatric disorders, and while it represents a
pathognomonic feature of Bipolar Affective Disorder (BPAD),
it has also been found in a genome-wide association study
(GWAS) to have strong genetic correlations with Major
Depressive Disorder (MDD) and Anxiety Disorders (Ward
et al., 2020).

The neurobiological mechanisms underlying mood instability
are still largely unknown; however, converging data implicate a
putative role of abnormalities in mitochondria-dependent brain
energy metabolism. Several genes involved in mitochondrial
energy production, such as NDUFAF3, NDUFS3, PTPMT1,
KBTBD4, and MTCH2, have been found associated with
“mood instability” phenotype in the only available GWAS
report that specifically investigated loci associated with mood
instability (Ward et al., 2020). Since the majority of studies
investigating bioenergetic alterations have tended to focus on
categorical, traditional diagnoses, rather than broader
transdiagnostic phenotypes, our review will focus primarily on
reports of alterations associated with specific affective disorders
associated with mood instability.

Mitochondria, which are involved in multiple functions in
cellular metabolism, including macromolecule biosynthesis,
nutrient catabolism, redox homeostasis, and waste
management, together with brain energy metabolism
alterations have been consistently found associated with a wide
range of affective disorders (Marazziti et al., 2011; Holper et al.,
2019; Iwata, 2019).

BPAD represents the prototypical psychiatric disorder
characterized by mood instability and cyclic mood changes
and is the condition, among affective disorders, with the
largest evidence of underlying mitochondrial bioenergetic
alterations. Evidence of mitochondria dysfunction in BPAD
has progressively accumulated over the past two decades.
Postmortem examinations revealed abnormal mitochondrial
morphology (Cataldo et al., 2010) and markedly reduced
mitochondrial complex I (MCI) levels and activity (Andreazza
et al., 2010; Andreazza et al., 2013) in the prefrontal cortex (PFC)
of patients with BPAD. The expression of the MCI subunit gene,
NDUFV2 at 18p11, was found to be reduced in the hippocampus

(Konradi et al., 2004) and in lymphoblastoid cells (Washizuka
et al., 2009) of BPAD patients. Furthermore, magnetic resonance
spectroscopy (MRS) studies in BPAD patients revealed lower
levels of the mitochondrial-deriving amino acid N-acetyl
aspartate (NAA) in the hippocampus and PFC (Yildiz-
Yesilogu and Ankerst, 2006; Frey et al., 2007), increased brain
lactate (Machado-Vieira et al., 2017), and alterations in
phosphocreatine (Kato et al., 1994), creatine kinase reaction
rate constant (Du et al., 2018), and ATP levels after
stimulation (Yuksel et al., 2015). Further observations include
evidence of systemic impairment in mitochondria-dependent
energy production in BPAD patients [reviewed in Nierenberg
et al. (2013)], including reduced intracellular pH and higher
plasma lactate levels (Kato and Kato, 2000; Machado-Vieira
et al., 2017; Jeong et al., 2020), higher levels of cerebrospinal
fluid oxidative stress markers (Knorr et al., 2019), increased lipid
peroxidation and DNA/RNA oxidative damage, and higher levels
of nitric oxide (Brown et al., 2014).

Levels of oxidative stress correlate with poorer quality of life
in BPAD (Nunes et al., 2018), reflecting a possible detrimental
effect exerted by reactive oxygen species (ROS) on higher CNS
brain functions, although this might also indicate that oxidative
stress abnormalities are the consequence of poorer quality of life
resulting from the disease. In fact, metabolic stress and
dysfunctional brain bioenergetic processes might also be
effects of psychotropic medications or of the poorer
socioeconomic status deriving from a chronic and disabling
psychiatric condition such as BPAD. However, we have recently
reported that patients affected by primary mitochondrial disease
resulting from inherited mutations of mitochondrial DNA
present much higher comorbidity rates with BPAD, MDD,
and general anxiety disorder (GAD) relative to the general
population, with BPAD showing the strongest association
which was also the most independent from the burden of
neurological disability (Colasanti et al., 2020). These data in
primary mitochondrial disease patients might suggest that
mitochondrial and metabolic alterations might be a cause for
the development of severe affective syndromes rather than an
effect.

The role of bioenergetic deficits in BPAD is also strengthened
by preliminary clinical evidence suggesting beneficial effects of
treatments with mitochondrial modulators such as coenzyme
Q10 (CoQ10) or Methylene Blue in improving depressive or
cognitive symptoms in BPAD patients (Alda et al., 2017;
Mehrpooya et al., 2018).

The role of mitochondrial abnormalities is evident also in the
pathophysiology of MDD, as illustrated by both rodent and
human studies (Martins-de-Souza et al., 2012; Weger et al.,
2020). Preclinical studies demonstrated that the exposure to
chronic mild stress causes mitochondrial ultrastructure
damage and inhibition of the oxidative phosphorylation
complexes, resulting in reduced mitochondrial respiration rates
in mice PFC (Gong et al., 2011). The lack of NAD(P)+
transhydrogenase, an essential enzyme for energy-linked
reactions in the mitochondrial matrix, was found to induce
depressive-like behavior in mice (Francisco et al., 2020). Ex
vivo human studies showed reduced ATP and altered levels of
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proteins associated with energy metabolism in the dorsolateral
prefrontal cortex in MDD patients (Martins-de-Souza et al.,
2012). Genome-wide transcriptomic analyses reported that
alterations in oxidative phosphorylation genes in chronic
restraint stress mice models were similar to those found
postmortem in MDD patients’ brain (Weger et al., 2020).

Mitochondrial dysfunctions are suggested also by several
models of anxiety (Filiou and Sandi, 2019) showing imbalance
in oxidative stress in both clinical (Arranz et al., 2007; Ozdemir
et al., 2009) and preclinical models (Brocardo et al., 2012; Hollis
et al., 2015) [summarized by Krolow et al., (2014)]. In mouse
models, decreasing mitochondrial levels of Bcl-2, a mitochondrial
function modulator, induces anxious behavior (Einat et al., 2005).

Alongside mitochondrial dysfunction, the altered oscillatory
activity of neuronal networks, indicative of alterations in neural
synchrony, is another neurobiological abnormality shared by all
major neuropsychiatric disorders with affective manifestations.
Although changes in oscillations in multiple frequency bands
have been reported, we hereby focus on fast-oscillations in the
frequency range of 30–120 Hz, i.e., gamma oscillations. Gamma
oscillations are involved in several high-order brain functions, such
as attention (Jensen et al., 2007), pain (Schultz et al., 2012), object
recognition (Keil et al., 1999), learning (Sederberg et al., 2007), and
long-term memories formation (Axmacher et al., 2006; van Vugt
et al., 2010), and are particularly affected in mood disorders
(Stujenske et al., 2014; Canali et al., 2017; Murphy et al., 2019).
In BPAD, gamma oscillations from frontal and temporal regions
are reduced compared to controls, as shown by EEG (Canali et al.,
2017) and magnetoencephalography (MEG) (Lee et al., 2011; Liu
et al., 2012) studies, respectively. Interestingly, gamma oscillation
alterations were found to persist despite successful treatment of
BPAD depressive episodes, indicating that changes in gamma
synchronization do not directly contribute to symptoms
manifestation and that the observed reduction of gamma
oscillation might represent a trait, rather than state, marker of
BPAD (Canali et al., 2017).

Findings of oscillatory alterations have also been reported for
MDD, including abnormal modulation of gamma oscillatory
activity during working memory encoding and maintenance in
frontal regions using EEG (Murphy et al., 2019) and reduced
gamma oscillations after transcranial magnetic stimulation
(TMS) in frontal regions compared to controls (Canali et al.,
2017), which was also confirmed in animal models of depression
(Sauer et al., 2015).

Some preclinical evidence suggested alterations of gamma
oscillations in anxiety, showing decreased gamma oscillations
in the basolateral ganglia and medial PFC (mPFC) in mice during
fear expression (Stujenske et al., 2014), while other studies
reported increased gamma oscillations in experimental models
of anxiety (Miskovic et al., 2010; Schneider et al., 2018).

In summary, the evidence summarized above indicates that
both mitochondrial and network oscillatory alterations, among
other pathological features, are implicated in the pathogenesis
and pathophysiology of major psychiatric disorders associated
with mood dysregulation and might be candidate mechanisms
underlying mood instability, which is one of the most prominent
features of severe forms of BPAD.

Parvalbumin GABAergic Interneurons Are
Involved in Neuronal Networks Dysfunction
and Are Vulnerable to Brain Metabolism
Dysregulation
Cortical network operations depend on complex interactions
of highly interconnected and dynamic microcircuits composed
of glutamatergic excitatory projection neurons and a multitude of
local GABAergic interneurons that “sculpt” these networks and
regulate the flow of neuronal signals (Tremblay et al., 2016).
GABAergic inhibition is a multifaced function that coordinates
the action of principal cells by countering excitation, exerting
selective filtering of synaptic excitation, and modulating the gain,
timing, tuning, bursting of excitatory cells firing. Inhibition by
GABA interneurons allows stability and transient autonomy of
principal cells populations, through different forms of highly
specialized inhibitory microcircuits, provided by different
interneuron subtypes. The main types of GABAergic
inhibitory microcircuits are feedforward circuits (where
interneurons receive excitatory inputs from external sources
and in turn inhibit the principal excitatory neuron); feedback
circuits (where interneurons receive excitation from principal
cells and, in turn, inhibit them); and lateral inhibitory circuits
(where an assembly of principal cells suppress the activity of
another assembly of principal cells through the excitation of
inhibitory interneurons).

A subtype of GABAergic interneurons, namely, fast-spiking
parvalbumin interneurons (PV-INs), constitutes the largest IN
population in the neocortex and is of particular relevance to the
pathophysiology of brain disorders associated withmitochondrial
and bioenergetic dysfunction due to their particularly high
metabolic demands.

PV-INs are characterized by the expression of the Ca2+-
binding protein parvalbumin, whose presence is restricted to
GABAergic interneurons (Celio, 1986; Kosaka et al., 1987). PV-
INs can be subdivided into chandelier (or axoaxonic) cells and
fast-spiking basket cells. The latter display a fast-spiking
phenotype, consisting in their ability to generate high-
frequency spikes of action potentials (APs) (>50 Hz at 22°C
and >150 Hz at 34°C) during continuous current injection
in vitro, without accommodation (Cauli et al., 1997; Rudy and
McBain, 2001; Hu et al., 2014; Hu et al., 2018).

PV-INs’ somata possess the largest share of inhibitory
terminals of all GABAergic boutons (Gulyás et al., 1999) and
innervate numerous excitatory target cells close to the sites of APs
generation. Their morphological structure with multiple
dendrites allows them to receive inputs from several afferent
pathways, mainly convergent excitatory inputs from principal
neurons (more than 90% of afferents on PV-INs are excitatory)
(Gulyás et al., 1999) and a small proportion of inhibitory inputs,
mainly from other GABAergic interneurons, such as
somatostatin interneurons (SST-INs) (Pfeffer et al., 2013) or
other PV-INs. By mostly receiving strong excitatory inputs,
and by innervating pyramidal neurons at the soma, PV fast-
spiking basket cells are strategically positioned to exert both
feedforward and feedback inhibition and gain control
(Espinoza et al., 2018; Scudder et al., 2018) to excitatory
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outputs. Their fast inhibitory control is fundamental in restricting
and refining AP firings of postsynaptic neurons, enabling
temporal processing and synchronized firing of excitatory
neuronal populations (Isaacson and Scanziani, 2011; Kee et al.,
2015) which results in an optimal excitation and inhibition
balance in cortical circuits (Ferguson and Gao, 2018). PV-INs
inhibitory action on excitatory neurons is implicated in the
generation and maintenance of synchronized oscillatory
network activity, in particular gamma oscillations (Csicsvari
et al., 2003; Sohal et al., 2009; Veit et al., 2017) in most brain
areas. These depend mainly on fast synaptic inhibition by PV-INs
targeting the perisomatic domain of excitatory pyramidal cells
(Kim et al., 2016; Chen et al., 2017; Antonoudiou et al., 2020).
However, it is worth considering that, in specific cortical areas
(e.g., V1), other GABAergic interneuron subtypes, in particular
SST-INs, play an important role in the generation of lower
frequency band oscillations (up to 30 Hz), including those in
the lowest end of the “typical” gamma spectrum (∼30 Hz) (Veit
et al., 2017; Antonoudiou et al., 2020).

Although PV-INs are widely distributed throughout the whole
mammalian brain, their density varies throughout the brain.
Throughout the neocortex, these neurons are mostly present
in middle layers, especially layers II, III, and IV, consistent
with their role in organizing the activity of microcircuits,
while they are completely absent in layer I (Zhu et al., 2018).
In the cortex, they innervate both pyramidal cells and other
interneurons [reviewed in Tremblay et al. (2016)]. There is a high
density of PV-INs also in the hippocampus. In the CA1 region,
they mainly innervate the soma and dendrites of pyramidal cells
(99% of output synapses) with a minority of outputs contacting
with other interneurons, while in the dentate gyrus, they mainly
innervate granule cells [reviewed by Pelkey et al. (2017)].

For their functions, PV-INs require an abundant and
continuous supply of oxygen and glucose through optimal
mitochondrial functions, and their activity is especially
susceptible to brain energy level changes (Kann, 2016). PV-INs
are continuously active in every cycle of gamma oscillations (Hájos
et al., 2004; Gulyás et al., 2010; Tukker et al., 2013). The extremely
high energy demand of fast-spiking signaling requires
mitochondria to generate high adenosine triphosphate (ATP)
levels. This is consistent with the notion that AP transmission
and postsynaptic receptors’ ion flux are the most ATP-consuming
neuronal activities (Attwell and Laughlin, 2001) and PV-INs
generate fast and brief APs [which are considered per se even
more energy expensive than normal, as suggested by Carter and
Bean (2009)] at elevated frequencies for extended periods of time
(Gulyás et al., 1999; Jonas et al., 2004). Furthermore, PV-INs
increased metabolic demands (Jiang et al., 2013) might be not
only due to PV-INs fast-spiking activity but also to their dense
excitatory innervation (Gulyás et al., 1999). Such heavy reliability
on mitochondrial energy metabolism is also represented by a
greater number of mitochondria compared to other neurons
(Gulyas et al., 2006). In vitro evidence showed that gamma
oscillations use mitochondrial oxidative capacity near limit
(Kann et al., 2011; Huchzermeyer et al., 2013) and that even
subtle mitochondrial impairments might result in disruption of
gamma oscillations as demonstrated by the rapid decline of

hippocampal gamma oscillations’ power observed in hypoxic
conditions (Huchzermeyer et al., 2008) or after
pharmacologically induced mitochondrial impairments,
inhibiting MCI’s functions (Whittaker et al., 2011).

ALTERATIONS OF PARVALBUMIN
GABAERGIC INTERNEURONS IN BIPOLAR
DISORDER: A META-ANALYSIS
PV-INs deficits have been implicated in the neurobiology of a
broad range of neuropsychiatric disorders, including
schizophrenia, where the putative mechanistic contribution of
cortical GABA neurons and their dysfunctions, including
downstream effects, have been well characterized (Lisman et al.,
2008; Lewis et al., 2012; Kaar et al., 2019). Abundant PV expression
and consequent efficient Ca2+ buffering by PV are prerequisites for
an adequate inhibition of cortical networks. The absence of PV in
GABAergic interneurons modifies the dynamics of the inhibitory
control at the local level, with important implications on the overall
resulting excitation/inhibition balance in cortical microcircuits
(Schwaller et al., 2004; Caballero et al., 2020). However, the
relationship between PV expression and activity of PV-INs
neurons appears complex, as opposite results have been
observed in full PV knockout mice, where the complete absence
of PV caused increased inhibitory postsynaptic currents through
increased facilitation of GABA release (Vreugdenhil et al., 2003).
These discrepant findings might reflect the hyperexcitability of INs
in PV knockout mice, possibly a compensatory process resulting
from the complete absence of PV since the embryonic stages
(Caballero et al., 2020).

In the following sections of this review, we will present
arguments in support of a possible role of PV-INs in
mechanisms underlying mood instability characteristic of
chronic and severe mood disorders such as BPAD, which, as
summarized in the previous Mitochondrial Dysfunction and
Alterations in Neuronal Network Oscillatory Activity
Contribute to Affective Pathophysiology, are associated with
both brain metabolism dysregulation and neuronal networks’
dysfunction. To provide empirical support to this hypothesis, in
the next paragraph, we report the results of a meta-analysis of PV-
INs loss or dysfunction in the brain of patients with BPAD.

Evidence on PV-INs alterations in BPAD is not unequivocal
with individual studies showing either marked, mild, or no
alterations of PV-INs density or number in BPAD patients.
We therefore performed a meta-analysis of studies assessing
PV-INs alterations in the brain of patients with BPAD and
separately reported data on PV-INs total number, PV-INs cells
densities, and PV mRNA levels.

METHODS

Search Strategy
A standardized search was conducted on Medline/PubMed
electronic database. The following keywords were used:
parvalbumin AND bipolar disorder [“parvalbumins”(MeSH
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Terms) OR “parvalbumins”(All Fields) OR “parvalbumin”(All
Fields)] AND [“bipolar disorder”(MeSH Terms) OR
[“bipolar”(All Fields) AND “disorder”(All Fields)] OR “bipolar
disorder”(All Fields)] until January 2021. We used only those
stated keywords because we identified them as being the most
inclusive for our aim. We explored the use of alternative search
strategies including related keywords, such as “calcium-binding
proteins” AND “bipolar disorders” or parvalbumin AND bipolar
affective disorder but these searches did not extract any additional
relevant article that had not been already identified with the use of
the previously stated keywords.

Study Selection
Inclusion criteria were original studies reporting postmortem
findings of either PV-INs density, total number, or PV mRNA
levels in any brain region available; studies analyzing BPAD
patients (BPAD type I or II) and a control group. Exclusion
criteria were prenatal studies, animal studies, in vitro studies,
articles in a language different than English, review articles,
studies without a control group, articles that were not
published in a peer-reviewed journal, and articles without
available data (either numerical or graphical). Studies that
measured GABA-related transcripts or markers but not PV
mRNA were not included. In addition, we also excluded
microarray studies (n � 1) (Gandal et al., 2012). Although
they have been used for comparison with the data we
analyzed, studies that reanalyzed existing datasets of multiple
transcriptomic studies, investigating PV marker gene profile
(MGP) (Toker et al., 2018), or studies that reanalyzed data
from published and unpublished studies (Torrey et al., 2005)
were not included in the meta-analysis and were classified as
studies reporting nonoriginal data. However, four studies
(Alcaide et al., 2019; Beasley et al., 2002; Reynolds et al., 2002;
Zhang and Reynolds) analyzed brain samples obtained from the
same brain bank (the Stanley Foundation Neuropathology
Consortium brain collection) [details of such brain bank are
explained by Torey et al. (2000)] and we still decided to include
those studies in the quantitative analysis, as they all reported
different results, and most of them assessed PV-INs in different
brain areas from one another. Study selection was performed
according to PRISMA guidelines (Liberati et al., 2009), and a
PRISMA diagram of the full literature search is displayed in
Figure 1.

Data Extraction
In our study, we included three outcome measures: 1) the effect
size for the difference in PV-INs cell density [either in cells/mm2

(or cells. mm−2) and cells/mm3], 2) the effect size for the
difference in PV-INs total number between BPAD patients
and controls, and 3) the effect size for the difference in PV
mRNA expression ratio (reported as 2−dCT) per region between
BPAD patients and controls. For each study, we extracted the
mean and standard deviation of the outcome measures listed, for
all brain regions analyzed, in BPAD patients and healthy controls
(HCs), using the available published data. When data were not
presented in the text but displayed only with graphs and plots, we
either calculated and extracted values manually from the graph or

used WebPlotDigitizer (https://automeris.io/WebPlotDigitizer)
depending on the resolution of the image available. If cell
density, total number, or mRNA was measured across
different layers for neocortical areas (e.g., Beasley et al., 2002),
data were combined into one mean value for the region, and the
standard deviation was calculated among the mean values of the
layers, for each group (BPAD or HCs). The same procedures have
been followed for studies that analyzed PV-INs in different
subregions of the same brain area (e.g., Pantazopoulos et al.,
2010). This method should not influence the statistical
significance or the overall trend of our measurements, because
in all studies analyzed (and in which was performed this
procedure of combining data from different layers or
subregions of the same brain area), all values in each layer/or
subregion were lower in the BPAD group compared to HCs, apart
from Sakai et al. (2008), in which in some PFC (BA9) layers, PV-
INs density values were slightly higher in the BPAD group. When
values reported were from different layers in the cortex [e.g.,
Beasley et al. (2002); Reynolds et al. (2002)], layer I was excluded
from the combined analysis because of the absence of PV-INs in
layer I of the cortex (Zhu et al., 2018). In one case (Wang et al.,
2011), in addition to the size of the sample trial, authors reported
only the median and range values; in this case, mean and SD
values have been estimated using the formulas described by Hozo
et al. (2005), respectively, x ≈ a+2m+b

4 and

S2 � 1
12((a−2m+b)2

4 +(b− a)2), in which m is the median value and a

and b are the low and high ends of the range, respectively.

Data Analysis
RevMan software (Review Manager 5.4.1) was used to perform
the meta-analysis and to create the forest plot seen in Figures 2, 3,
4. Group size, mean, and standard deviation were used to
determine the standardized mean difference (Cohen’s D
values). An inverse variance, random-effects meta-analytic
model was used, with 95% confidence intervals; we therefore
did not assume homogeneity of effects. Heterogeneity was
measured by calculating I2, Tau2, Chi2, and a p value < 0.05.
Then, a Z test, with a respective p value, was performed to test the
significance level of the overall effect. In addition to analyzing
together all brain areas divided only for the outcome measure, we
performed subgroups analysis whenever possible, grouping and
analyzing together studies according to the main part of the
telencephalon they assessed, specifically neocortex or allocortex,
keeping the subdivision dependent on the outcome measure.
However, one study measured PV-INs cell density and total
number in a noncortical brain area, the thalamic reticular
nucleus (TRN), which is part of the diencephalon and is
characterized by a different cell layer organization. Therefore,
it could not be included in neither of the two types of cerebral
cortex. We subgrouped studies according to the type of cortex
analyzed, considering the differential expression of PV-INs across
different brain areas and the potential different vulnerability of
different brain areas to neurometabolic stress. Given the relative
scarcity of studies that assessed PV-INs in postmortem patients,
further subgrouping of studies at individual brain region level has
not been possible.
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Due to the diversity of brain areas and of unit of measurement
(such as cells/mm3 and cells/mm2), we calculated the
standardized mean difference, instead of the normal mean
difference, in order to convert study results to a standardized
effect size and to compare them together. The assessment of
publication bias, using the Egger’s test for funnel plot asymmetry
(Egger et al., 1997), would have been feasible only for the
subgroup analysis (neo- or allocortex), as otherwise, in the
overall comparisons, such test would have possibly led to
asymmetry, not inducible to real publication bias but instead
mostly related to the selectivity of outcomes measures selected for
analysis (Egger et al., 1997; Sterne et al., 2011), and by the
inclusion of different brain areas. Subgroup tests for
asymmetry could not be conducted, because the sample size of
studies included in each subgroup was not bigger or equal to 10
(Sterne et al., 2011).

RESULTS

PV-INs Total Number
Four postmortem studies compared the total number of PV-INs
between BPAD patients and control subjects, resulting in a total

sample of 50 BPAD patients’ and 69 controls’ brains (Figure 2).
Of these, three studies examined PV-INs’ number in allocortical
structures (hippocampus, entorhinal cortex (EC), and amygdala)
and one analyzed TRN. As displayed in Supplementary Table S1,
in the allocortex, PV-INs total number appear to be significantly
reduced in the hippocampus (CA1,2/3,4) (p � 0.029) (Konradi
et al., 2011) and in the whole EC (p � 0.02) (Pantazopoulos et al.,
2007), while no significant differences have been noticed in
amygdala nuclei, specifically lateral nucleus (p � 0.51), basal
nucleus (p � 0.94), accessory basal (p � 0.99), and cortical
nuclei (p � 0.28) (Pantazopoulos et al., 2010). Significant PV-
INs total number reductions have been observed also in the TRN
(p < 0.0001) (Steullet et al., 2018).

When these studies were pooled together, there was an overall
significant reduction in PV-INs total number in BPAD patients
compared to controls (Cohens’ d � −0.65; z � 3.31; p � 0.002; 95%
confidence interval (CI): −1.05 to −0.24) (Figure 2). The I2, Tau2,
and Chi2 tests revealed small heterogeneity (I2 � 13%; Tau2 �
0.02; Chi2 � 3.46). After dividing studies according to the type of
cortex analyzed (Figure 2), we observed a reduction of PV-INs
total number in allocortical areas in BPAD brains compared to
controls (Cohens’ d � −0.56; z � 2.06; p � 0.04; CI: −1.09 to −0.03)
with a small heterogeneity (I2 � 28%; Tau2 � 0.06; Chi2 � 2.79).

FIGURE 1 | Meta-analysis PRISMA flow diagram.
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PV-INs Cell Density
Ten studies have examined the PV-INs density in the brain of
BPAD patients and compared these to control subjects, resulting
in a total number of 111 BPAD patients’ brains and 125 controls’
brains (Figure 3). Of these, five studies examined allocortical
structures (EC, hippocampus, and amygdala), while four studies
analyzed neocortical structures (DLPFC and BA9) and one study
assessed the TRN.

Findings were heterogenous also within the same brain
structures (Supplementary Table S2): reduced PV-INs
density has reported in the EC (p < 0.05) in both
Pantazopoulos et al. (2007) and Wang et al. (2011), but
not in Reynolds et al. (2002) (p > 0.05). In the allocortex,
reductions have been noticed in the hippocampus, but only
from the CA1 region (p < 0.05) (Zhang et al., 2002), and
similar differences have been observed in the amygdala
nuclei, but only from the lateral nucleus (p � 0.03)
(Pantazopoulos et al., 2010). Other relevant differences
have been reported in TRN (p < 0.0001) (Steullet et al.,
2018). There were no significant changes reported in any
of the two neocortical areas examined (DLPFC and BA9)
(Beasley et al., 2002; Reynolds et al., 2002; Sakai et al., 2008;
Alcaide et al., 2019). Another study (not included in the
meta-analysis due to unavailable raw data) reported no
significant difference in PV-INs density in the anterior
cingulate cortex (ACC) (Cotter et al., 2002).

Overall, comparing all brain areas together, PV-INs cell
density appears to be reduced in BPAD brains compared to
controls (Cohens’ d � −0.43; z � 3.47; p � 0.0005; 95% CI: −0.68
to −0.19) (Figure 3). The I2, Tau2, and Chi2 tests revealed small
heterogeneity (I2 � 0%; Tau2 � 0; Chi2 � 3.61). After dividing
studies according to the type of cortex analyzed (Figure 3), we

observed a reduction of PV-INs cell density in allocortical
areas (Cohens’ d � −0.49; z � 2.81; p � 0.005; 95% confidence
interval CI: −0.83 to −0.15) but not in neocortical areas
(Cohens’ d � −0.23; z � 1.09; p � 0.27; 95% CI: −0.63 to
0.18). In both allocortex and neocortex subclassifications, the
I2, Tau2, and Chi2 tests revealed small heterogeneity (I2 � 0%;
Tau2 � 0; Chi2 � 1.11 and I2 � 0%; Tau2 � 0; Chi2 � 0.30,
respectively).

PV mRNA
Four postmortem studies investigated PV mRNA levels,
resulting in a total sample of 91 BPAD patients’ brains and
91 controls’ brains for comparison in the quantitative analysis.
PV mRNA levels were lower in neocortical areas in BPAD,
specifically PFC area 9 (p � 0.001) (Volk et al., 2016) and
DLPFC (p < 0.05) (Chung et al., 2018; Sibille et al., 2011)
(Supplementary Table S3), while Fung et al., 2014 found no
changes between the two groups in either DLPFC or
orbitofrontal cortex. mRNA levels were reduced in the
hippocampal CA2/3 and CA4 areas (p < 0.05), but not in
the CA1 region (NS) (Konradi et al., 2011).

When pooling all brain areas together, there was an overall
significant reduction in BPAD patients compared to controls
(Cohens’ d � −1.66; z � 2.13; p � 0.03; 95% CI: −3.19 to −0.13)
(Figure 4). In this case, the I2, Tau2, and Chi2 tests revealed
considerably high heterogeneity (I2 � 94%; Tau2 � 2.29; Chi2 �
51.4). After dividing studies according to type of cortex, in
neocortical areas, we only observed a trend of reduction of PV
mRNA in BPAD brains compared to controls (Cohens’ d � −1.83;
z � 1.73; p � 0.08; 95% CI: −3.93 to 0.25) (Figure 4). The I2, Tau2,
and Chi2 tests revealed considerably high heterogeneity in this
case too (I2 � 96%; Tau2 � 3.26; Chi2 � 49.99). In allocortical

FIGURE 2 | Forest plot on PV-INs total number: allocortical areas, others, and overall comparison.
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areas, specifically in the hippocampus, there was an overall
significant reduction in PV mRNA levels in BPAD compared
to controls in hippocampal subareas CA2/3 and CA4, but not in
the CA1 region.

DISCUSSION

The results of our meta-analysis showed significant changes in
PV-INs in BPAD; however, these varied depending on the brain
areas analyzed. Specifically, we found reductions in PV-INs total
number and in PV-INs cell density in allocortical areas and in the
TRN in BPAD compared to controls, but not in PV-INs cell
density and PV mRNA in the neocortex. It is important to note
that the reduced presence of PV-INs neurons might not only
reflect neuronal downregulation but might be the result of either
improper neurodevelopment (e.g., neuronal immaturity) or
reduced PV expression, which in turn affects PV-INs function
(Caballero et al., 2020).

Although there was an overall reduction when all brain areas
were analyzed together, our findings suggest that the most
obvious deficits of the PV-INs system in BPAD patients

occurred in allocortical areas. The reason behind this
specificity is potentially due to the elevated oxygen metabolism
requirements of some allocortical areas, such as the hippocampus
(Cooper et al., 2015; Maiti et al., 2008) suggesting a higher
susceptibility for dysfunction in conditions of suboptimal
metabolic substrates availability. Alternatively, methodological
explanations could underlie the reduction in PV-INs measures
observed in allocortical but not neocortical areas. Meta-analyzing
studies that assessed cell density or cells’ total number can lead to
several potential sources of heterogeneity. In general,
methodological differences, such as the method of tissue
fixation (Ahram et al., 2003; Hoetelmans et al., 2001) or
labeling and microscopy techniques, can result in highly
heterogeneous data, although they are still comparable using a
standardized effect size. Even though all the included studies
followed rigorous protocols for a reliable diagnosis of BPAD,
some studies included both BPAD types I and II and some others
did not specify the BPAD type diagnosed. In addition, a meta-
analysis of postmortem studies implies potential differences in
the clinical characteristics of the patients studied, including
substance or alcohol misuse and pharmacological treatments.
In addition, the reliability of measures could have been influenced

FIGURE 3 | Forest plot on PV-INs cell density: neocortical, allocortical, other, and overall comparison. **The total number of participants displayed is twice the
number of subjects studied by Reynolds et al. (2002), as they performed their analysis in both dorsolateral prefrontal cortex and entorhinal cortex and the repetition of the
same cohort of brain samples, which has been analyzed by several research groups (Zhang 2002; Beasley 2002; Alcaide 2019). *These studies analyzed the same brain
samples obtained from the Stanley Foundation Neuropathology Consortium brain collection (Torrey et al., 2000).
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by potential differences in the microbiological composition or by
different degrees of tissue shrinkage of brain samples analyzed.
The manual average of data recorded from specific brain layers in
the neocortex or subregions in some allocortical areas might lead
to slight differences compared to results obtained from studies
that performed their analysis as a whole region but excluded some
layers from their analysis (Alcaide et al., 2019). The precision of
data reported might be weakened also by the manual or automatic
extrapolation of data from graphs, due to the unavailability of raw
data in the paper. It is also worth considering that the apparently
lower PV-INs total number and cell density might result from
reduced PV expression that renders some PV-INs difficult to
detect using fixation methods that tend to lower the
immunoreactivity of the samples (such as paraffin embedding)
(Stan and Lewis, 2012). However, it is unlikely that this has biased
our results: the analysis of fixation methods employed in studies
assessing the total number and cell densities (reported in
Supplementary Table S1, 2) indicates that findings were not
dependent on the methods used for fixation. The use of low
magnification imaging might also lead PV cells with lower PV
expression to be undetectable, which led to apparent reductions
in PV-INs density observed in conditions with low PV expression
such as schizophrenia (Enwright et al., 2016). This could have
also potentially affected findings in BPAD patients. The use of a
detection threshold for levels of PV would have been advisable to
improve the reliability of such immunocytochemistry
postmortem analysis when low magnification is used.

The finding of significantly downregulated PV-INs in BPAD
patients is in agreement with studies that investigated the MGP of
PV-INs of 15 existing datasets of multiple transcriptomic studies,
reporting an overall reduction of PV-INs expression in BPAD
patients compared to controls (Toker et al., 2018). Although
MGPs do not directly measure cell numbers, they are reliable

representations of the abundance of specific cell types across
samples (Mancarci et al., 2017). Similar PV-INs deficits have been
suggested also by microarray studies, reporting significant PV
expression reductions in BPAD patients compared to controls
(Gandal et al., 2012). These outcomes are finally confirmed also
by animal models, that showed PV downregulation in Brd1+/−

mice (Qvist et al., 2018), and such mutations have been linked to
BPAD susceptibility (Severinsen et al., 2006).

Similar deficits of PV-INs have been observed in a variety of
conditions that have not been covered here in detail. These, for
example, include schizophrenia (Beasley and Reynolds, 1997;
Kaar et al., 2019), which shares phenomenological similarities
with BPAD, or epilepsy (Medici et al., 2016), which instead
manifests with symptoms different from those of BPAD.
Although it is not possible to draw a precise conclusion on
why such diverse clinical outcomes may originate from
common underlying neurobiological deficits, it is possible that
multiple factors play a role, including a different extent of PV-INs
reduction, the possible presence in other diseases of further
concomitant deficits affecting other cellular types, a different
regional distribution of deficits, and the temporal onset of these
deficits that might differ across conditions, and hence might have
a differential effect on neurodevelopmental processes.

Another important aspect to consider for the interpretation of
our findings is that cell types other than PV-INs have been found
to be reduced in BPAD and that BPAD is associated with a more
generalized deficit of the GABAergic system beyond PV-INs,
including, for example, reduced plasma and cerebrospinal fluid
(CSF) GABA levels (Berrettini et al., 1983) and reduced
GABAergic activity markers, such as glutamate decarboxylase
67 (GAD67) (Guidotti et al., 2000; Fatemi et al., 2005; Buttner
et al., 2007). A general reduction on GABAergic interneurons was
observed through the analysis of proteins such as Reelin,

FIGURE 4 | Forest plot on PV mRNA expression: neocortical, allocortical, and overall comparison.
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preferentially secreted by GABAergic interneurons in rats
(Alcàntara et al., 1998) and primates (Rodiguez et al., 2000),
with a specific reduction of Reelin mRNA by about 50%, and a
reduction of the density of Reelin-immunopositive neurons by
25/30% in the PFC of BPAD patients compared to HCs (Guidotti
et al., 2000). Also, a reduced cell density of other subpopulations
of GABAergic interneurons, such as somatostatin interneurons,
was observed in the EC (Wang et al., 2011) and amygdala
(Pantazopoulos et al., 2017) of BPAD patients compared to
HCs. Other findings included decreased somatostatin
interneurons’ total number in the amygdala (Pantazopoulos
et al., 2017) and hippocampus (Konradi et al., 2011) and a
significant lower somatostatin mRNA in DLPFC, orbitofrontal
cortex, and hippocampus of BPAD patients, relative to control
subjects (Konradi et al., 2011; Sibille et al., 2011; Fung et al., 2014).
Other studies investigated other types of interneurons, calbindin,
and calretinin, overall suggesting a reduction of these cells in
BPAD although the results appear still inconclusive (Beasley et al.,
2002; Cotter et al., 2002; Reynolds et al., 2002; Sakai et al., 2008;
Fung et al., 2014).

Taking into account other confounding factors that might
contribute to the observed deficits, some animal studies report an
age-related PV-INs decline (Steullet et al., 2018; Ueno et al., 2018;
Rogalla andHildebrandt, 2020), while others report an increase in
PV-INs cell number in aged mice compared to young mice,
showing the same outcomes in rats and gerbils (Ahn et al., 2017).
This dependence has been analyzed also in clinical studies,
without showing any age-related PV-INs changes either in
normal conditions (Bu et al., 2003), or in BPAD
(Pantazopoulos et al., 2010; Wang et al., 2011; Steullet et al.,
2018). Although this evidence suggests a general impairment of
GABAergic interneurons in BPAD, the data that report
reductions of other GABAergic interneurons’ subtypes appear
to be still inconclusive, and the other potential confounding
factors did not appear to have any significant influence on the
reduction we detected, strengthening the idea of an underlying
mechanism in BPAD patients, which selectively targets PV-INs.

Mitochondrial abnormalities are among the possible
mechanisms responsible for PV-INs loss and dysfunction,
which ultimately disrupt the regulatory interneurons function
and lead to alterations in cortical excitability and neural networks
function. Converging evidence indicates that insufficient
availability of energy substrates and inefficient mitochondrial
oxidative phosphorylation, and resulting oxidative stress, might
be plausible causes for PV-INs loss and dysfunction. Perinatal
hypoxia-ischemia has been found associated with marked loss of
cortical PV-INs (Fowke et al., 2018). An exponential production
of ROS by dysfunctional mitochondria appears to be directly
linked to PV-INs dysfunction and downregulation. The unique
metabolic demands of PV-INs might suggest a particular
susceptibility to oxidative stress (Steullet et al., 2017) and
antioxidants depletion-induced oxidative stress, leading to PV
immunoreactivity downregulation in PV-INs (Cabungcal et al.,
2013b; Hasam-Henderson et al., 2018; Rossetti et al., 2018). The
observed reduced PV expression might result from altered PV-
INs neurodevelopment (Cabungcal et al., 2013b; Barron et al.,
2017), such as neuronal immaturity, which appears to be directly

correlated to reduced PV expression (Gandal et al., 2012). This is
of particular relevance from a functional perspective considering
that reduced PV expression is considered as a surrogate
biomarker for the activity of PV-INs. Oxidative stress appears
also to be potentially associated with a reduction of PV-INs total
number, as recently suggested by Steullet et al. (2018). These same
mechanisms of excessive oxidative stress damaging mitochondria
and PV-INs have been implicated in epilepsy, with evidence
suggesting a causal link between the loss or dysfunction of PV-
INs mediated by oxidative stress, and epileptic activity (Liang
et al., 2000; Drexel et al., 2017; Kim and Kang, 2017; Gu et al.,
2018; Wang et al., 2018). In fact, the regulation of ROS and
oxidative stress has been proposed to have a potential therapeutic
role for epilepsy (Eastman et al., 2020). For example, the
antiepileptic treatment with cannabidiol (CBD) significantly
reduced PV-INs downregulation, possibly preventing Ca2+

overloading during hyperactivity (Khan et al., 2018) and hence
protecting neurons against mitochondrial oxidative stress
(Hajnòczky et al., 2006).

The expected effects of PV-INs impairments or reduced PV
expression are a decrease of PV-INs inhibitory postsynaptic
currents (IPSC) onto excitatory neurons, which causes a
reduced inhibitory control, and in turn excitation/inhibition
imbalance (Caballero et al., 2020). This is supported by the
notion that PV-INs-selective optogenetic suppression
disinhibits cortical pyramidal neurons (Courtin et al., 2014)
and increases excitatory neurons activity (Veit et al., 2017). In
line with this, in juvenile mice models, the selective removal of
one allele of the gene for GAD67 in PV-INs leads to a reduction in
the synaptic transmission from PV-INs to pyramidal neurons and
a consequent disinhibited pyramidal cell network (Lazarus et al.,
2015).

In agreement with the above evidence, Inan et al.
demonstrated that oxidative phosphorylation deficits lead to
the inability of PV-INs to sustain their typical high-frequency
firing, resulting in a disinhibited network with an imbalance of
excitatory/inhibitory control (Inan et al., 2016) and network
hyperexcitability.

Further confirmatory evidence includes the notion that
administration of a mitochondrial fission activator, which
induced mitochondrial fragmentation in PV-INs and resulting
cell loss, triggers prolonged seizures (Kim and Kang, 2018). This
is also consistent with numerous studies reporting the
detrimental effect of experimental mitochondrial inhibition, or
experimental metabolic stress, on the generation of fast-
oscillatory gamma waves (summarized in Table 1).

It is also worth considering the supportive role that the
perineuronal net (PNN) exerts on PV-INs, which impacts their
maturation and synaptic stability and also includes protection
against oxidative stress (Cabungcal et al., 2013a). PNN
impairment has been found to be implicated in neuropsychiatric
conditions such as schizophrenia (Enwright et al., 2016) and Fragile
X syndrome (Wen et al., 2018), with preliminary evidence of PNN
alterations in BPAD (Steullet et al., 2018).

PV loss, in turn, affects mitochondrial structure (see studies
listed in Table 2) suggesting that the relationship between
mitochondrial and PV dysfunction is bidirectional. One
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possible factor contributing to this bidirectional relationship is
related to the protective role of parvalbumin against
mitochondrial Ca2+ overload, as proposed by Ruden et al.,
2021. Several studies, using both in vitro and animal models,
have assessed the effect on mitochondria of experimental
manipulations of PV, demonstrating the close relation between
PV-INs functioning and mitochondria, as summarized in
Table 2. More in detail, it appears that PV knockout (PV−/−)
in mice directly affects mitochondria, leading to morphological
and density alterations in mitochondria of PV-INs (Janickova
et al., 2020) and increased oxidative stress in PV-INs (Janickova
and Schwaller, 2020). These findings overall support the idea that
adequate PV presence is important to maintain a normal
mitochondria structure and function.

Based on these pieces of evidence, it appears that
mitochondrial impairment might not only lead to PV-INs

impairments or downregulation but might be directly
exacerbated by PV-INs disfunction. The effects that PV
inhibition/deficit exerts on mitochondria might underlie the
clinical deterioration characteristic of disease progression in
some forms of BPAD. This idea is supported by the positive
correlation between oxidative stress levels and disease severity
(Sowa-Kućma et al., 2018), the association of higher levels of
oxidative stress to worsening quality of life in patients (Nunes
et al., 2018), and the efficacy of mitochondrial-targeted
treatments in improving BPAD depressive symptoms
(Mehrpooya et al., 2018). It is therefore plausible that
mitochondrial abnormalities associated with mood disorders
lead to PV-INs dysfunction and that this in turn disrupts
neuronal network oscillation but also further contribute to
mitochondrial damage, both exacerbating disease progression
and overall worsening of disease severity.

TABLE 1 | Results from systematic search on literature (PubMed) of the following keywords: Mitochondria AND Gamma oscillations. Only data that directly investigated the
effect that mitochondrial/metabolic impairments exert on gamma oscillations have been included, criterion assessed based on information illustrated in titles/abstracts.

Authors and year Type
of study species

Method Brain areas analyzed Main conclusion

Hollnagel et al. (2020) Rat brain slices Increased lactate levels Hippocampus ↓ Gamma oscillations
Bas-Orth et al. (2020) Mouse brain slices MCU knockout and knockdown Hippocampus ↓ Gamma oscillations
Elzoheiry et al. (2020) Rat brain slices MCI inhibition (by rotenone) Hippocampus ↓ Gamma oscillations
Berndt et al. (2018) Rat brain slices Induced mitochondrial dysfunction (by propofol) Hippocampus ↓ Gamma oscillations
Robson et al. (2018) Mouse brain slices MC-IV and MCI inhibition (KCN and rotenone) Hippocampus ↓ Gamma oscillations
Inan et al. (2016) Mouse brain slices Cox10 ablation mPFC and Hippocampus ↑ Gamma oscillations
Galow et al. (2014) Rat brain slices Low glucose levels Hippocampus ↓ Gamma oscillations
Lu et al. (2012) Mouse brain slices Low mitochondrial protonophores Hippocampus ↓ Gamma oscillations
Kann et al. (2011) Mouse/rat brain slices MCI inhibition (by rotenone) Hippocampus ↓ Gamma oscillations
Huchzermeyer et al. (2008) Rat brain slices Hypoxic conditions Hippocampus ↓ Gamma oscillations

TABLE 2 | Results from systematic search on literature (PubMed) of the following keywords: Parvalbumin AND mitochondria. Only data that directly investigated the effect
that parvalbumin impairments exert on mitochondria have been included, criterion assessed based on information illustrated in titles/abstracts.

Authors and year Type of study/species Method Brain areas analyzed Main conclusion

Janickova et al. (2020) Mouse brain slices PV knockout SSC, mPFC, CA1, CA3, DG, cerebellum,
and striatum

↑ Mitochondria volume and
density

Janickova and Schwaller
(2020)

Mouse brain slices PV knockout TRN; striatum ↑ Mitochondria volume and
density

Lichvarova et al. (2019) Rat cell cultures (CG4 OPCs) PV-INs upregulation N/a ↓ Mitochondrial volume

Lichvarova et al. (2018) Madin-Darby canine kidney (MDCK)
epithelial cells

PV-INs
downregulation

N/a ↑ Mitochondria length and
volume

Mendes et al. (2016) Thyroid carcinoma cell lines Forced PV expression N/a ↓ Ca2+ inflow in the
mitochondria

Henzi and Schwaller,
(2015)

PV-negative MDCK cells Ectopic expression
of PV

N/a ↓ COX1 and mitochondrial
volume

Chen et al. (2006) Mouse brain slices PV knockout Cerebellum ↑ Mitochondrial volume and
density

Meaetzler et al. (2004) Mouse brain slices PV upregulation Striatum ↓ Mitochondrial volume

Chen et al. (2001) Extensor digitorum longus of mice PV knockout N/a ↑ Mitochondria volume
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Alternating States of Neuronal Excitability in
BPAD-Derived iPSCs Parallel Bipolar
Behavioral Phenotypes
The above-described deficits in PV-INs and the resulting
effects on neuronal excitability might play a role in the
pathophysiology of mood instability characteristic of BPAD.
Intrinsic alterations of neuronal excitability in BPAD have
been described by Mertens et al. (2015) in hippocampal
granule cells derived from BPAD patients using induced
pluripotent stem cells (iPSCs) from reprogrammed
fibroblasts. They reported a general hyperexcitable
phenotype characterized by stronger Na+ channels
activation, lower AP threshold, higher values of evoked and
spontaneous AP frequencies, and maximal AP amplitude in
BPAD-derived dentate gyrus granule cells. These data have
been later confirmed by further evidence using iPSCs derived
from lymphocytes of BPAD patients, showing that dentate
gyrus-like granule cells were more hyperexcitable, with higher
spontaneous and evoked AP firing rate compared to those of
control subjects (Stern et al., 2018). Although GABAergic INs
deficit was not directly demonstrated in this and related
studies, we speculate that a hyperexcitable pattern might be
exacerbated by a defective modulation by PV-INs on such
neurons: anatomically, PV-INs axons in the dentate gyrus
mainly innervate and form synapses on cell bodies and
initial axonal segments of granule cells, and in normal
conditions, they provide strong feedback and feedforward
inhibition to these cells (Ribak et al., 1990; Sik et al., 1997;
Houser, 2007; Pelkey et al., 2017), maintaining a proper
inhibitory surround and directly regulating excitatory cell
AP initiation (Hu et al., 2014) through their
hyperpolarizing effect. It is plausible that functional or
numerical deficit of PV-INs could directly affect granule
cells excitatory potential, suggesting a possible exacerbating
role of defective inhibitory interneurons in the hyperexcitable
phenotype detected in BPAD by Mertens et al. (2015) and by
Stern et al. (2018) although this hypothesis requires empirical
testing. Extrapolating from the above-reported findings
evidence and considering the higher presence of PV-INs in
hippocampal CA1 and CA3 regions (Jinno and Kosaka, 2002;
Bezaire et al., 2013) relative to the dentate gyrus (Ribak et al.,
1990), we would expect even more marked alterations of
neuronal excitability in these regions that also have an
important affective modulation role. In more recent studies,
CA3 pyramidal neurons derived from BPAD patients (using
iPSCs) exhibited a greater frequency rate of induced and
spontaneous activity and higher spike amplitude compared
to controls-derived pyramidal neurons, which were associated
with greater sodium and potassium currents (Stern et al.,
2020a; Stern et al., 2020). Stern et al. (2020) also provided
correlational evidence pointing to the overexpression of
Voltage-Gated K+ channels (VGKCs) as a factor leading to
the observed hyperexcitability; however, the evidence
supporting the role of VGKCs as an underlying mechanism
appears inconclusive. The authors suggested that VGKC
functional changes might be an indirect, or even

homeostatic compensatory, mechanism resulting from
neuronal intrinsic hyperactivity. Further research is
warranted to test the possibility that PV-INs dysfunction
might contribute to the observed hyperexcitable patterns.

Lithium reversed the hyperexcitability of hippocampal
neurons derived from lithium-responsive BPAD patients
(Mertes et al., 2015). This hyperexcitable phenotype of iPSCs
neurons, also characterized by exquisite sensitivity to lithium
modulation, might have a phenomenological correspondence in
the elevated mood, euphoria, and hyperactivity that characterizes
manic episodes in BPAD, for which lithium displays excellent
therapeutic and prophylactic properties (Cade, 1949; Hartigan,
1963; Kessing et al., 2018).

However, while the hyperexcitable lithium-responsive BPAD-
derived iPSCs represent an attractive biological model for the
manic dimension of BPAD, it is important to consider that mania
is only one of the multiple aspects constituting the complex
clinical phenotype of BPAD and related disorders in the Bipolar
spectrum. Patients suffering from BPADs spend more of their
symptomatic time in a state of depression relative to time spent
with mania. Subsyndromal, rapid cycling, and mixed affective
symptoms predominate over the full, syndromal-level, major
affective episodes. Mood instability and subthreshold
depression are central and key elements of the BPAD
behavioral phenotype, and an optimal cellular model for
BPAD would need to present characteristics that reflect as
closely as possible the cyclic, mixed, and highly unstable
nature of the Bipolar affective phenotype.

Recent studies following from the seminal work by Mertens
et al. (2015) by the same group of authors provided intriguing and
important signals in that direction.

First, hyperexcitability was noticed only in neurons derived
from lithium-responsive patients, while CA3 and DG neurons
derived from nonlithium-responsive BPAD were not
hyperexcitable (Stern et al., 2018; 2020). This indicates that
BPAD-derived neurons do not present homogenous
characteristics in terms of both intrinsic excitability and
pharmacological responsiveness. This is paralleled by clinical
data that indicate a preferential therapeutic effect of lithium
on mania, while its efficacy on depression, mixed, rapid
cycling, and subsyndromal states is lower.

Second, within the same iPSCs culture, BPAD-derived cells
were not purely characterized by a hyperexcitable pattern (Stern
et al., 2020): among neurons derived from nonlithium-responsive
BPAD patients, many displayed a hypoexcitable phenotype, and
others appeared normally excitable. Although these were data
based on computationally simulated BPAD-derived neurons, we
feel that the finding of coprevalence in the same BPAD cell
culture of both hypo- and hyperexcitable cells, with greater
diversity in neuronal excitability compared to controls’
neurons, is worth noting and potentially translatable.

These observations might indicate a potential vulnerability of
hippocampal interneurons of BPAD patients in terms of intrinsic
instability of neuronal excitability. The existence of
multiexcitatory states observed in iPSCs cultures derived from
patients’ neurons opens to the speculative idea that a similar
heterogeneity of neuronal excitatory states might also exist in vivo
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in the BPAD patients’ brain. This possibility would have a logical
correspondence in the clinical mood instability experienced by
patients alternating through episodes of hyper- (mania) or hypo-
(depression) activity, which could also manifest simultaneously
during mixed states (Fagiolini et al., 2015; Solé et al., 2017).

We further propose that the dysfunction or downregulation of
PV-INs, consequential to neurometabolic and mitochondrial
deficits, might represent a mechanism leading to loss of
excitatory network stabilization, which might contribute to, or
aggravate, the intrinsically unstable excitatory pattern
characteristic of the BPAD brain. The combined effect of the
intrinsic cooccurrence of hyper- and hyponeuronal excitability
states and of a defective regulatory system secondary to
downregulated GABAergic inhibitory control might
cumulatively contribute to the instability and cycling of
affective states with opposite polarities.

Extrapolating from previously reported observations of a
bidirectional relationship between altered neuronal excitability,
directly induced by PV deficits, and mitochondrial damage, it is
plausible to expect that states of hyperexcitability underlyingmania
are also leading to mitochondrial stress and impairment. This
resonates well with converging data suggesting that accumulation
of manic episodes (but not depressive episodes) through the
lifetime of BPAD patients is associated with neuroprogression
which manifests with progressive cognitive and functional
decline and overall worsening of disease severity (López-
Jaramillo et al., 2010; Passos et al., 2016).

Novel Pharmacological Approaches
Based on the proposed model, the recent development of
pharmacological treatments that selectively target PV-INs is
highly promising. Enhancement of PV-INs-dependent
neurotransmission could potentially contribute to stabilizing the
abnormal excitatory pattern by virtue of reduced inhibitory
control, ultimately resulting in improvement of mood instability.

Kv3, a specific subunit of K
+ channels, is specifically expressed in

PV-INs, in particular Kv3.1 (Weiser et al., 1995; Sekirnjak et al.,
1997) and Kv3.2 (Chow et al., 1999). They are implicated in the
generation of fast-spiking firings by PV-INs (Erisir et al., 1999; Lien
and Jonas, 2003) and theymodulate the synchronization of cortical
circuits, neuronal excitability (Rudy et al., 1999), and the
generation of the brain’s oscillatory rhythms (Joho et al., 1999;
Espinosa et al., 2008). These data explain the therapeutic potential
of targeting Kv3 subtypes in order to modulate PV-INs activity, the
role that has already been significantly demonstrated in preclinical
studies, with the use of Kv3.1- and Kv3.2-positive modulators,
showing increased PV-INs firing frequencies (Boddum et al., 2017)
and rescuing their fast firing phenotype after its impairment in
conditions of Kv3 blockade (Rosato-Siri et al., 2015). This
modulation might be therefore a promising therapeutic tool in
disorders associated with dysfunctions of inhibitory controls and
unstable neuronal excitability, such as affective disorders. Recent
pieces of evidence highlighted the potential role of this modulation
in MDD and in BPAD, with preclinical studies that demonstrated
that reduced Kv3 in PV-INs in the dentate gyrus induced
depression phenotypes (Medrihan et al., 2020) and that Kv3.1-
and Kv3.2-positive modulators are able to reverse and prevent

manic behaviors in mouse models (Parekh et al., 2018). For these
reasons, Kv3.1- and Kv3.2-positive modulators are now being
assessed in clinical trials and appear to be safe for human use
(National Library of Medicine (U.S), 2019). These compounds
have been tested in a human experimental model of schizophrenia,
with promising results (Deakin et al., 2019). Ongoing clinical trials
are now assessing directly the efficacy in schizophrenic patients
(National Library of Medicine (U.S), 2017). The availability of
compounds targeting selectively PV-INs would make them
attractive as potential PET radioligands candidates that could
enable direct visualization of these neuronal populations in vivo.
Currently, available PET ligands for imaging the GABA system are
11C-Flumazenil and 11C-Ro15-4513, in which the first unselectively
targets the GABA-A benzodiazepine receptor subtypes and the
second is highly selective for the five subtypes (Lingford-Hughes
et al., 2002; Maeda et al., 2003). Unfortunately, these GABA
receptor subtypes are not exclusively expressed on
subpopulations of GABAergic interneurons and this prevents
the use of these tracers for separating PV-INs from other
GABAergic interneurons. Furthermore, focusing on GABA
receptors would not directly inform on PV-INs density.
Integration of direct assessment of GABAergic neurons in vivo,
with other procedures such as MEG, capable of measuring
neuronal oscillations (e.g., gamma oscillations) in deeper brain
structures, would enable us to study the effects of PV-INs loss and
subsequent functional alterations. To our knowledge, no Kv3 PET
ligands have yet been developed, although ongoing work on a PET
tracer for Kv1 ligands has been reported (Brugarolas et al., 2018).

CONCLUSION

In conclusion, the neurobiological evidence reported suggests a
causal relationship between mitochondrial deficits and PV-INs
dysfunction/downregulation in BPAD, which would
consequentially contribute to or aggravate intrinsic neuronal
excitability alterations, leading to cycling between mood states
and to a mood instability phenotype, which is characteristic of
more severe, and less treatment-responsive forms of BPAD. We
reported meta-analytical evidence of postmortem
downregulation of PV-INs in BPAD and described the direct
detrimental effects of mitochondrial dysfunction on gamma
oscillations and of PV-INs loss on mitochondria. These
observations, taken together, suggest the existence of a
bidirectional relationship between mitochondrial dysfunction
and damage to the PV-INs system, which result in a vicious
circle of progressive exacerbation of mitochondrial defects and
functional neuronal alterations, leading to neuroprogression,
and accumulation of mood instability. These pieces of evidence
suggest the therapeutic potential of targeting PV-INs using
novel promising compounds that could form the basis of
both therapeutic drugs and novel selective PET ligands.
Although our work has focused on BPAD to validate the
mechanistic links we proposed, targeting the PV-INs system
would have therapeutic potential for the broader spectrum of
conditions associated with mood instability, and more widely
for the numerous other neurological and psychiatric conditions
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characterized by neurometabolic and neuroexcitability, such as
epilepsy, neurodegeneration, anxiety disorders, MDD, and
schizophrenia.
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