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Podocytes are essential components of the glomerular basement membrane. Epithelial-
mesenchymal-transition (EMT) in podocytes results in proteinuria. Fibroblast growth factor
1 (FGF1) protects renal function against diabetic nephropathy (DN). In the present study,
we showed that treatment with an FGF1 variant with decreased mitogenic potency
(FGF1ΔHBS) inhibited podocyte EMT, depletion, renal fibrosis, and preserved renal
function in two nephropathy models. Mechanistic studies revealed that the inhibitory
effects of FGF1ΔHBS podocyte EMT were mediated by decreased expression of
transforming growth factor β1 via upregulation of PPARγ. FGF1ΔHBS enhanced the
interaction between PPARγ and SMAD3 and suppressed SMAD3 nuclei translocation.
We found that the anti-EMT activities of FGF1ΔHBS were independent of glucose-lowering
effects. These findings expand the potential uses of FGF1ΔHBS in the treatment of diseases
associated with EMT.
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INTRODUCTION

Podocytes are an essential part of the glomerular filtration barrier. Their injury leads to several
glomerular diseases that develop to end-stage renal disease (ESRD) (Fishel Bartal et al., 2020).
Podocytes are highly specialized epithelial cells; epithelial-mesenchymal-transition (EMT) in
podocytes has been observed in chronic kidney disease (CKD) (Liu, 2010; Asfahani et al., 2018;
Yin et al., 2018). The expression of nephrin, podocin, and ZO-1 was decreased during podocyte EMT,
resulting in the abnormal glomerular basement membrane (GBM) and fibrosis (He et al., 2011; Choi
et al., 2020). Owing to its pivotal role in renal function, podocyte homeostatic regulation is a
promising strategy for treating CKD.

Studies confirmed that EMT is an essential mechanism of the accumulation and deposition of the
extracellular matrix that leads to renal fibrosis (Wynn and Ramalingam, 2012; Kang et al., 2020).
Transforming growth factor-β1 (TGF-β1) is the most potent EMT inducer, and enhanced expression
of TGF-β1 was noted in renal tissues in the context of CKD (Chen et al., 2021). Biological functions
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induced by TGF-β1 depend on accelerating the phosphorylation
of Smad3 and nuclei translocation that activates the
transcription of target genes (Meng et al., 2016). Bone
morphogenetic protein 2 (BMP2) is a sub-member of the
TGF-β superfamily. Defective signaling transduction in this
pathway is present in hereditary, idiopathic, and other forms
of CKD (Orriols et al., 2017). BMP2 antagonizes the TGF-β1/
TGF-βR pathway through peroxisome proliferator-activated
receptor γ (PPARγ), which participates in cardiovascular
homeostasis and glucose metabolism (Tyagi et al., 2011;
Chen et al., 2012; Calvier et al., 2017). Several lines of
evidence suggested podocyte protection via activation of
PPARγ (Kanjanabuch et al., 2007; Henique et al., 2016; Zhou
et al., 2017). Nevertheless, the side effects of PPARγ agonists
such as thiazolidinedione (TZD) limit its use in CKD treatment.

Fibroblast growth factor 1 (FGF1) mediates wound healing,
angiogenesis, embryonic development, and neurogenesis (Xie
et al., 2020). Recently, FGF1 was found to function as a
critical metabolic hormone that is pivotal for regulating
insulin sensitivity, glycemic control, and nutrient stress
(Beenken and Mohammadi, 2009; Gasser et al., 2017). FGF1
treatment increased insulin sensitization, maintained
normoglycemia, and prevented diabetic complications,
including hepatic steatosis and podocyte injury (Suh et al.,
2014; Gasser et al., 2017; Liang et al., 2018; Lin et al., 2020).
Nevertheless, the underlying mechanism of FGF1 or its variant’s
protective effects on podocyte EMT remains unclear.

FGF1 exerts its biological function via heparin sulfate-assisted
FGF receptor dimerization and downstream signal transduction.
Previously, we obtained an FGF1 variant (FGF1ΔHBS) by
replacing 3 residues from heparin sulfate binding site
(Lys127Asp, Lys128Gln and Lys133Val) that exhibited full
metabolic capacity and much less proliferative potential than
wild-type FGF1 (Huang et al., 2017). We employed two murine
models of CKD to investigate the protective role and underlying
mechanisms preventing podocyte EMT.

MATERIALS AND METHODS

Regents and Antibodies
Doxorubicin (adriamycin) was purchased from Selleck (Cat#
S1208). RPMI-1640 medium and penicillin-streptomycin were
purchased from Gibco. Fetal bovine serum (FBS) was purchased
from ScienCell. Hydroxyproline content assay kit was
purchased from Solarbio (Cat# BC0255). Mouse interferon
was purchased from Cell Signaling Technology (Cat# 39127).
PPARγ siRNA was purchased from Santa Cruz (Cat# sc-29456).
Serum levels of blood urea nitrogen (BUN), ALB and creatinine
were measured using assay kits according to the manufacturer’s
instructions (Jiancheng, Nanjing, China). Kits for Sirius red
staining, Masson trichrome staining and hematoxylin and eosin
(H&E) were purchased from Beyotime Biotech (Nantong,
China). BCA kits were used to measure protein
concentration (Transgen, Cat# DQ111). The SuperSignal™
West Pico PLUS (Thermo, Cat# 34577) was chosen to
visualize the immunoreactive bands.

The following antibodies were used to measure the proteins of
interest: COL 1 (Abcam; Cat# ab34710, dilution: 1:800), COL 4
(Proteintech; Cat# 55131-1-AP, dilution: 1:800), α-Smooth
Muscle Actin (Abcam; Cat# 19245, dilution: 1:1,000), TGF-β1
(Abcam; Cat# ab215715; dilution: 1:800), phospho-SMAD3 (Cell
Signaling; Cat# 9520, dilution: 1:1,000. Abcam, Cat# ab52903,
dilution: 1:100), SMAD3 (Proteintech; Cat# 66516-1, dilution: 1:
1,000), GAPDH (Cell Signaling; Cat# 5174, dilution: 1:1,000),
PPARγ (Santa Cruz; Cat# sc-7273, dilution: 1:1,000), goat anti-
rabbit secondary antibody (Abcam; Cat# ab150080, dilution: 1:
200), goat anti-mouse secondary antibody (Abcam; Cat# ab6717,
dilution: 1:200), HRP-conjugated antibodies (Cell Signaling; Cat#
7074 or 7076, 1:3,000), and biotinylated antibody (Zhongshan
Golden Bridge; Cat# ZB-2010, 1:80). Transfection reagent was
purchased from Invitrogen (Cat# 13778030). FGF1ΔHBS was
expressed and purified as described (Wang et al., 2019).

Cell Culture
Cell culture and treatment were performed as described (Wang
et al., 2019). Briefly, conditionally immortalized mouse podocyte
cell line were cultured at 33°C for proliferation. Cell
differentiation was induced for 10 days at 37°C, and then
starved for 12 h and pretreated with FGF1ΔHBS (100 ng/ml) for
1 h. Then the cells were incubated in high glucose (HG, 25 mM)
(with D-mannitol as an osmotic control) or ADR (0.5 μ g/ml) for
12 h. For PPARγ knockdown experiments, specific siRNA was
transfected using transfection reagent Lipofectamine 3000
according to the manufacturer’s protocol.

Animals
8 week-old male db/db mice, their db/m littermates, and male
BALB/c mice were purchased from the GemPharmatech Co.,
Ltd., (Nanjing China). Animals were maintained in a controlled
environment (12 h light/dark cycle at 23°C) with free access to food
and water. The experiments were performed following the National
Institutes of Health guidelines and with approval from the Animal
Care and Use Committee of Wenzhou Medical University, China.

For the DN model, db/db mice were intraperitoneally (i.p.)
injected with FGF1ΔHBS at 0.5 mg/kg body weight every other day
for 8 weeks while db/m and db/db mice were received 0.9%
normal saline as controls. Blood glucose levels were measured
using a blood glucose monitor (Roche).

For the adriamycin-induced nephropathy (AN) model, mice
were injected with a single dose of ADR (11 mg/kg) through the
tail vein. FGF1ΔHBS (0.5 mg/kg body weight) or normal saline was
administered i.p. every other day starting one week before ADR
injection and lasting for 5 weeks. Metabolic cages (TSE Systems,
MO) were chosen to collect mice urine for 24 h.

Histological Analysis
Renal tissues were fixed and sectioned at 5–6 μm thickness. For
immunohistochemistry analysis, sections were incubated with
antibody overnight and incubated with the biotinylated antibody
for 1 h and stained with DAPI. Stained sections were evaluated for
histopathological damage (Nikon, Japan).

For transmission electron microscope analysis, renal samples
were fixed using a triple aldehyde fixative overnight at 4°C.
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Specimens were incubated with uranyl acetate and embedded in
epoxy resin after rinsing. Sections were stained and observed
under an electron microscope (JEOL, Japan).

For immunofluorescence staining, renal tissues or cells were
fixed with 4% paraformaldehyde for15 min, permeabilized with
0.1% Triton X-100 for 10 min, and incubated with anti-PPARγ
and anti-SMAD3 antibody overnight at 4°C in a humidified
atmosphere in the dark. Following incubation with a
secondary antibody, the cells were evaluated using a Nikon
confocal microscope (Nikon, Japan).

Real-Time PCR Analysis
MiniBEST Universal RNA Extraction Kit (Takara, Cat# 9767)
were used to extract total RNA and RNA was reverse transcribed
using PrimeScript™ RT Master Mix (Takara, Cat# RR036A).
Real-time PCR was conducted using a QuantStudio3 system with
TB Green qPCR Master Mix (Clontech, Cat# 639676). Primers
are listed in Supplementary Table S1.

Western Blot Analysis
Renal tissues (25–40 mg) or cells were lysed and protein
concentrations were determined using the BCA kit (Thermo,
Cat# 23225) per the manufacturer’s introduction. Equal amounts
of samples were subjected to electrophoresis, transferred to
nitrocellulose membranes, and blocked. After incubation with
antibodies, the blots were incubated using commercial kits to
visualize. Densitometric analysis was performed using ImageJ
(NIH, United States of America).

Statistical Analysis
All data were expressed as mean ± SEM. In vitro experiments
were repeated in triplicate (biological repeat) for each experiment.
One-way ANOVA followed by the Tukey post hoc test was used
to compare more than two groups’ mean values. Two-way
ANOVA followed by Turkey post hoc test was used to
compare the effects of PPARγ knockdown in response to
FGF1ΔHBS treatment. GraphPad Prism was used to analysis the
statistical tests. p-values less than 0.05 were considered
statistically significant.

RESULTS

FGF1ΔHBS Prevents Renal Remodeling in
db/db Mice
To explore the anti-fibrotic effects of FGF1ΔHBS against diabetes-
induced CKD, db/dbmice received FGF1ΔHBS every other day for
8 weeks. As shown in Figure 1A, FGF1ΔHBS decreased blood
glucose in db/db mice, consistent with our previous findings
(Wang et al., 2021). The increase of urine albumin-to-creatinine
ratio (UACR) was ameliorated in FGF1ΔHBS-treated group and
serum levels of BUNwere lower following FGF1ΔHBS treatment as
well (Figures 1B,C).

DN is characterized by mesangial expansion, collagen
accumulation, and podocyte loss (Alicic et al., 2021). H&E
staining revealed that mesangial expansion was relieved by
FGF1ΔHBS treatment (Figures 1D,E), and renal fibrosis was

FIGURE 1 | FGF1ΔHBS prevented renal remodeling and dysfunction in db/dbmice. (A)Blood glucose levels. (B)Urine albumin-to-creatinine ratio (UACR). (C)Blood
urea nitrogen (BUN) levels. (D)Representative images of hematoxylin and eosin (H&E) staining, Sirius red staining, Masson’s trichrome staining and transmission electron
microscopy (TEM) images of renal tissues. (E) Quantification of mesangial expansion. (F) Quantification of the fibrotic area in Sirius red staining. (G) Quantification of the
fibrotic area in Masson staining. (H) Hydroxyproline content in renal tissues. (I) Quantification of podocyte foot process effacement. Data are presented as the
mean ± SEM (n � 6); *p < 0.05, **p < 0.01, ***p < 0.001.
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significantly reduced (Figures 1D–H). Podocyte injury is
associated with proteinuria, and podocyte loss is the primary
starting point of glomerular damage (Koga et al., 2015).
Disruption of podocyte foot processes and thickening of
basement membranes were found in db/db mice (Figures
1D–I). These pathological findings were ameliorated in the
FGF1ΔHBS-treated group (Figures 1D–I). These data suggest
that FGF1ΔHBS mitigates renal remodeling, fibrosis, and
podocyte injury in diabetic mice.

FGF1ΔHBS Decreases Expression of TGF-β1
and SMAD3 Phosphorylation in Renal
Tissues of Diabetic Mice
Given the significantly decreased deposition of extracellular
matrix in kidneys by FGF1ΔHBS treatment, we measured
mRNA expression levels of fibrotic genes. As shown in

Figure 2A, there was diabetes-induced upregulation of Acta2
(an indicator of fibrosis), Fn1 (participates in extracellular matrix
formation), and Col 4 (main component of the glomerular
basement membrane) in renal tissues. FGF1ΔHBS inhibited the
mRNA levels of these genes (Figure 2A). These results were
further confirmed by western blot analysis in which protein levels
of α-SMA, COL 1, and COL 4 were increased in renal tissues from
db/dbmice and were remarkably restored by FGF1ΔHBS treatment
(Figure 2B).

Since TGF-β1 participates in promoting the deposition of
extracellular matrix, podocyte EMT, and apoptosis (Liu, 2004),
we used immunohistochemistry to analyze the expression of TGF-
β1.We first measured the mRNA expression of TGF-β1. As shown
in Figure 2C, FGF1ΔHBS decreased diabetes-induced upregulation
of Tgf-β1 in renal tissues. Increased expression of TGF-β1 in the
glomeruli was observed in buffer-treated mice, and FGF1ΔHBS

treatment substantially reduced positive cell numbers

FIGURE 2 | FGF1ΔHBS suppressed renal fibrosis and TGF-β1 signaling in db/dbmice. (A) Real-time PCR analysis of Acta2, Fn1, and Col 4mRNA expression. (B)
Expression levels of α-SMA, COL 1, and COL 4 as determined by western blot analysis and quantitation using ImageJ. (C) Real-time PCR analysis of TGF-β1 mRNA
expression levels. (D) Representative images of TGF-β1 immunohistochemical staining of renal tissues and quantitation using ImageJ. (E) Representative images of
phosphorylated SMAD3 immunohistochemical staining of renal tissues and quantitation using ImageJ. (F) Expression levels of phosphorylated SMAD3, SMAD3,
and TGF-β1 as determined by western blot analysis and quantitation using ImageJ. Data are presented as the mean ± SEM (n � 6); Panels A and B, *p < 0.05,
***p < 0.001 vs. db/m; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. db/db; Panels C–F, **p < 0.01, ***p < 0.001.
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(Figure 2D). SMAD3 mediated the intracellular signaling of TGF-
β1 by shuttling into the nuclei and promoting transcription of
target genes for which phosphorylation is essential (Le et al., 2020).
We next analyzed the phosphorylation levels of SMAD3 by
immunohistochemistry staining (Figure 2E) and found that the
increased phosphorylation of SMAD3 was strongly suppressed,
along with decrease of protein expression of TGF-β1 by FGF1ΔHBS
treatment (Figures 2E,F). These data suggest that FGF1ΔHBS

prevents renal fibrosis and podocytes injury via downregulation
of TGF-β1 and SMAD3 phosphorylation expression.

PPARγ Mediated the Anti-EMT Effects of
FGF1ΔHBS in Diabetes
The crosstalk between TGF-β and BMP signaling pathways tunes
the accumulation of extracellular matrix and EMT (Munoz-Felix
et al., 2015; Kim et al., 2020). Several lines of evidence suggest that
PPARγ participates in maintaining podocyte homeostasis and
renal function (Agrawal et al., 2021). We then measured mRNA
levels of PPARγ in db/db mice. As shown in Figure 3A, diabetes
downregulated renal PPARγ expression in db/db mice and
FGF1ΔHBS treatment significantly increased PPARγ

FIGURE 3 | PPARγmediated the protective effects of FGF1ΔHBS on podocyte EMT in diabetic conditions. (A) Real-time PCR analysis of PPARγmRNA expression.
(B) Representative images and quantitation of immunofluorescence staining for PPARγ. (C) Expression levels of PPARγ as determined by western blot analysis and
quantitation using ImageJ. (D) Phosphorylation levels of SMAD3 and protein expression of PPARγ as determined by western blot analysis and quantitation using
ImageJ. (E) Real-time PCR analysis of TGF-β1, Fn1, Col 4, and Acta2 mRNA expression. (F) Representative images and quantitation of immunofluorescence
staining of SMAD3 and PPARγ. In panels (A–C), data are presented as the mean ± SEM (n � 6). In panels (D–F), data from three independent measurements are
presented as the mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001.
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transcription. Consistent with these findings,
immunofluorescence confirmed reduced expression of PPARγ
in glomeruli of db/db mice (Figure 3B). FGF1ΔHBS enhanced
fluorescence intensity (Figure 3B). The protein expression of
PPARγ was also measured using western blot, confirming
upregulation by FGF1ΔHBS treatment (Figure 3C).

Podocyte depletion caused by EMT is one of the critical
determinants of CKD (Dai et al., 2017). To determine the role
of PPARγ in FGF1ΔHBS-preserved podocytes, we used specific
PPARγ siRNA to knock down protein expression. We found
that HG treatment increased the phosphorylation of SMAD3
and downregulated PPARγ expression (Figure 3D).
Podocytes treated with FGF1ΔHBS inhibited SMAD3
phosphorylation in a PPARγ-dependent manner
(Figure 3D). Real-time PCR showed that the expression of
Tgf-β1, Col 4, Fn1, and Acta2 were attenuated by FGF1ΔHBS

treatment under HG challenge, while these inhibitory effects
were abolished in the presence of PPARγ siRNA (Figure 3E).

The inhibitory effects of FGF1ΔHBS on nuclei translocation of
SMAD3 was PPARγ dependent (Figure 3F). Enhanced
interaction between SMAD3 and PPARγ was also observed
after FGF1ΔHBS treatment (Figure 3F). Taken together, these
data suggest that FGF1ΔHBS protects podocytes from HG-
induced EMT and injury, highlighting the importance of
PPARγ in the maintenance of podocyte homeostasis and
renal function.

FGF1ΔHBS Inhibited Renal Remodeling in
Adriamycin-Induced CKD
To explore whether the inhibitory effect of podocyte EMT by
FGF1ΔHBS applied to other types of CKD, we used an ADR-
induced nephropathy model to investigate the anti-EMT
effects of FGF1ΔHBS. Consistent with our previous findings
(Wang et al., 2019), renal function was restored by FGF1ΔHBS

treatment, as evidenced by decreased UACR and BUN levels

FIGURE 4 | FGF1ΔHBS inhibited ADR-induced renal remodeling and dysfunction. (A)Urine albumin-to-creatinine ratio (UACR). (B)Blood urea nitrogen (BUN) levels.
(C)Representative images of hematoxylin and eosin (H&E) staining, Sirius red staining, Masson’s trichrome staining, and transmission electronmicroscopy (TEM) images
of renal tissues. (D) Quantification of mesangial expansion. (E) Quantification of the fibrotic area in Sirius red staining. (F) Quantification of the fibrotic area in
Masson staining. (G) Hydroxyproline content in renal tissues. (H) Quantification of podocyte foot process effacement. Data are presented as the mean ± SEM
(n � 6); *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figures 4A,B). ADR-induced mesangial expansion was
inhibited in the FGF1ΔHBS-treated group (Figures 4C,D).
In addition, tissue remodeling was significantly prevented
as renal fibrosis and collagen deposition was attenuated,
and foot process loss was alleviated (Figures 4C,E–H).

FGF1ΔHBS Inhibited ADR-Induced the
Upregulation of TGF-β1 and
Phosphorylation of SMAD3
Consistent with the increase of mRNA levels of EMT markers in
DN, we found significantly upregulated gene transcription of
Acta2, Fn1, and Col 4 by ADR treatment while FGF1ΔHBS

treatment restored them to normal levels (Figure 5A).
Furthermore, there were significant reductions in protein
expression of α-SMA, COL 1, and COL 4 associated with
FGF1ΔHBS treatment (Figure 5B). Consistent with reduced
mRNA expression, FGF1ΔHBS also reduced TGF-β1-positive
cells in renal tissues of ADR-treated mice (Figures 5C,D).
And the phosphorylation levels of SMAD3 were attenuated
by FGF1ΔHBS treatment (Figure 5E). Immune blotting
analysis showed that ADR treatment increased TGF-β1
expression and SMAD3 phosphorylation that was
significantly restored with FGF1ΔHBS treatment (Figure 5F).
These results suggest that FGF1ΔHBS suppresses TGF-β1-
mediated renal fibrosis and EMT.

FIGURE 5 | FGF1ΔHBS inhibited ADR-induced the upregulation of TGF-β1 and phosphorylation of SMAD3. (A) Real-time PCR analysis of Acta2, Fn1, and Col 4
mRNA expression. (B) Expression levels of α-SMA, COL 1, and COL 4 as determined by western blot analysis and quantitation using ImageJ. (C)Real-time PCR analysis
of TGF-β1 mRNA expression levels. (D) Representative images of TGF-β1 immunohistochemical staining of renal tissues and quantitation using ImageJ. (E)
Representative images of phosphorylated SMAD3 immunohistochemical staining of renal tissues and quantitation using ImageJ. (F) Expression levels of
phosphorylated SMAD3, SMAD3, and TGF-β1 as determined by western blot analysis and quantitation using ImageJ. Data are presented as the mean ± SEM (n � 6);
Panels (A,B), *p < 0.05, **p < 0.01, ***p < 0.001 vs. db/m; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. db/db; Panels (C–F), *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6905357

Wang et al. FGF1ΔHBS Inhibits Podocyte EMT

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FGF1ΔHBS Suppressed Podocyte EMT Via
Upregulation of PPARγ Under ADR
Challenge
To determine whether PPARγ mediated the protective effects of
FGF1ΔHBS in AN, we investigated the expression of PPARγ using
various methods. The mRNA and protein levels of PPARγ were
decreased by ADR treatment (Figures 6A–C). FGF1ΔHBS treatment

significantly enhanced the transcription and protein levels of PPARγ
(Figures 6A–C). Mouse podocytes were used to analyze the in vitro
protective effects of FGF1ΔHBS. As shown in Figure 6D, we found
that FGF1ΔHBS upregulated PPARγ expression and suppressed
SMAD3 phosphorylation under ADR challenge. The suppression
effect was abolished when cells were treated with PPARγ siRNA.
ADR increased the expression of pro-EMT genes (Tgf-β1, Fn1,
Col 4, and Acta2), and FGF1ΔHBS attenuated this induction in a

FIGURE 6 | FGF1ΔHBS suppressed podocytes EMT via upregulation of PPARγ under ADR challenge. (A) Real-time PCR analysis of PPARγmRNA expression. (B)
Representative images and quantitation of immunofluorescence staining for PPARγ. (C) Expression levels of PPARγ as determined by western blot analysis and
quantitation using ImageJ. (D) Phosphorylation levels of SMAD3 and protein expressions of PPARγ as determined by western blot analysis and quantitation using
ImageJ. (E) Real-time PCR analysis of TGF-β1, Fn1, Col 4, and Acta2 mRNA expression. (F) Representative images and quantitation of immunofluorescence
staining of SMAD3 and PPARγ. (G) A mechanistic illustration of FGF1ΔHBS protection from diabetes or chemical induced podocyte EMT and CKD. In panels (A–C),
Data are presented as the mean ± SEM (n � 6). In panels (D–F), data from three independent measurements are presented as the mean ± SEM; *p < 0.05, **p < 0.01,
***p < 0.001.
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PPARγ-dependent manner (Figure 6E). Consistent with the results
of HG treatment, SMAD3 nuclei translocation was decreased, and
enhanced interactions between PPARγ and SMAD3 were observed
following FGF1ΔHBS treatment (Figure 6F). These results suggest
that the protective effects of FGF1ΔHBS against podocyte EMT were
independent of glucose control.

DISCUSSION

The characteristics of CKD where GBM composition is impaired
are associated with progressive renal dysfunction, highlighting
the importance of podocyte integrity in maintaining normal
filtration (Kriz and Lemley, 2015). Activation of TGF-β1/
SMAD3 signaling accelerates the overproduction of ECM,
promotes podocyte EMT, and participates in the pathogenesis
of CKD (Meng et al., 2016). Previously, we reported the protective
effects of FGF1 against DN via anti-inflammatory signal
transduction (Liang et al., 2018). The present study elucidated
a novel mechanism by which FGF1ΔHBS protects podocytes from
diabetes- or drug-induced EMT and renal fibrosis. We found that
FGF1ΔHBS suppressed TGF-β1 expression and SMAD3 nuclei
translocation via activation of PPARγ (Figure 6G).

Inhibition of the TGF-β1/SMAD3 signaling pathway
ameliorates non-alcoholic steatohepatitis, tubulointerstitial
fibrosis, and myocardium infraction (Chen et al., 2019; He
et al., 2020; Okina et al., 2020). Increased EMT of podocytes
induced by diabetes and ADR is closely related to end-stage
renal disease and glomerular fibrosis. Several lines of evidence
demonstrated that TGF-β1/SMAD3 signaling contributes to EMT
in podocytes (Kang et al., 2010; Yin et al., 2018). Renal injuries,
including mesangial expansion, matrix accumulation, proteinuria,
and GBM thickening, were alleviated in SMAD3-null mice treated
by streptozotocin (Lin et al., 2009; Yadav et al., 2011). Proteinuria
and kidney dysfunction were found in TGF-β1-overexpressing
mice (Kopp et al., 1996; Schiffer et al., 2001). In the present study,
we found that the upregulation of TGF-β1 induced by diabetic
conditions or ADR was inhibited by FGF1ΔHBS treatment. In vitro
studies showed that FGF1ΔHBS suppressed the expression of EMT
markers (Fn1,Atca2, and Col 1). Taken together, these data suggest
that the protective effects of FGF1ΔHBS on podocyte EMT are
mediated by inhibition of TGF-β1.

PPARγ participates in adipogenesis and exerts diverse effects in
other tissues, including liver, skeletal muscle, brain, bone, blood
vessels, and kidney (Kawai and Rosen, 2010; Brun et al., 2017). As a
transcription factor, PPARγ regulates expression of such genes as Il-
1β, Tnf-α, Tgf-β, Ho-1, and Bcl-2 in transactivation- or
transrepression-manners (Schmidt et al., 2010; Quelle and
Sigmund, 2013; Gross et al., 2017). In addition to transcriptional
activity, PPARγ binds to other proteins and regulates their function.
Yang et al. (2020) found that decreased interaction between PPARγ
and Nur77 resulted in enhanced stability of Nur77 and inhibited
metabolic reprogramming in breast cancer. Interactions between
PPARγ and NLRP3, β-arrestin-1, and UBR5 regulated
inflammatory responses of macrophages, adipogenesis, and
endothelial homeostasis (Zhuang et al., 2011; Li et al., 2019; Yang
et al., 2021). We found enhanced interactions between PPARγ and

SMAD3 and suppressed EMT in podocytes following FGF1ΔHBS

treatment. These findings are consistent with a previous report in
which a PPARγ agonist reversed pulmonary arterial hypertension
(PAH) via inhibition of SMAD3 nuclei translocation in TGF-β1
transgenic mice (Calvier et al., 2017).

FGF1 is a promising agent for the treatment of type 2 diabetes
by improving insulin sensitivity. FGF1-null mice displayed an
aggressive diabetic phenotype upon a high-fat diet challenge
(Jonker et al., 2012; Suh et al., 2014). The glucose-lowering
effects of FGF1 or its variants have been reported (Suh et al.,
2014; Huang et al., 2017). A high-glucose environment has been
suggested to be involved in podocyte EMT. In the current study,
we showed that the inhibitory effects of FGF1ΔHBS on podocyte
EMT and renal protection were independent of its glucose-
lowering activity. Expression of EMT markers was significantly
reduced by FGF1ΔHBS treatment in vivo and in vitro.

CONCLUSION

We found inhibitory effects of FGF1ΔHBS on podocyte EMT. The
protective mechanism conferred by FGF1ΔHBS is mediated by
downregulation of TGF-β1 expression and reduced nuclei
translocation of SMAD3 via restoration and enhancement of
PPARγ expression. We conclude that this is a novel signaling
mechanism by which FGF1ΔHBS maintains podocyte
homeostasis, resulting in protection against decreased
glomerular filtration and proteinuria. The findings suggest that
FGF1ΔHBS is a promising therapeutic strategy for the prevention
of podocyte EMT in CKD.
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