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Endothelial barrier integrity is important for vascular homeostasis, and hyperpermeability
participates in the progression of many pathological states, such as diabetic retinopathy,
ischemic stroke, chronic bowel disease, and inflammatory disease. Here, using drug
repositioning, we discovered that primaquine diphosphate (PD), previously known as an
antimalarial drug, was a potential blocker of vascular leakage. PD inhibited the linear
pattern of vascular endothelial growth factors (VEGF)-induced disruption at the cell
boundaries, blocked the formation of VEGF-induced actin stress fibers, and stabilized
the cortactin actin rings in endothelial cells. PD significantly reduced leakage in the Miles
assay and mouse model of streptozotocin (STZ)-induced diabetic retinopathy. Targeted
prediction programs and deubiquitinating enzyme activity assays identified a potential
mechanism of action for PD and demonstrated that this operates via ubiquitin specific
protease 1 (USP1). USP1 inhibition demonstrated a conserved barrier function by inhibiting
VEGF-induced leakage in endothelial permeability assays. Taken together, these findings
suggest that PD could be used as a novel drug for vascular leakage by maintaining
endothelial integrity.
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INTRODUCTION

The endothelial barrier maintains vascular and tissue homeostasis (Komarova and Malik, 2010;
Park-Windhol and D’Amore, 2016). Vascular permeability is determined by intercellular
junctions that create barriers to control the extravasation of plasma (Claesson-Welsh et al.,
2020). Endothelial cells are connected by two types of intercellular junctions: adherens junctions
(AJs) and tight junctions (TJs) (Bazzoni and Dejana, 2004). Both junctional complexes form
pericellular zipper-like structures along the endothelial cell boundaries through the adhesion of
distinct adhesive proteins. AJs initiate cell-cell contact and mediate the maturation and
maintenance of contact. AJs are composed of vascular endothelial (VE)-cadherin and are
related α-, β-, and p120-catenin adhesion complexes (Leach et al., 1993; Lampugnani et al.,
1995; Tamura et al., 1998). Several studies have shown that VE-cadherin adhesion is a major
adhesion event during vascular development. The degradation of AJs, impaired by the integrity of
the VE-cadherin adhesion complex, is the leading cause of tissue edema associated with a wide
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range of pathological conditions. TJs regulate the pathways
around the cells for the movement of ions and solutes
between cells. TJs consists of the transmembrane proteins
occludin, claudin, and cytoplasmic scaffolding proteins ZO-1,
-2, and -3 (Hartsock and Nelson, 2008; Komarova et al., 2017).
ZO-1 regulates the cross-interaction between TJs and AJs
through intracellular tension and assembly of the VE-
cadherin mechanosensory complex. In particular, the
pathophysiology of the retina and retinal pigment epithelium
membrane is the site of cellular communication and adhesion.
AJs and TJs form a composite that is involved in forming a
physical barrier, maintaining cell polarity, and preventing
intramembrane diffusion between the basal side and apical
membrane domains (Shin et al., 2006; Rizzolo, 2007). These
junctions dissolve in response to several stimuli, including
vascular endothelial growth factor (VEGF) and inflammatory
cytokines, such as histamine and bradykinin, allowing the
outflow of macromolecules (Claesson-Welsh, 2015). In
diseases characterized by excessive vascular permeability (also
called vascular leakage), the regulation of junction dynamics is
lost, and the junction remains open (Nagy et al., 2008; Claesson-
Welsh, 2015).

Reduced barrier function (and increased vascular
permeability) is associated with organ dysfunction and can
participate in the progression of many pathological
conditions, such as diabetic retinopathy (DR), chronic
inflammatory disease, and lung injury. Restoration of
endothelial barrier integrity under these conditions can
significantly delay disease progression (Dejana et al., 2009;
Kumar et al., 2009; Rodrigues and Granger, 2015). DR is one
of the most common microvascular complications of diabetes
mellitus and is the leading cause of blindness in the working-age
group (Cheung et al., 2010). The earliest sign of DR is a
weakening of the blood-retinal barrier, which leads to a leak
in the vessels, followed by retinal edema (Frank, 2004; Shin et al.,
2014). VEGF is known to play an important role in blood-retinal
barrier breakdown by altering junction integrity and
cytoskeletal tissue of endothelial cells, which increases
permeability during the pathogenesis of DR (Murata et al.,
1995; Weis and Cheresh, 2005; Caprnda et al., 2017).
Therapies targeting this early and reversible stage of blood-
retinal barrier breakdown remain to be developed. Therefore, to
prevent these diseases, treatments that can block vascular
leakage are needed.

In this study, we aimed to find a United States Food and Drug
Administration (FDA)-approved drug that could be repurposed
as a vascular leakage blocker. Primaquine diphosphate (PD) was
found to block vascular leakage in endothelial cells through a
previously established screening in our laboratory (Maharjan
et al., 2011). Primaquine, an 8-aminoquinoline, has been
approved by the FDA for the treatment of malaria since 1952
(Hill et al., 2006). However, to date, the anti-permeability
properties of PD remain unexplored. Here, we evaluated the
therapeutic agent for PD as a vascular leakage blocker and
investigated ubiquitin-specific protease 1 (USP1), which is a
potential target of PD.

METHODS

Drug and Inhibitors
FDA-approved drugs (1,018) and PD were purchased from
Selleckchem (Houston, TX, United States). PD is a yellow
powder that is soluble in water and has a molecular weight of
455.34. SJB2-043 and ML-323, USP1 inhibitors, were purchased
from Selleckchem (Houston, TX, United States).

Cell Culture
Human umbilical vein endothelial cells (HUVECs) were purchased
from Lonza (Basel, Switzerland). Cells were grown in 2% gelatin-
coated dishes and maintained in medium 199 (Invitrogen, CA,
United States) containing 20% fetal bovine serum (HyClone,
Tianjin), 1% penicillin/streptomycin, 3 ng/ml basic fibroblast
growth factor (R&D system, Minneapolis), and 5 U/mL heparin
(Sigma-Aldrich,MO, United States) at 37°C in humidified 5% (v/v)
CO2 atmosphere. Human retinal endothelial cells (HRECs) were
purchased from Cell Systems Inc. (Kirkland, WA, United States).
Cells were grown in 2% gelatin-coated dishes and maintained in
EC basal medium (EBM-2, CC-3156) containing EGM-2-kit (CC-
4176) (Lonza Walkersville, Inc., MA, United States) and 20% fetal
bovine serum at 37°C in humidified 5% (v/v) CO2. Cell passages
between 3 and 6 were used for experiments.

3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide Assay
HUVECswere seeded at a density of 3.0 × 104 and 1.0× 104 cells/well
in gelatin-coated 24-well plates and gelatin-coated 96-well plates,
respectively, and incubated overnight. Cells were washed and
switched to serum-free media and treated with various
concentrations of PD. After 48 h, cells were washed, and 0% M-
199 containing MTT (0.1 mg/ml) was added, followed by incubation
at 37°C for 3 h. The residualMTTwas carefully removed, and crystals
were dissolved by incubation with dimethyl sulfoxide:ethanol (1:1).
Absorbance was measured at 560 nm using spectrophotometry.

In Vitro Vascular Permeability Assay
HUVECs were seeded at a density of 6.0 × 104 cells/well on the
luminal side of filters (0.4 μm pore size; Corning) coated with 1%
gelatin in 12-well plates. Cells were grown in EC basal medium
(EBM-2, CC-3156) containing EGM-2-kit (CC-4176) (Lonza
Walkersville, Inc., MA, United States) and 10% fetal bovine
serum at 37°C in humidified 5% (v/v) CO2. Cells were
cultured for 2 days until confluent, and starved in serum-free
medium for 2 h and treated with PD (5 µM) for 30 min before
induction with VEGF (30 ng/ml; Komabiotech) for 30 min.
Transendothelial electrical resistance (TEER) was measured
using a chop-stick electrode (World Precision Instruments
STX2) with Millicell ERS-2 volt/Ω m (Millipore, MA,
United States). The TEER of the cell-free gelatin-coated
filters was subtracted from the measured TEER and are given
as Ω × cm2. Paracellular vascular permeability was also
confirmed using fluorescein isothiocyanate (FITC)- dextran
fluorescein. FITC-dextran (30 mg/ml; Sigma) was added to
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the upper compartment. The absorbance of the lower chamber
solution was measured at 492 nm (excitation) and 520 nm
(emission) using a FLUOstar Omega microplate reader.

Immunofluorescence Staining of Human
Umbilical Vein Endothelial Cells
HUVECs were fixed in 4% paraformaldehyde for 20min at room
temperature and permeabilized in 0.1% Triton X-100 in PBS for
15min at 4°C. The cells were incubated for 2 h at room temperature
with antibodies such as anti-VE-cadherin (1:400, Santa Cruz
Biotechnology). The cells were incubated with secondary antibodies
conjugated with Alexa Fluor 594 for 1 h at room temperature.

Actin filaments were monitored with rhodamine phalloidin (1:
250, Molecular Probes) for 30min. Cells were mounted using Dako
mounting reagent and observed using a fluorescence microscope
(Zeiss; ×200) and confocal microscopy (LSM 700META; Carl Zeiss).

Western Blot Analysis
HUVECs were washed with cold 1× phosphate-buffered saline and
lyzed with 200 μL of RIPA buffer (100 mM Tris-Cl, 5 mM EDTA,
50mM NaCl, 50 mM β-glycero-phosphate, 50 mM NaF, 0.1 mM
Na3VO4, 0.5% NP-40, 1% Triton X-100, and 0.5% sodium
deoxycholate) at 4°C. Lysates were centrifuged at 14,000 rpm for
15 min. Protein samples were separated by electrophoresis on a
sodium dodecyl sulphate-polyacrylamide gel and transferred to
nitrocellulose membranes. Immunoblotting was performed using
antibodies against USP1 (Cell Signaling Technology, Inc., MA,
United States) and β-actin (Thermo Fisher Scientific, MA,
United States).

Reverse Transcription Polymerase Chain
Reaction
RNA was isolated using Trizol (iNtRON), and RT-PCR was
performed using 2× Maxima SYBR Green/ROX qPCR Master
Mix (Thermo Scientific, K0221). All results were normalized to
GAPDH expression levels.

Transfection With Small Interfering
Ribonucleic Acid
Knockdown of USP1 expression was targeted by using USP1-
specific ON-Target SMARTpool siRNA. Parallel transfection
with a pool of ON-TARGET plus non-targeting siRNAs served
as a negative control. The pools of siRNA sequences were
obtained from Dharmacon (Waltham, MA, United States).
Lipofectamine in vitro transfection reagent (Invitrogen, CA,
United States) was used to deliver siRNA into the cell.
Transfection was performed according to the manufacturer’s
instructions in cell monolayers at 70–80% confluency. Cells
were harvested 48 h post-transfection, followed by analysis
using both the permeability assay and immunofluorescence.

Ub-AMC Assay
All deubiquitinating enzyme (DUB) reactions were performed in
1× DUB assay buffer containing 1 mM dithiothreitol at 25°C,

unless otherwise specified. The DUB activity assay kit was
obtained from Cayman Chemical (Ann Arbor, MI,
United States). For Ub-AMC assays, recombinant DUBs (rDUB;
USP1/UAF1, USP1, USP2, or USP14) were pre-incubated with
1 μMof small molecule compounds (SJB2-043,ML-323, or PD) for
30 min. The reaction was started by adding Ub-AMC to a final
concentration of 0.5 μM. After 30 min of incubation, the
fluorescence of free AMCs in FLUOstar Omega microplate
reader (BMG Labtech, Germany) was measured using excitation
and emission wavelengths of 355 and 455 nm, respectively.

Experimental Animals
Male BABL/C (8-week-old; body weight: 22–25 g) and C57/BL6J
(7-week-old; body weight: 20–22 g) mice were purchased from
DBL (Seoul, Korea). The animals were housed in a conventional
state at an adequate temperature (23°C) and humidity (60%) with
a 12/12 h light/dark cycle and provided with free access to water
and food. The animals were acclimated to their environment for
5 days before being used in the experiments.

Miles Assay
Experimental mice (BABL/C) were anesthetized and shaved. After
2–3 days, the mice were anesthetized again and intravenously
injected with 100 μL of 1% Evans blue dye. After 15min,
intradermal injection of one of the following was performed:
50 μL of VEGF (50 ng/ml), histamine (500 nmol/L), primaquine
diphosphate (1 or 10 μg), and PBS as a negative control. After
30 min, the back skin was photographed and dissected. The dye
was then eluted from the dissected samples with formamide at
56°C, and the optical density was measured by spectrophotometry
(FLUOstar Omega microplate reader) at 620 nm.

Streptozotocin-Induced Diabetic
Retinopathy Model
To induce diabetes mellitus, 60mg/kg of STZ (Sigma-Aldrich) was
injected intraperitoneally into 8-week-old C57/BL6J mice for five
consecutive days. Body weights and glucose levels in tail vein
blood samples were monitored weekly. One week after STZ
injection, the mice were confirmed to be diabetic if their glucose
level was greater than 300mg/dl. These mice were divided into four
groups: normal, STZ only, STZ + PD 0.5, and STZ + PD 1mg/kg. PD
was administered orally for 10 days, starting 4 weeks after STZ
injection. One day after the last oral administration, FITC-dextran
(70 kDa; Sigma-Aldrich) was injected into the heart and circulated in
the body, followed by euthanization 5min later. Both eyes of each
mouse were used for examination of the retinal vascular pattern and
were flatmounted on slides and analyzed using a confocal microscope
(LSM 700 META; Carl Zeiss). Confocal images were quantified using
Multi Gauge V2.2. The number of pixels in the leaked areas was
compared with the total number of pixels in the entire retina.

Statistical Analysis
Data are presented as mean ± standard error of the mean (SEM). All
statistical analyses were performed using GraphPad Prism version 8
(GraphPad Software, La Jolla, CA, United States). Differences in
means among the groups were statistically analyzed by one-way
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analysis of variance (ANOVA) with Tukey’s multiple comparison
tests to elucidate leakage-related differences among experimental
groups. Statistical significance was set at p < 0.05.

RESULTS

Primaquine Diphosphate Blocks Vascular
Endothelial Growth Factors-Induced
Permeability in Human Umbilical Vein
Endothelial Cells
We tested 1,018 FDA-approved drugs to find repositioning drugs
as vascular leakage blockers. We first screened drugs that have a
protective effect on endothelial cells. Among these, drugs that

have not yet been studied in blood vessels were secondarily
screened, and PD, a drug involved in junction stabilization,
was discovered through in vitro assays (Supplementary Figure
S1A). To evaluate the protective effect of PD on endothelial
barrier integrity, the potential changes in the integrity of
endothelial cells were assessed by measuring the TEER and
permeability of huvec monolayers to FITC-dextran. PD
blocked TEER reduction and FITC-dextran leakage caused by
VEGF treatment (Figures 1A,B). In addition, we tested the effect
of PD on the stability of the AJ protein VE-cadherin and
expression of F-actin by immunostaining. Normally, confluent
HUVECs display a linear pattern of AJ proteins at the cell
borders, and this characteristic localization is disrupted by
VEGF (Oldenburg and de Rooij, 2014; van Buul and
Timmerman, 2016). PD inhibited the disruptive effect of

FIGURE 1 | Primaquine diphosphate (PD) blocks VEGF-induced endothelial permeability and stabilizes junctional proteins. HUVECs were starved and treated with
or without PD (5 μM, 30 min) before stimulation with VEGF (30 ng/ml, 30 min). PD blocked both TEER decline (A) and increased FITC-dextran transendothelial
permeability (B) induced by VEGF. TEER was measured using Millicell ERS-2 (Millipore). For the permeability assay, FITC-dextran was added to the upper chamber. The
absorbance of the solution in the lower chamber was measured at 492 nm (excitation) and 520 nm (emission) using a FLUOstar Omega microplate reader. n ≥ 3
independent experiments. (C) HUVECs were starved and treated with or without PD (5 μM, 30 min) before stimulation with VEGF (50 ng/ml, 30 min). Cells were fixed,
permeabilized, and immunostained for VE-cadherin and F-actin. White arrow indicates an attenuated VE-cadherin expression and yellow arrow shows stress fiber
formation. All data are presented as means ± SEM, *p < 0.05, ****p < 0.0001 vs. control group; #p < 0.05, ##p < 0.005 vs. VEGF treatment group. Scale bar � 20 μM.
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VEGF treatment by preventing the linear distribution of VE-
cadherin (Figure 1C). Furthermore, F-actin immunostaining
showed that in the control, confluent HUVECs had ring-like
shapes (Bijman et al., 2006). VEGF treatment disrupted cortical
actin ring structures and increased actin stress fiber formation
whereas PD significantly prevented VEGF-induced stress fiber
formation and maintained the cortactin ring shape (Figure 1C).
Collectively, these results demonstrate that PD has a barrier
protective effect by stabilizing AJ proteins and the actin
cytoskeleton.

Primaquine Diphosphate Exhibit Reduced
Vascular Permeability in Response to
Vascular Endothelial Growth Factors and
Histamine
The Miles assay was performed using VEGF and histamine to
evaluate whether PD regulates vascular permeability in vivo.
The Miles assay is a commonly used, well-established, and
relatively simple technique that measures vascular leakage in
vivo as a measure of vascular hyperpermeability (Brash et al.,
2018). Several permeable factors such as VEGF and histamine
have been demonstrated to compromise vascular homeostasis
(Feng et al., 1996). The backs of mice, into which permeability
factors were injected, turned blue owing to the extravasation of
Evans blue dye, which had been systemically administered.
The extravasation of Evans blue induced by VEGF was reduced

by PD (Figures 2A,C). In addition, dermal injection of
histamine led to vascular leakage of Evans blue dye, which
was blocked by PD in a dose-dependent manner (Figures
2B,D). Taken together, these results suggest that VEGF and
histamine-induced vascular permeability are suppressed
by PD.

Primaquine Diphosphate Effectively
Diminished Retinal Vascular Leakage in a
Diabetic Mouse Model
Disruption of junctions in endothelial cells leads to vascular
leakage and fluid exudation into the surrounding tissue, which
can lead to serious diseases such as DR (Bandello et al., 2013;
Claesson-Welsh et al., 2020). To evaluate the effect of PD on
DR, STZ-induced diabetic mice were orally administered with
PD, and retinal vascular leakage was investigated using
immunofluorescence staining (Figure 3A). High levels of
extravasation of FITC-dextran were observed in the retinas
of diabetic mice, and this vascular leakage was blocked by oral
administration of PD. Measurement of FITC-dextran in the
retina showed that 0.5 mg/kg PD effectively reduced retinal
vascular leakage in a STZ-induced diabetic mouse model
(Figures 3B,C). PD prevention against vascular leakage in
the retinas of diabetic mice was quantitatively analyzed by
determining the leakage area of FITC-dextran in whole retinal
tissues (Figure 3D). Taken together, these findings show that

FIGURE 2 | PD treatment blocks VEGF-induced and histamine-induced permeability in vivo. Vascular permeability was assessed using the Miles assay. Six-week-
old mice were used, and mice were tail vein-injected with Evans blue dye followed by intradermal injection of VEGF (50 ng), histamine (500 nM), or PD (1 μg or 10 μg)
(A,B). The skin at the injection site was collected and photographed. (C,D) Evans blue dye was extracted from the skin by incubation with formamide at 56°C overnight,
and the absorbance of the extracted dye was measured at 620 nm with a spectrophotometer (n � 7). All data are presented as means ± SEM, *p < 0.005,
****p < 0.0001 vs control group; #p < 0.05, ###p < 0.0005, ####p < 0.0001 vs inducer treated group.
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PD helped prevent retinal vascular leakage in diabetic mice by
inhibiting permeability by VEGF and inflammatory cytokines
such as histamine.

Ubiquitin Specific Protease 1 Regulates the
Integrity of the Endothelial Barrier as a
Target of Primaquine Diphosphate
Although PD has been demonstrated to prevent vascular
leakage, the target in endothelial cells remains unclear

(Camarda et al., 2019). To identify the mode of action for
PD that stabilizes the vascular barrier, we identified targets
through prediction programs and the Ub-AMC assay. Target
prediction programs were used to identify the common targets
(Supplementary Figure S2A). Among these targets, USP1 was
highly expressed in endothelial cells (Supplementary Figure
S2B). We evaluated the effect of PD on USP1 or other DUBs by
using the Ub-AMC (ubiquitin 7-amino-4-methylcoumarin)
assay (Figure 4A, Supplementary Figure S2C). An in vitro
assay with purified rDUB showed that PD inhibited USP1/

FIGURE 3 | Oral administration of PD attenuates diabetes-induced vascular retinal leakage. (A) Scheme of PD treatment on STZ-induced diabetic mouse model.
Diabetic mice were treated with various concentrations of PD (0.5 and 1 mg/kg) for 10 days by oral gavage; 24 h after the last treatment, 200 μL FITC-Dextran (30 mg/ml
in sterile PBS) was injected into the left ventricle. Retinas were viewed using confocal microscopy. (B) Representative images for fluorescein angiography from the
control, untreated DM, and PD-treated DM groups at 4 weeks after STZ injection are shown at ×100magnification. (C)Representative images are enlarged images
in (B), ×200magnification. Yellow arrowheads indicate the region of vascular permeability. (D) The quantified statistical analysis of the area of FITC-dextran leakage in (B)
is shown by multi-gauge software (Fuji). Data are the mean ± SEM. ***p < 0.0005 vs control group; ###p < 0.0005, ####p < 0.0001 vs vehicle group (n > 9). Scale bar �
500 μM.
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UAF1 activity. Importantly, PD did not significantly affect USP2
activity (Figure 4B). PD inhibits USP1/UAF1 activity with an
IC50 value of 2.536e-005 M (Figure 4C). To examine whether
USP1 is the target of PD, we induced loss of function of USP1.
Reverse transcription-PCR (RT-PCR) and western blotting
showed a significant decrease in USP1 levels compared with
those in controls 48 h after transfection with USP1-knockdown
siRNA in HUVECs (Figures 5A,B). USP1 knockdown also
significantly increased TEER values and markedly reduced
leakage of FITC-dextran compared with these in the control
group, indicating that this prevented VEGF-induced
permeability (Figures 5C,D). Furthermore, silencing of USP1
was able to prevent VEGF-induced disruption of VE-cadherin
and cortical actin ring formation (Figures 5E,F). To further
confirm the role of USP1 in maintaining vascular barrier
integrity, we performed a permeability assay using two USP1
inhibitors, SJB2-043 and ML-323. The TEER assays
demonstrated that SJB2-043 and ML-323 prevented VEGF-
induced permeability (Figures 6A,B), and the same effect
was also observed in FITC-dextran permeability assay
(Figures 6C,D). In addition, treatment with USP1 inhibitors
protected VEGF-induced disruption of VE-cadherin and actin
stress fiber formation (Figures 6E,F). Taken together, these data

demonstrate that PD regulation of USP1 reduces permeability
and maintains barrier integrity in VEGF-induced
endothelial cells.

DISCUSSION

Regulation of endothelial barrier function is critical for vascular
function and integrity (Lum and Malik, 1994; Surapisitchat and
Beavo, 2011). Vascular barrier integrity can be destroyed by
various soluble permeability factors, and changes in barrier
function during disease progression can exacerbate tissue
damage. Restoration of the normal vascular structure is
believed to reduce hyperpermeability (Park-Windhol and
D’Amore, 2016). Here, we discovered PD, a new vascular
leakage blocker, and confirmed that this drug inhibited
endothelial permeability by stabilizing AJs and attenuating
vascular leakage.

The maintenance of endothelial cell integrity is regulated by
cytoskeletal tissue and intercellular junctions, such as AJs and TJs
(Popoff and Geny, 2009). Several studies have shown that AJ
protein dissolves when treated with a permeable factor (Bates
et al., 1999; Moy et al., 2000; Dvorak, 2002; Shasby et al., 2002; Fu

FIGURE 4 | PD specifically inhibited USP/UAF1 activity. (A) Schematic representation of Ub-AMC assay. USP1 removes ubiquitin from its substrate Ub-AMC, and
fluorescent AMC ismeasured. (B) rUSP1/UAF1 complex or rUSP2were incubated with control, USP1 inhibitor SJB2-043, ML-323, or PD for 30 min at 37°C, followed by
assessment of DUB activity using Ub-AMC assay. (C) Progress curve for USP1/UAF1 activity on PD against Ub-AMC. The graph represents the average of three
independent experiments with calculated SEM. The experiment was conducted at least four times.
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FIGURE 5 | USP1 knockdown inhibits VEGF-induced endothelial permeability and stabilizes junctional proteins. (A) Expression of USP1 mRNA by RT-PCR
following transfection with USP1 siRNA. (B)Western blot analysis shows USP1 expression in cells transfected with USP1-siRNA. Treatment with both VEGF and siUSP1
resulted in decreased endothelial permeability of TEER (C) and 70 kDa dextran (D) as compared with that obtained with VEGF treatment alone in HUVECs. n ≥ 3
independent experiments. siUSP1 cells were fixed, permeabilized, and subsequently immunostained for VE-cadherin (E) and F-actin (F). All data are presented as
means ± SEM. *p < 0.05, ***p < 0.0005, ****p < 0.0001. Scale bar � 20 μM.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6950098

Noh et al. Primaquine Diphosphate Blocks Vascular Leakage

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


and Shen, 2003; Adam, 2015). VEGF induces actin stress fiber
formation and leads to vascular permeability (Rousseau et al.,
2000). In addition, the dissolution of cortactin by permeability
factors causes the formation of actin stress fibers and destabilizes
barrier integrity (Oldenburg and de Rooij, 2014; van Buul and
Timmerman, 2016). Our study used permeability assays and the

expression pattern of junctional proteins by immunostaining to
demonstrate that PD treatment in VEGF-induced endothelial
cells reduced leakage. PD treatment prevented VEGF-induced
degradation of VE-cadherin, which resulted in reduced
permeability of HUVECs. We further showed that PD blocked
VEGF-induced actin stress fiber formation in HUVECs by

FIGURE 6 | USP1 inhibitor blocks VEGF-induced endothelial permeability and stabilizes junctional proteins. HUVECs were starved and treated with SJB2-043
(1 μM, 30 min) and ML-323 (5 μM, 30 min) before stimulation with VEGF (30 ng/ml, 30 min). SJB2-043 and ML-323 blocked both the TEER decline (A,B) (Experiments
were performed in triplicate) and the increase in FITC-dextran transendothelial permeability (C,D) (Combined data from the six independent experiments are shown)
induced by VEGF. HUVECs were treated with SJB2-043 (1 μM, 30 min) and ML-323 (5 μM, 30 min) before stimulation with VEGF (50 ng/ml, 30 min). Cells were
fixed, permeabilized, and subsequently immunostained for VE-cadherin (E) and F-actin (F) All data are presented as means ± SEM, *p < 0.05, ***p < 0.0005,
****p < 0.0001 vs control group; #p < 0.05, ##p < 0.005, ###p < 0.0005, ####p < 0.0001 vs VEGF treated group. Scale bar � 20 μM.
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reorganizing actin into the cortical actin ring. Altogether, these
data suggest that PD has the potential to reorganize the dispersed
actin polymers into cortical actin rings with subsequent
stabilization of AJs, which may be responsible for endothelial
barrier enhancement. In addition, we confirmed that PD
prevented VEGF-and histamine-induced vascular permeability
in the Miles assay. VEGF, a vascular permeability factor, is a
major pathogenic molecule involved in the occurrence of
complications (i.e., diabetic and hypertensive retinopathy, age-
relatedmacular degeneration) (Apte et al., 2019), and histamine is
a representative inflammatory mediator that strongly induces
blood vessels and permeability. Several studies have shown
increased VEGF and histamine expression in diabetic retina
(Lee et al., 2020). One therapeutic strategy for reducing these
permeability aims to develop a compound that can stabilize
endothelial cell junctions, which are disrupted in the disease
(Stylianopoulos and Jain, 2013; Tan et al., 2015). A STZ-induced
diabetic mouse model was shown to have increased retinal
vascular leakage similar to that observed in the early stage of
human DR (Su et al., 2000; Yu et al., 2001). Here, oral
administration of PD significantly decreased retinal vascular
leakage in a diabetic mouse model. Our data suggest that PD
can reduce vascular leakage in DR by blocking multiple factors.
PD is the most representative member of antimalarial 8-
aminoquinoline (Vale et al., 2009; Ashley et al., 2014), which
show remarkable activity against gamete cells of all species of
human malaria, including the multi-resistant Plasmodium
falciparum strain (Vale et al., 2009; Vale et al., 2014). This
drug eliminates the malaria parasites living in other body
tissues, preventing the occurrence of red blood cell forms of
the parasites that cause relapses in P. vivax infection and malaria
(White, 2011). New chemotherapy strategies can now be devised
after the recent discovery that gamete formation in malaria
parasites is mediated by the cGMP-dependent protein kinase
PKG (McRobert et al., 2008). However, despite these findings, the
definite mode of action of PD has been elusive for decades, and its
role in endothelial cells remains unclear.

Thus, in this study, we further explored the possible mechanisms
of PD in the regulation of barrier function. A target prediction
program was used to identify the common targets of PD. Of these
targets, we decided to investigate the regulation of USP1, which is
highly expressed in endothelial cells. Interestingly, as assessed in the
DUB activity assay, PD played a role similar to that of an inhibitor of
USP1. In addition, USP1 knockdown and inhibition reduced the
VEGF-induced permeability and stabilized integrity. Today,
ubiquitination is recognized as a key factor in regulating the
overabundance of cellular functions and plays an important role
in cellular homeostasis (Reyes-Turcu et al., 2009; Garcia-Santisteban
et al., 2013). USPs act on specific proteins, and therefore controlling
them can improve prognosis (da Silva et al., 2009; Sacco et al., 2010;
Schwickart et al., 2010; Tavana and Gu, 2017). For example, the
proteasome inhibitor bortezomib improves myocardial ischemia/
reperfusion injury, prevents post-ischemic ventricular
tachyarrhythmia, promotes cardiac hypertrophy regression, and
reverses vascular endothelial dysfunction caused by diabetes
(Raimondi et al., 2019; Bencsik et al., 2020). In addition,
inhibition of USP1 has the potential to target a variety of

cancers (Sacco et al., 2010; Chen et al., 2011; Ma et al.,
2019). According to recent studies, USP1 contributes to
deubiquitination and stabilization of the differentiation
inhibitory proteins of the DNA binding inhibitor (ID) family,
and ID1 is known to be associated with permeability (Zhang
et al., 2015; Lee et al., 2016; Gadomski et al., 2020). As the
expression of ID1 regulates E-cadherin expression (Li et al.,
2007), USP1 is likely to contribute the stabilization of adherens
junction protein via ID1 in endothelial cells. Taken together,
our findings suggest that USP1 stabilizes endothelial cells
from mediators of increased endothelial permeability. Further
investigation is needed to clarify USP1 function and regulation
of the endothelial barrier.

We used drug repositioning and laboratory screening
systems to identify that PD can act as a vascular leakage
blocker. Drug repositioning is a strategy to identify new uses
of drugs approved to treat conditions that are different from
their original purpose (Benavides-Cordoba, 2020). This strategy
can deliver results with an improved level of safety and lower
cost in a shorter time (Xue et al., 2018). We tested the viability of
1,018 FDA-approved drugs in the serum-free state, and an
in vitro assay confirmed that PD has the potential to
reconstitute the dispersed actin rings and subsequent
stabilization of the adhesion junction, which can strengthen
the endothelial barrier. The molecular mechanisms that control
vascular leakage have been studied for decades, and more
recently, the focus has been on identifying treatment-related
agents that further restrict fluid and solute exchange by
targeting the endothelial barrier directly. Application of the
existing knowledge of endothelial barrier regulation is necessary
to develop therapeutic agents that can be used routinely to
protect or enhance endothelial barrier function. Our study
indicates that PD effectively prevents barrier permeability.
Thus, PD could be therapeutically used for vascular leakage
diseases, such as diabetic retinopathy, ischemic stroke, and
chronic inflammatory diseases related to endothelial barrier
dysfunction.
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