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To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on
mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells
(RGCs) death, irreversible peripheral and central visual field loss, and high intraocular
pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic
conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with
brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells
(RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and
neurotrophic molecules, were investigated to figure out the potential protective effects of
brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6,
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor
DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that
underwent to I/R insult with or without brimonidine treatment. Brimonidine provided
remarkable RGCs protection in our paradigm. PERG amplitude values were
significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas.
Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to
the control group (normal mice); brimonidine treatment counteracted the downregulation
of retinal BDNFmRNA in I/R eyes. Retinal inflammatory markers increased significantly (p <
0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-
inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and
increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion,
brimonidine was effective in preventing loss of function of RGCs and in regulating
inflammatory biomarkers elicited by retinal I/R injury.
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INTRODUCTION

Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible
peripheral and central visual field loss and high IOP (Bucolo and Drago, 2011). Currently, six main
classes of topical drugs are available; they include beta-blockers, carbonic anhydrase inhibitors,
prostaglandin derivatives, sympathomimetics, miotics, and Rho-kinase inhibitors. For neovascular
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glaucoma the therapeutic approach could be different, on this
regards it is worth of note that anti-VEGF agents, used in clinical
practice, such as ranibizumab, bevacizumab and aflibercept are
considerably different in terms of molecular interactions when
they bind with VEGF (Platania et al., 2015). Brimonidine is an
α2A-adrenergic receptor agonist, approved for lowering
intraocular pressure (IOP) in patients with open-angle
glaucoma. Although α2A receptors have been identified in the
RGCs, the mechanisms by which α2A agonists exert
neuroprotection are not well-established. There are many
controversial studies on brimonidine and its effects to preserve
retinal tissue. Some non-clinical findings have demonstrated that
brimonidine possess retinal protective action (Lambert et al.,
2011; Nizari et al., 2016; Marangoz et al., 2018). However, to date,
clinical trials have failed to translate into similar efficacy in
humans. Recently, a Cochrane systematic review (Sena and
Lindsley, 2017) showed that although one clinical trial found
less visual field loss in the brimonidine-treated group, the
evidence was of such low certainty that it is not possible draw
conclusions from this only finding. Incidentally, the authors
concluded that further clinical research is needed to determine
whether brimonidine may be beneficial for individuals with
glaucoma. More recently, a systematic review and meta-
analysis concluded that the clinical evidence of neuroprotective
effect of brimonidine is inconclusive and needs stronger support
maybe with large double-blind randomized clinical trials (Scuteri
et al., 2020). To shed light on these controversial studies we aimed
to investigate topical brimonidine on a well-known in vivo
paradigm of retinal damage. The neurodegenerative process in
several eye diseases is characterized by progressive death of RGCs,
optic nerve degeneration, and sometime blindness (Chou et al.,
2020). RGCs degeneration is often associated to ischemia in
central retinal artery occlusion and ischemic optic
neuropathies (Kunimi et al., 2019). Remarkable insights in
therapy for retinal ischemia have arisen through the
investigation of rodent models of ischemia-reperfusion. Retinal
ischemia–reperfusion (I/R) is an experimental model that triggers
an inflammatory process eliciting a large number of detrimental
molecules such as TNF, tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) and ILs (Osborne et al., 2004; Wei et al.,
2011; Dibas et al., 2018).

Gliosis, another critical event contributing to glaucoma
pathogenesis, is a hallmark of retinal degeneration. Retinal
reactive glia cells increased glial fibrillary acidic protein
(GFAP)-immunoreactivity and ionized calcium binding
adaptor molecule 1 (Iba1). It is well known that injury-
induced gliosis in the optic nerve head and retina promote the
death of RGCs due to over-release of pro-inflammatory
mediators (Ganesh and Chintala, 2011). TRAIL mediates
different neuroinflammatory responses (Huang et al., 2011).
TRAIL and its receptors were found up-regulated in brain
ischemia-reperfusion (Cui et al., 2010). The unmet medical
need in glaucoma is mainly related to disease progression
(RGC death) despite IOP control. In fact, glaucoma
progression could be related to neurotrophins deprivation;
interestingly, low serum levels of BDNF and nerve growth
factor (NGF) were associated to early moderate stages of

glaucoma. It is worth of note that the potential therapeutic
value of neurotrophins to manage glaucoma is important,
however the main point that damper the development of these
factors as eye drops is related to the drug delivery issues (Bucolo
et al., 2018). On this regards it could be useful develop a
biodegradable deliver system in order to sustain prolonged
pharmacological levels of drug into the back of the eye (Conti
et al., 1997) even though topical formulation is ideal. Aim of the
present study was to investigate the neuroprotective effects of
brimonidine eye drops in a mouse model of retinal I/R damage.
Pattern electroretinogram (PERG) analysis, the most specific
non-invasive technique for electrophysiological assessment of
RGCs activity, was used to evaluate the in vivo protection of
RCGs function. Further, the retinal inflammatory profile after I/R
insult with or without brimonidine treatment was investigated.

MATERIALS AND METHODS

Animals
Male C57BL6/J mice (Charles River Laboratories, Italy) were
housed in a temperature-controlled environment with free access
to food and water during a 12-h light–dark cycle. All animals were
treated according to the Principles for the Care and Use of
Animals in Ophthalmic and Vision Research approved by the
Association for Research in Vision and Ophthalmology.
University of Catania (Italy) Ethics Committee approval #343.

Ischemic-Reperfusion Retina Damage
Retinal ischemia/reperfusion has been used as a model of retinal
injury and has been described in many rodent species (Osborne
et al., 2004; Gustavsson et al., 2008; Ulbrich et al., 2017;
Stankowska et al., 2019). A validated modified I/R model
(Hartsock et al., 2016) (Hartsock et al., 2016) was used in the
present study. Mice were anesthetized by intraperitoneal injection
with tiletamine + zolazepam (60 mg/kg) and medetomidine
(40 μg/kg) plus a topical instillation of 0.4% oxybuprocaine
(Novesina®, Laboratoires Thea, Clermont-Ferrand, France).
The animals were placed on a heating pad to prevent
hypothermia during the experiment. A 32-gauge needle,
connected with a reservoir containing PBS, was introduced
into the anterior chamber through the cornea to increase
intraocular pressure (up to 90 mm Hg). Retinal ischemia was
confirmed by an observation of blanching of the anterior segment
and arteries in the eye. Following 60 min of ischemia, the needle
was removed to allow rapid reperfusion. Ocular formulation of
brimonidine tartrate (2 mg/ml) was instilled (10 µL) 60 min
before I/R and after reperfusion, twice in 2 h. The effect of
brimonidine was evaluated after 72 h from I/R insult. Mice
were euthanized after 72 h from I/R insult, the eyes were
enucleated, and the retinas collected.

Pattern Electroretinogram
As a sensitive measure of RGCs function we used the PERG
(Chou et al., 2018). Anesthetized mice were transferred on a
heating plate with the mouse superior incisor teeth hooked to a
bite bar and the head gently restrained by two ear knobs. Body
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was kept at a constant temperature of 37°C using a feedback-
controlled heating pad (TCAT-2LV, Physitemp Instruments,
Inc., Clifton, NJ, United States). Two microliters of balanced
salt solution (BSS) were topically applied to prevent corneal
dryness. Simultaneous recordings of PERG response from both
eyes were obtained using a common subcutaneous needle in the
snout with a commercially available instrument (Jorvec Corp.,
Miami, FL, United States). Figure 1, panel B, shows the mouse
PERG recording layout. Visual stimuli consisted of black-white
horizontal bars generated on LED tablets and presented
independently to each eye at 10 cm distance (56° vertical × 63°

horizontal field; spatial frequency, 0.05 cycles/deg; 98% contrast;
800 cd/sqm mean luminance; left-eye reversal rate, 0.992 Hz;
right-eye reversal rate, 0.984 Hz). Electrical signals recorded
from the common snout electrode were averaged (>1,110
epochs), and PERG responses from each eye isolated by
averaging at stimulus-specific synchrony. As previously
described [17], PERG waveforms consisted of a positive wave
(defined as P1) followed by a slower negative wave with a broad
trough (defined as N2). Therefore, each waveform has been

analyzed by measuring the peak-to-trough (P1-N2) amplitude
defined as PERG amplitude and the time-to-peak of the P1 wave
as PERG latency (Porciatti, 2015).

Ribonucleic Acid (RNA) Extraction and
Complementary Deoxyribonucleic Acid
(cDNA) Synthesis
Mice were sacrificed after 72 h from I/R and brimonidine
treatment by cervical dislocation, eyes were enucleated, and
retinas were isolated. The extraction of total RNA from mice
retina samples was performed by using TRIzol Reagent
(Invitrogen, Life Technologies, Carlsbad, CA) according to the
manufacturer’s protocol. The A260/A280 ratio of the optical
density of RNA samples (measured with Nanodrop
spectrophotometer ND-1000, Thermofisher) was 1.95–2.01.
cDNA was synthesized from 500 ng of RNA with a reverse
transcription kit (SuperScript™ II Reverse Transcriptase,
Invitrogen, ThermoFisher Scientific, Carlsbad, CA,
United States).

FIGURE 1 | RGCs function assessment. (A) Representative PERG waveforms in C57BL6/J mice control, I/R and I/R plus brimonidine. (B)Mouse PERG recording
layout. (C) Comparison between PERG amplitude values (µV) and latency values (D) of control, I/R and brimonidine treated mice. Brimonidine significantly counteracted
RCGs loss of function induced by I/R injury, after 72 h, in mice retina. In each panel, bars represent the mean values and corresponding standard errors (±SD). One-way
ANOVA analysis was performed followed by the Tukey post-hoc test. *p < 0.05 vs. Ctrl; †p < 0.05 vs. I/R.
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Quantitative Real-Time Polymerase Chain
Reaction (RT-PCR)
RT-PCR was performed with the Rotor-Gene Q (Qiagen). The
amplification reaction mix included Master Mix Qiagen (Qiagen
QuantiNova SYBR Green Real Time-PCR Kit) and cDNA. For
each sample, were made forty-five amplification cycles, in
triplicate. Melting curve analysis confirmed the specificity of
the amplified products. Results were analysed with the 2−ΔΔCt

method and expressed as fold change vs. control. Quantitative
PCR experiments followed the MIQE guidelines. BDNF and IL-6
genes were analyzed by using specific primers purchased from
Eurofin Genomics (Milan, Italy) and Qiagen (Milan, Italy)
respectively. Gene expression levels were normalized with
levels of a constitutively expressed gene (18S, Eurofin
Genomics). Primer sequences are listed in Table 1.

Tissue Homogenization and Protein
Extraction
Proteins were extracted from the retina samples with RIPA lysis
buffer containing protease inhibitor cocktail, EDTA-free (Sigma,
Inc.) by first sonicating for 20 s, and then centrifuging for 15 min
at 14,000 rpm at 4°C. The supernatant was collected in new tubes
and placed on ice. The protein concentration was measured using
the Pierce™ Coomassie Protein Assay Kit (ThermoFisher, Monza,
Italy).

Western Blot
Equal amounts of protein (30 µg) were resolved by 8–12% SDS-
PAGE gels and transferred onto Hybond ECL nitrocellulose
membranes (GE Healthcare, Little Chalfont, United Kingdom).
Membranes were blocked for 1 h at room temperature with 5%
nonfat dry milk in phosphate-buffered saline plus 0.1% Tween 20
(PBS-T) and were then probed overnight with the following
appropriate primary antibodies: rabbit anti-TRAIL (1:200,
ab2435; Abcam, Cambridge, United Kingdom); rabbit anti-
DR5 (1:500, ab8416; Abcam Cambridge, United Kingdom);
mouse anti-GFAP (1:500, ab3670; Cell Signaling Technology,
Inc., Danvers, MA, United States); rabbit anti-Iba1 (1:1000, PA5-
27436; Thermo Fisher Scientific Italy, Rodano, Milan, Italy);
rabbit anti-TNF-α antibody (1:1000, NB600-587; Novus
Biologicals, Milan, Italy); rabbit anti-IL10 antibody (1:500,
250,713; Abbiotec, San Diego, CA, United States); rabbit
NOS2 (1:250, sc-651; Santa Cruz Biotechnology Inc., Santa
Cruz, CA, United States); mouse anti-IL-1β (1:250, sc-52012;

Santa Cruz Biotechnology Inc., Santa Cruz, CA, United States).
Then, the membranes were washed with PBS-T, and probed with
the appropriate horseradish peroxidase-conjugated anti-rabbit or
anti-mouse IgG antibody (GENA934, GNENA931; Amersham
Life Science, Buckinghamshire, United Kingdom) for 1 h at RT.
Beta-Tubulin (1:500, sc5274; Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, United States) was used as control to validate
the amount of protein loaded in the gels. After washing with PBS-
T, protein bands were visualized by enhanced chemiluminescence
(Thermo Fisher Scientific, Milan, Italy) and scanned with the
iBright FL1500 Imaging System (Thermo Fisher Scientific, Milan,
Italy). Densitometric analysis of band intensity was done on
immunoblots by using IMAGE J software (https://imagej.nih.
gov/ij/).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
Software, version 8 (GraphPad Software, Inc., San Diego, CA,
United States). PERG amplitude and latency were analyzed for
significance with one-way ANOVA followed by Tukey test for
multiple comparisons. For single comparisons, Student’s t test
was applied. p values ≤ 0.05 were considered statistically
significant. Data are plotted as mean ± SD.

RESULTS

Retinal Ganglion Cells Function was
Ameliorated by Brimonidine TreatEment
Figure 1 shows that 72 h after I/R, RGCs function, measured with
PERG, was reduced by more than 50%. This effect was
significantly attenuated by brimonidine treatment.
Representative PERG waveforms recorded from the eyes in each
group are shown in Figure 1A. PERG amplitudes of control group,
I/R group, and I/R plus brimonidine group were compared as shown
in Figure 1C. The average value of control PERG amplitude was
13.8 μV in agreement with previous studies on wild type mice
(Romano et al., 2020). No significant changes were observed in
terms of latency in all groups (Figure 1D) as expected considering
the short time after the injury, whereas the average PERG amplitude
of I/R mice was significantly (p < 0.05) reduced compared to the
control retina. Worth of note, the average value of PERG amplitude
of I/R brimonidine–treated mice, was significantly (p < 0.05) higher
when compared with I/R, suggesting a protection of RGC function.

Neuroprotective and Anti-inflammatory
Effect of Brimonidine in I/R-Injured Mice
I/R injury significantly (p < 0.05) downregulated the mRNA
expression of BDNF in mice retina, while treatment with
brimonidine maintained BDNF mRNA levels close to the
control group values, with a significant difference (p < 0.05)
compared to I/R group (Figure 2A). Furthermore, I/R insult
elicited significant (p < 0.05) increase of IL-6 mRNA levels, that
was significantly (p < 0.05) reduced by brimonidine treatment
(Figure 2B). To better investigate the anti-inflammatory effect of
brimonidine treatment on mice retina, we analyzed different

TABLE 1 | Primers used for RT-PCR.

Gene Primer murine sequence/Catalogue number

18 s Forward: 5′-GTTCCGACCATAAACGATGCC-3′
Reverse: 5′-TGGTGGTGCCCTTCCGTCAAT-3′

BDNF Forward: 5′-GTTCGAGAGGTCTGACGACG-3′
Reverse: 5′-AGTCCGCGTCCTTATGGTTT-3′

IL-6 Cat. No. QT00098875
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inflammatory mediators. In particular, we found that protein
levels of TRAIL and its receptor DR-5, were significantly (p <
0.05) higher in I/R injured retina, while brimonidine treatment
significantly (p < 0.05) reduced the expression of both proteins
(Figure 3A). In consideration of the well-known involvement of
retinal activated microglia, astrocytes and Muller glial cells in
glaucoma, we assessed retinal Iba1 and GFAP expression, which
were significantly (p < 0.05) increased after I/R injury (3-fold and
5-fold, respectively) compared to control (Figure 3B). The effect
of brimonidine was demonstrated by the remarkable reduction of
Iba1 and GFAP levels in the retinal tissue (Figure 3B).
Furthermore, I/R insult significantly (p < 0.05) increased
retinal levels of pro-inflammatory cytokines such as TNF-α,
and reduced protein levels of IL-10, an anti-inflammatory
molecule (Figure 3B). Protein levels of IL-1β and NOS2 were
found significantly (p < 0.05) higher after I/R damage in
comparison with control mice, and treatment with
brimonidine significantly (p < 0.05) counteracted the
expression of these proteins (Figure 3C).

DISCUSSION

Glaucoma is a progressive neurodegenerative disease, and the
major unmet medical need in this condition is the protection of
retinal ganglion cells. In fact, it is well known that
pharmacological interventions intended to only lower IOP are
not always effective in preventing visual field loss, even though
IOP represents the major risk factor for glaucoma progression.
Neuroprotective treatment for glaucoma endeavors to preserve
vision by preventing the death of RGCs. Different experimental
models of ocular hypertension and different electrophysiological
measurements of RGCs function have shown that cell
dysfunction occurs in the early phases preceding cell death
(Chou et al., 2014; Porciatti, 2015). The time lag between RGC
dysfunction and death may be related both on the magnitude of
IOP elevation and the susceptibility to IOP stress.

In the present study we carried out retinal I/R in mouse eye,
showing that ischemic insult elicited a significant impairment of
RGCs function and a remarkable expression of several
inflammatory markers, such as TNF and ILs, in the retina. We
also found a significant glial cells activation as demonstrated by
GFAP and Iba1 upregulation.

We showed that topical treatment with brimonidine preserved
RGCs function and reverted the inflammatory profile elicited by
I/R injury. Further, brimonidine was able to maintain
physiological levels of BDNF in the retinal tissue of I/R mice
group. Relevant non-clinical studies (Yoles et al., 1999)
demonstrated that brimonidine has neuroprotective properties
in optic nerve degeneration and retinal ischemia (Wheeler et al.,
1999) even though the authors did not figure out the mechanism
of that effect. It has been hypothesized that the neuroprotection of
brimonidine is related to modulation of BDNF, this latter is a
potent neurotrophic factor that prevent RGCs death after
axotomy in the optic nerve (Mansour-Robaey et al., 1994).
Gao et al. (2002) demonstrated that brimonidine was able to
up-regulate the BDNF in retinal rat after 48 h from drug
treatment. How the brimonidine up-regulate retinal BDNF
remains to be elucidated, in fact the authors speculated that
α2 receptor activation can result in the regulation of multiple
signaling pathways directly or indirectly related with BDNF
expression.

It has been also demonstrated that brimonidine was able to
upregulate several growth factors such as BDNF, NT3 and CTNF
in ischemic rat retina (Lonngren et al., 2006). Recently, it has been
demonstrated (Ortin-Martinez et al., 2014) that topical
brimonidine protects retinal tissue in a light-emitting diode-
induced phototoxicity. More recently, Yukita et al. (2017)
showed that brimonidine enhances the electrophysiological
response of RGCs through the Trk-MAPK/ERK and PI3K
pathways in axotomized rat eye, hypothesizing that these
pathways regulate BDNF. Beside these important proofs, another
inflammatory marker, called TRAIL, has been recently highlighted.
TRAIL is a member of the TNF superfamily and it is constitutively

FIGURE 2 | BDNF and IL-6 mRNA expression in mice retina. Brimonidine treatment maintained BDNF (A)mRNA levels close to control group, in comparison to I/R
injured mice. Furthermore, brimonidine reverted the up-regulation of IL-6 (B) elicited by I/R injury. The mRNA levels were evaluated by RT-PCR; values represent the
mRNA fold changes relative to 18 S used as housekeeping gene. Values are reported as a mean ± SD (n � 5). One-way ANOVA analysis was performed followed by the
Tukey post-hoc test. *p < 0.05 vs. Ctrl; †p < 0.05 vs. I/R.
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expressed in retina (Lee et al., 2002). TRAIL acts mostly through the
death receptor DR5, and it is a potent mediator of prominent
neuronal loss induced in both chronic and acute
neurodegenerative processes, including those related to brain
ischemia (Martin-Villalba et al., 1999; Cantarella et al., 2014).

Upon injury, disease or inflammation, healthy neurons may
get damaged eliciting an environment alteration that activate
resting microglia with a release of pro-inflammatory
molecules. In addition to its pro-inflammatory pattern,
microglia can also stimulate an alternative activation
pathway, associated with increased production of anti-
inflammatory cytokines such as IL-10 and neurotrophic
factors such as BDNF to promote neuronal recovery (Di Polo
et al., 1998; Gallego et al., 2012; Gonzalez et al., 2014). Privation of

oxygen and nutrients during ischemia, generates reactive oxygen
species production leading to inflammation. I/R injury elevates the
retinal expression of several inflammatorymarkers such as ILs, TNF-
α, TRAIL and nitric oxide (NO) (Dreyer et al., 1996; Kawasaki et al.,
2000; Tezel and Wax, 2000; Wang et al., 2005). These results are in
accordance with the findings generated in the present study;
moreover, we observed that RGCs damage elicited the
upregulation of GFAP and Iba1, demonstrating glial cells
activation (Mao and Yan, 2014).

In conclusion, the ocular topical brimonidine treatment
showed retinal protection in an acute model of RCGs death,
reducing the expression of inflammatory cytokines,
enhancing the expression of BDNF, and preserving retinal
function.

FIGURE 3 |Western Blot. (A) TRAIL and DR5 protein levels in control, I/R and brimonidine-treated mice retina; (B) GFAP, Iba-1, TNF-α and IL-10 proteins in mice
retina w or w/o brimonidine; (C) NOS2 and IL-1β proteins in mice retina w or w/o brimonidine. Values represent protein expression relative to β-tubulin, used
as housekeeping protein. Values are reported as mean ± SD (n � 5). One-way ANOVA analysis was performed followed by the Tukey post-hoc test. *p < 0.05 vs. Ctrl;
†p < 0.05 vs. I/R.
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