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INTRODUCTION

Polyspecificity is one of the most characteristic features of organic cation transporter OCT1
(SLC22A1). Already upon the initial cloning it was recognized that the OCT1-mediated uptake
could be inhibited by a variety of substances with different chemical structures (Gründemann et al.,
1994). Following the initially identified substrate TEA+, the organic cations MPP+ and ASP+ and
endogenous compounds such as dopamine and histamine were described as substrates
(Gründemann et al., 1994; Busch et al., 1996a; Busch et al., 1996b; Mehrens et al., 2000),
showing that not only aliphatic, but also aromatic cations with variable structures could be
OCT1 substrates. Currently, more than 150 organic cationic compounds with highly variable
chemical structures, including also commonly used drugs like metformin, morphine, sumatriptan,
fenoterol, and lamotrigine have been reported to be substrates of the organic cation transporter
OCT1 (Wang et al., 2002; Dickens et al., 2012; Tzvetkov et al., 2013; Matthaei et al., 2016; Shen et al.,
2016; Tzvetkov et al., 2018; Haberkorn et al., 2021).

However, polyspecific does not mean unspecific. We recently reported that small differences in
the chemical structures of morphinan opioids lead to substantial differences in the inhibitory potency
or even to the inability to interact with human OCT1 (Meyer et al., 2019).

Twenty-seven years after OCT1 discovery, the mechanisms conferring its polyspecificity are still
poorly understood. Our current knowledge about the mechanisms of OCT1-mediated transport is
predominantly based on mutagenesis experiments. Several amino acids have been suggested to be of
key importance for substrate binding and/or translocation (Gorboulev et al., 1999; Gorboulev et al.,
2005; Popp et al., 2005; Sturm et al., 2007; Volk et al., 2009). Themost prominent thereof is Asp475 in
transmembrane helix 11, which is generally accepted to play a key role by interacting with the
positive charge of the substrate. However, OCT1 is thought to have multiple binding sites that may
overlap between substrates (Gorboulev et al., 1999; Popp et al., 2005; Volk et al., 2009; Chen et al.,
2017; Boxberger et al., 2018), but there is no crystal structure available, neither for OCT1, nor for any
of the closely related proteins of the SLC22A family. The homology models used instead are based on
distantly related transporters that share maximally 19.5% identity with human OCT1 (Koepsell,
2020). Therefore, the exact binding sites of the different OCT1 substrates remain unclear.

OCT1 POLYSPECIFICITY AS A FOE

In many regards, the polyspecificity of OCT1 represents a disadvantage. It complicates the
experimental analysis and the interpretation of the obtained results.

Firstly, OCT1 polyspecificity is a hurdle when studying the mechanisms of transport. Most of our
current knowledge about OCT1 structure-to-function relationships has been obtained using MPP+

or TEA+ as substrates (Gorboulev et al., 1999; Gorboulev et al., 2005; Popp et al., 2005; Volk et al.,
2009; Keller et al., 2019). Already for these two substrates, substrate-specific differences in the role of
key amino acids were reported. While mutation of Arg440Lys affected the affinity for TEA+ but not
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for MPP+, mutation of Phe160Ala affected the affinity for MPP+

but not for TEA+ (Gorboulev et al., 2018). This may not be
surprising, considering the structural differences between the two
substrates. On the contrary, different ligands can be expected to
interact with different amino acids of the transporter. Thus,
despite their name, the so-called model substrates may be of
only limited use for predictions of substrate-transporter
interactions for clinically relevant ligands. Therefore, at least
until we better understand the structural mechanisms of
OCT1 polyspecificity, structure-to-function relationships have
to be established for each substrate separately. As a practical
consequence, in vitro data on inhibitory potencies using OCT1
model substrates may be of only limited predictive value for drug-
drug-interactions (DDIs) with the actual victim drug (Koepsell,
2015, 2020; Hermann, 2021).

Secondly, in addition to the difficulties of transferring
structure-to-function findings between substrates,
polyspecificity aggravates the transfer of findings between
species. Most of the available structure-to-function data have
been obtained studying rat Oct1 (Gorboulev et al., 1999;
Gorboulev et al., 2005; Popp et al., 2005; Sturm et al., 2007;
Volk et al., 2009). However, human and rat OCT1 differ in 120
amino acids and each of themmay potentially cause differences in
OCT1 function. There is not much data directly comparing rat
and human OCT1, but the affinity and the capacity of metformin
and thiamine transport have been shown to differ substantially
between mouse and human OCT1 (Chen et al., 2014; Meyer et al.,
2020). Based on these differences, up to 11-fold higher maximal
metformin concentrations may be expected in mouse than in
human liver and hepatic effects of metformin in humans may be
overestimated (Meyer et al., 2020). This may explain why loss of
OCT1 activity in humans does not affect metformin efficacy
(Zhou et al., 2009; Dujic et al., 2017) in contrast to strong effects
observed in OCT1 knock-out mice (Wang et al., 2002; Wang
et al., 2003).

More importantly, due to OCT1 polyspecificity, the species
differences are also substrate-specific. While OCT1 inhibition
results in strong differences in the uptake of ondansetron and
tropisetron between mouse and human hepatocytes, no
differences were observed for sumatriptan and fenoterol
(Morse et al., 2020). Therefore, next to the known differences
in OCT1 organ expression between the species (Gründemann
et al., 1994; Schweifer and Barlow, 1996; Gorboulev et al., 1997;
Green et al., 1999), differences in transport activity have to be
kept in mind when interpreting existing data from animal models
and cannot not be generalized among the substrates.

Thirdly, polyspecificity leads to substrate-specific effects of
genetic variants in OCT1. OCT1 is genetically highly variable and
common genetic variants lead to a reduction or to a loss of OCT1
function (Kerb et al., 2002; Shu et al., 2003; Seitz et al., 2015).
Some of these variants have substrate-specific effects. The most
common OCT1 variant in Europeans and White Americans
(Seitz et al., 2015), the deletion of Met420 (OCT1*2), reduces
the uptake of metformin, morphine, tropisetron, and
O-desmethyltramadol (O-DSMT) by more than 75% (Shu
et al., 2007; Tzvetkov et al., 2011; Tzvetkov et al., 2012;
Tzvetkov et al., 2013), but shows normal or only slightly

reduced uptake of sumatriptan, cycloguanil, and debrisoquine
(Saadatmand et al., 2012; Matthaei et al., 2016; Matthaei et al.,
2019). Therefore, homozygous carriers of OCT1*2 have to be
regarded as complete loss-of-function phenotypes (so-called poor
OCT1 transporters) when tramadol is administrated and as fully
active (extensive OCT1 transporters) when sumatriptan is
administrated. Hence, individual OCT1 activity scores have to
be substrate-specific and cannot be generalized. This complicates
the use of OCT1 pharmacogenetics in the clinical routine and
requires clinical studies for each substrate.

Finally, the polyspecificity of OCT1 questions the idea of one
“ultimate” pharmacophore valid for OCT1 ligands. Indeed, the
published ligand-based pharmacophore models of OCT1 differ in
the number, type, and distance of their features. While the models
of Bednarczyk et al. (2003), Moaddel et al. (Moaddel et al., 2005;
Moaddel et al., 2007) and from our group (Meyer et al., 2019)
show some resemblance, the model by Nies et al. (2011) shows
more pronounced differences, the most striking being the absence
of a positively ionizable site. This is not surprising and may
simply reflect the coexistence of different binding sites in OCT1.
Therefore, before we understand which ligands bind to which
binding sites, it will be difficult to correctly identify chemical
features necessary for interaction with OCT1.

OCT1 POLYSPECIFICITY AS A FRIEND

When utilized properly, the polyspecificity of OCT1 can also be
an ally in understanding the transport mechanisms of OCT1.
Many of the disadvantages listed above can be turned into
experimental tools to study polyspecificity.

Firstly, the in vitro prediction of DDIs should be performed
with more than one (victim) substrate, comparing the
inhibitory potencies as has been done already for OCT2
(Hacker et al., 2015; Sandoval et al., 2018) and partially for
OCT1 (Ahlin et al., 2011). This strategy has two advantages.
First, using the victim drug of interest and not a model
substrate enables more precisely predicting DDIs in
humans. Second, and more interesting, it enables analyzing
the interactions in the context of the specific substrate used.
This may help identifying clusters of ligands (substrates and
inhibitors) that potentially share binding positions in OCT1.
In the long term, this may help to stratify ligands into groups
according to similar binding properties and to generate
subgroup-specific pharmacophores.

Secondly, comparing the interaction with OCT1, ligands with
closely related structures may help to identify moieties that are
important for the interaction. Systematic comparison of the
OCT1 inhibitory potency of structurally similar morphinan
opioids revealed that only minor structural changes, involving
the ether linkage between C4-C5 of the morphinan ring, strongly
increased the inhibitory potency for OCT1 (Meyer et al., 2019).
Such systematic “ligand structure walking” may prove to be very
useful to better understand the role of the ligand structure in the
OCT1 transport mechanism.

All examples of experiments listed above are possible today
due to technical advancement of the analytical methods. In
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contrast to the first decades of studying OCT1 where scientists
were limited by the availability of radioactive OCT1 substrates,
today we can use techniques such as LC-MS/MS to quantify
practically any substrate of interest. The sensitivity is still not as
high as in radioactive detection, but the quantification of the
intracellularly accumulated substrate is highly specific. This
enabled first high-throughput screens for OCT1 substrates
(Hendrickx et al., 2013) and also detailed analyses of
substrates with only slightly different chemical structures
(Meyer et al., 2019) up to stereoselective effects of the uptake
(Jensen et al., 2020).

Approaching polyspecificity from the transporter side, the
species-specific differences in OCT1 transport can be used as a
tool to identify domains or even single amino acids responsible

for the substrate-specific effects on transport. In a proof-of-
principle study we used human-mouse chimeric constructs to
localize the cause for the higher affinity of mouse OCT1 for
thiamine and metformin to transmembrane helices 2 and 3
(Meyer et al., 2020). For metformin, we were even able to
fine-map the causal difference to the difference between
Leu155 in human and Val156 in mouse OCT1. This strategy
is extendable to all substrates showing species-specific differences
in uptake. Furthermore, similar to the ortholog comparison, also
paralogs with different substrate preferences may be compared, as
has successfully been done for rat Oct1 and Oct2 (Gorboulev
et al., 2005).

Similarly, substrate-specific effects of some OCT1 genetic
variants may help to reveal details in the mechanism of OCT1
transport. By comparing the effects of genetic variants with
substrate-specific effects on different substrates, we can
identify substrates that are similarly affected and thus may
share similar binding sites in the transporter. To illustrate this,
we used previously published data about the effects of the
substrate-specific OCT1 genetic variants OCT1*2, *7, *10, *11,
and *13 from our group (Figures 1B,C (Tzvetkov et al., 2012;
Tzvetkov et al., 2013; Seitz et al., 2015; Matthaei et al., 2016;
Meyer et al., 2017)). The effects on the uptake of metformin and
monocrotaline, but also of morphine and ranitidine correlated
very well (r of 0.995 and 0.98, respectively; Figure 1), suggesting
at least two groups of structurally divergent substrates that may
share similar binding sites in OCT1. This strategy could be used
to cluster ligands into subgroups based on the impact of the
substrate-specific OCT1 genetic variants. Such subgroups could
be used to develop subgroup-specific pharmacophores (similar to
those suggested above for analyses of substrate-specific DDIs)
and to identify subgroup-specific model substrates that will
facilitate the handling of OCT1 pharmacogenetics in a clinical
setting.

SUMMARY

The polyspecificity of OCT1 sets many hurdles for
understanding the transport mechanisms of OCT1 and for
the translation of our knowledge about OCT1 into clinical
practice. However, polyspecificity may be used also as a tool,
especially to reveal the mechanisms of OCT1 transport,
which is an essential step for deepening our understanding
of the physiological functions and potential pharmacological
implications of this transporter.
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FIGURE 1 | Polyspecificity as a friend (A) Illustrates different strategies
for using polyspecificity as a tool to study the mechanisms of OCT1 transport.
Given are ligand-based and transporter-based approaches, including the use
of species and genetic differences. (B) and (C) Summarize and analyze
data of five previous studies (Tzvetkov et al., 2012; Tzvetkov et al., 2013; Seitz
et al., 2015; Matthaei et al., 2016; Meyer et al., 2017) as illustration of the use
of SNP effects to cluster OCT1 substrates into different subgroups. Shown
are the effects of OCT1 alleles *2, *7, *10,*11, and *13, which are known to
have strongly substrate-specific effects on transport (Seitz et al., 2015), on the
OCT1-mediated uptake of 11 substrates. The pairwise correlation coefficient
between the effects of different alleles are given (B) and the two strongest
correlations are shown (C) O-DSMT, O-Desmethyltramadol.
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