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Random forest, support vector machine, logistic regression, neural networks and
k-nearest neighbor (lazar) algorithms, were applied to a new Salmonella mutagenicity
dataset with 8,290 unique chemical structures utilizing MolPrint2D and Chemistry
Development Kit (CDK) descriptors. Crossvalidation accuracies of all investigated
models ranged from 80 to 85% which is comparable with the interlaboratory variability
of the Salmonella mutagenicity assay. Pyrrolizidine alkaloid predictions showed a clear
distinction between chemical groups, where otonecines had the highest proportion of
positive mutagenicity predictions and monoesters the lowest.
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1 INTRODUCTION

The assessment ofmutagenicity is an important part in the safety assessment of chemical structures, because
mutations may lead to cancer and germ cells damage. The bacterial reverse mutation test (Ames test) is
capable to identify substances that cause mutations (e.g., base-pair substitutions, frameshifts, insertions,
deletions) and is generally used as the first step in genotoxicity and carcinogenicity assessments.

Computer based (in silico) mutagenicity predictions can be used in the early screening of novel
compounds (e.g., drug candidates), but they are also gaining regulatory acceptance e.g. for the
registration of industrial chemicals within REACH (European Chemical Agency, 2017) or the
assessment of impurities in pharmaceuticals (ICH, 2017).

Currently, mutagenicity is the toxicological endpoint with the largest amount of public data for
almost 10000 structures, whereas datasets for other endpoints contain typically only a few hundred
compounds. The Ames test itself is relatively reproducible with an interlaboratory variability of
80–85% (Piegorsch and Zeiger, 1991).

This makes the development of mutagenicity models also interesting from a computational
chemistry and machine learning point of view. The relatively large amount of public data reduces the
probability of chance effects due to small sample sizes and the reliability of the underlying assay
reduces the risk of overfitting experimental errors.

Within this study we attempted:

• to generate a new public mutagenicity training dataset focusing on Salmonella typhimurium, by
combining the most comprehensive public datasets
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• to compare the performance of MolPrint2D (MP2D)
fingerprints with Chemistry Development Kit (CDK)
descriptors for mutagenicity predictions

• to compare the performance of global QSAR models
(random forests (RF), support vector machines (SVM),
logistic regression (LR), neural nets (NN) with local
models (lazar)

To demonstrate the application of mutagenicity models to
compounds with very limited experimental data and to show
their strengths and weaknesses we decided to apply them to
Pyrrolizidine alkaloids (PAs).

Pyrrolizidine alkaloids (PAs) are characteristic metabolites of
some plant families, mainly: Asteraceae, Boraginaceae, Fabaceae
and Orchidaceae (Hartmann andWitte, 1995; Langel et al., 2011)
and form a powerful defence mechanism against herbivores. PAs
are heterocyclic ester alkaloids composed of a necine base (two
fused five-membered rings joined by a single nitrogen atom) and
a necic acid (one or two carboxylic ester arms), occurring
principally in two forms, tertiary base PAs and PA N-oxides.

In mammals, PAs are mainly metabolized in the liver. There
are three principal metabolic pathways for 1,2-unsaturated PAs
(Chen et al.,2010):

• Detoxification by hydrolysis of the ester bond on positions
C7 and C9 by non-specific esterases to release necine base
and necic acid.

• N-oxidation of the necine base to form PA N-oxides, which
can be either conjugated by phase II enzymes and then
excreted or converted back into the corresponding parent
PA (Wang et al, 2005). This detoxification pathway is not
possible for otonecine-type PAs, as they are N-methylated
(see Figure 1).

• Metabolic activation or toxification by oxidation (for
retronecine-type PAs) or oxidative N-demethylation (for

otonecine-type Pas) by cytochromes P450 isoforms CYP2B
and 3A (Lin et al, 1998; Ruan et al, 2014).

The latter reactions result in the formation of
dehydropyrrolizidine (DHP) that is highly reactive and causes
damage by building adducts with protein, lipids and DNA (Chen
et al, 2010). On the other hand, open diesters and macrocyclic PAs
have a reduced detoxification due to steric hinderance of the
respective esterases (Ruan et al, 2014). However, due to limited
availability of pure substances, only a small number of PAs have
been investigated experimentally in an Ames test. To overcome this
bottleneck, the application of different machine learning models to
predict mutagenic probabilities based on structures and properties
could provide further insights into the mutagenicity mechanisms
of PAs.

2 MATERIALS AND METHODS

2.1 Data
2.1.1 Mutagenicity Training Data
An identical training dataset was used for all models. The training
dataset was compiled from the following sources:

• Kazius/Bursi Dataset (4,337 compounds, (Kazius et al, 2005)):
http://cheminformatics.org/datasets/bursi/cas_4337.zip

• Hansen Dataset (6,513 compounds, Hansen et al, 2009)):
http://doc.ml.tu-berlin.de/toxbenchmark/Mutagenicity_
N6512.csv

• EFSA Dataset (695 compounds EFSA 2016)): https://data.
europa.eu/euodp/data/storage/f/2017-0719T142131/GENOTOX\
%20data\%20and\%20dictionary.xls

Mutagenicity classifications from Kazius and Hansen datasets
were used without further processing. According to these

FIGURE 1 | Structural features of pyrrolizidine alkaloids (modified after Schöning et al., 2017).
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publications, compounds were classified as mutagenic if at least
one positive result has been obtained in Salmonella typhimurium
strains TA97, TA98, TA100, TA102, TA1535, TA1537 and
TA1538 either with or without metabolic activation by S9.
E. coli results were not considered in these databases. To
achieve consistency with these datasets, EFSA compounds
were classified as mutagenic, if at least one positive result was
found for the same Salmonella strains either with or without
metabolic activation and as non-mutagenic if no positive result
was found. The complete dataset contains chemicals from very
diverse application areas (e.g., pharmaceuticals, pesticides,
industrial chemicals, environmental contaminants).

Dataset merges were based on unique SMILES (Simplified
Molecular Input Line Entry Specification, (Weininger et al, 1989))
strings of the compound structures. Duplicated experimental data
with the same outcome was merged into a single value, because it
is likely that it originated from the same experiment.
Contradictory results were kept as multiple measurements in
the database. The combined training dataset contains 8,290
unique structures and 8,309 individual measurements.
Contradictory results were found for 19 substances.

Source code for all data download, extraction and merge
operations is publicly available from the git repository https://
git.in-silico.ch/mutagenicity-paper under a GPL3 License. The
new combined dataset can be found at https://git.in-silico.ch/
mutagenicity-paper/tree/mutagenicity/mutagenicity.csv.

2.1.2 Pyrrolizidine Alkaloid Dataset
The pyrrolizidine alkaloid dataset was created from five
independent, necine base substructure searches in PubChem
(https://pubchem.ncbi.nlm.nih.gov/) and compared to the PAs
listed in (EFSA, 2011) and the book by (Mattocks, 1986), to
ensure, that all major PAs were included. PAs mentioned in these
publications, which were not found in the downloaded substances
were searched individually in PubChem and, if available,
downloaded separately. Non-PA substances, duplicates, and
isomers were removed from the files, but artificial PAs, even if
unlikely to occur in nature, were kept. The resulting PA dataset
comprised a total of 602 different PAs. Further details about the
compilation of the PA dataset are described in (Schöning et al,
2017).

The PAs in the dataset were classified according to structural
features. A total of nine different structural features were assigned
to the necine base, to modifications of the necine base and to the
necic acid (Figure 1):

For the necine base, the following structural features were
chosen:

• Retronecine-type (1,2-unstaturated necine base, 392
compounds)

• Otonecine-type (1,2-unstaturated necine base, 46
compounds)

• Platynecine-type (1,2-saturated necine base, 140
compounds)

For the modifications of the necine base, the following
structural features were chosen:

• N-oxide-type (84 compounds)
• Dehydropyrrolizidine-type (DHP, pyrrolic ester, 23
compounds)

• Tertiary-type (PAs which were neither from the N-oxide-
nor DHP-type, 495 compounds)

For the necic acid, the following structural features were
chosen:

• Monoester-type (154 compounds)
• Open-ring diester-type (163 compounds)
• Macrocyclic diester-type (255 compounds)

2.2 Descriptors
2.2.1 MolPrint2D Fingerprints
MolPrint2D fingerprints (O’Boyle et al, 2011) use atom
environments as molecular representation. They determine for
each atom in a molecule, the atom types of its connected atoms to
represent their chemical environment. This resembles basically
the chemical concept of functional groups.

In contrast to predefined lists of fragments (e.g., FP3, FP4 or
MACCs fingerprints) or descriptors (e.g., CDK) they are generated
dynamically from chemical structures. This has the advantage that
they can capture unknown substructures of toxicological relevance
that are not included in other descriptors. In addition, they allow the
efficient calculation of chemical similarities (e.g., Tanimoto indices)
with simple set operations.

MolPrint2D fingerprints were calculated with the OpenBabel
cheminformatics library (O’Boyle et al, 2011) for the complete
training dataset with 8,290 unique structures. They can be
obtained from the following locations:

Training data:

• sparse representation (https://git.in-silico.ch/mutagenicity-
paper/tree/mutagenicity/mutagenicity-mp2d)

• descriptor matrix (https://git.in-silico.ch/mutagenicity-
paper/tree/mutagenicity/mutagenicity-mp2d.csv.gz)

Pyrrolizidine alkaloids:

• sparse representation (https://git.in-silico.ch/mutagenicity-
paper/tree/pyrrolizidine-alkaloids/pa-mp2d)

• descriptor matrix (https://git.in-silico.ch/mutagenicity-
paper/tree/pyrrolizidine-alkaloids/pa-mp2d.csv)

2.2.2 Chemistry Development Kit Descriptors
Molecular 1D and 2D descriptors were calculated with the
PaDEL-Descriptors program (http://www.yapcwsoft.com
version 2.21, (Yap, 2011)). PaDEL uses the Chemistry
Development Kit (CDK, https://cdk.github.io/index.html)
library for descriptor calculations.

As the training dataset contained 8,309 instances, it was
decided to delete all instances where CDK descriptor
calculations failed during pre-processing. Furthermore, 19
substances with contradictory experimental results were
removed. The final training dataset contained 1,442
descriptors for 8,083 compounds.
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CDK training data can be obtained from https://git.in-silico.
ch/mutagenicity-paper/tree/mutagenicity/mutagenicity-cdk.csv.

The same procedure was applied for the pyrrolizidine dataset
yielding descriptors for compounds. CDK features for
pyrrolizidine alkaloids are available at https://git.in-silico.ch/
mutagenicity-paper/tree/pyrrolizidine-alkaloids/pa-cdk.csv.

2.3 Algorithms
2.3.1 Lazar
Lazar (lazy structure activity relationships) is a modular
framework for read-across model development and validation.
It follows the following basic workflow: For a given chemical
structure lazar:

• searches in a database for similar structures (neighbors)
with experimental data,

• builds a local QSAR model with these neighbors and
• uses this model to predict the unknown activity of the query
compound.

This procedure resembles an automated version of read across
predictions in toxicology. In machine learning terms it would be
classified as a k-nearest-neighbor algorithm.

Apart from this basic workflow, lazar is completely modular
and allows the researcher to use arbitrary algorithms for
similarity searches and local QSAR (Quantitative
structure–activity relationship) modeling. Algorithms used
within this study are described in the following sections.

Feature Preprocessing
MolPrint2D features were used without preprocessing. Near zero
variance and strongly correlated CDK descriptors were removed
and the remaining descriptor values were centered and scaled.
Preprocessing was performed with the R caret preProcess
function using the methods “nzv”,“corr”,“center” and “scale”
with default settings.

Neighbor Identification
Utilizing this modularity, similarity calculations were based both
on MolPrint2D fingerprints and on CDK descriptors.

For MolPrint2D fingerprints chemical similarity between two
compounds a and b is expressed as the proportion between atom
environments common in both structures A∩B and the total
number of atom environments A∪B (Jaccard/Tanimoto index).

sim � |A∩B|
|A∪B| (1)

For CDK descriptors chemical similarity between two
compounds a and b is expressed as the cosine similarity
between the descriptor vectors A for a and B for b.

sim � A · B
|A||B| (2)

Threshold selection is a trade-off between prediction accuracy
(high threshold) and the number of predictable compounds (low
threshold). As it is in many practical cases desirable to make

predictions even in the absence of closely related neighbors, we
follow a tiered approach:

• First a similarity threshold of 0.5 (MP2D/Tanimoto) or 0.9
(CDK/Cosine) is used to collect neighbors, to create a local
QSAR model and to make a prediction for the query
compound. This are predictions with high confidence.

• If any of these steps fails, the procedure is repeated with a
similarity threshold of 0.2 (MP2D/Tanimoto) or 0.7 (CDK/
Cosine) and the prediction is flagged with a warning that it
might be out of the applicability domain of the training data
(low confidence).

• These similarity thresholds are the default values chosen by
software developers and remained unchanged during the
course of these experiments.

Compounds with the same structure as the query structure are
automatically eliminated from neighbors to obtain unbiased
predictions in the presence of duplicates.

Local QSAR Models and Predictions
Only similar compounds (neighbors) above the threshold are
used for local QSAR models. In this investigation, we are using a
weighted majority vote from the neighbor’s experimental data for
mutagenicity classifications. Probabilities for both classes
(mutagenic/non-mutagenic) are calculated according to the
following formula and the class with the higher probability is
used as prediction outcome.

pc � ∑ simn,c

∑ simn
(3)

pc Probability of class c (e.g. mutagenic or non-mutagenic)
∑ simn,c

 Sum of similarities of neighbors with class c ∑ simn


Sum of all neighbors.

Applicability Domain
The applicability domain (AD) of lazar models is determined by
the structural diversity of the training data. If no similar
compounds are found in the training data no predictions will
be generated. Warnings are issued if the similarity threshold had
to be lowered from 0.5 to 0.2 in order to enable predictions.
Predictions without warnings can be considered as close to the
applicability domain (high confidence) and predictions with
warnings as more distant from the applicability domain (low
confidence). Quantitative applicability domain information can
be obtained from the similarities of individual neighbors.

Validation
10-fold cross validation was performed for model evaluation.

Pyrrolizidine Alkaloid Predictions
For the prediction of pyrrolizidine alkaloids models were
generated with the MP2D and CDK training datasets. The
complete feature set was used for MP2D predictions, for CDK
predictions the intersection between training and pyrrolizidine
alkaloid features was used.
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Availability
• Source code for this manuscript (GPL3): https://git.in-silico.
ch/lazar/tree/?h�mutagenicity-paper

• Crossvalidation experiments (GPL3): https://git.in-silico.
ch/lazar/tree/models/?h�mutagenicity-paper

• Pyrrolizidine alkaloid predictions (GPL3): https://git.in-
silico.ch/lazar/tree/predictions/?h�mutagenicity-paper

• Public web interface: https://lazar.in-silico.ch

2.3.2 Tensorflow Models
Feature Preprocessing
For preprocessing of the CDK features we used a quantile
transformation to a uniform distribution. MP2D features were
not preprocessed.

Random Forests (RF)
For the random forest classifier we used the parameters
n_estimators � 1,000 and max_leaf_nodes � 200. For the
other parameters we used the scikit-learn default values.

Logistic Regression (SGD) (LR-Ssgd)
For the logistic regression we used a combination of five trained
models. For each model we used a batch size of 64 and trained for
50 epochs. As an optimizer ADAM was chosen. For the other
parameters we used the tensorflow default values.

Logistic Regression (Scikit) (LR-Scikit)
For the logistic regression we used as parameters the scikit-learn
default values.

Neural Nets
For the neural network we used a combination of five trained
models. For each model we used a batch size of 64 and trained for
50 epochs. As an optimizer ADAM was chosen. The neural
network had four hidden layers with 64 nodes each and a
ReLu activation function. For the other parameters we used
the tensorflow default values.

Support Vector Machines
We used the SVM implemented in scikit-learn. We used the
parameters kernel � “rbf,” gamma � “scale”. For the other
parameters we used the scikit-learn default values.

Validation
10-fold cross-validation was used for all Tensorflow models.

Pyrrolizidine Alkaloid Predictions
For the prediction of pyrrolizidine alkaloids we trained the
model described above on the training data. For training and
prediction only the features were used that were in the
intersection of features from the training data and the
pyrrolizidine alkaloids.

Availability
Jupyter notebooks for these experiments can be found at the
following locations.

Crossvalidation:
• MolPrint2D fingerprints: https://git.in-silico.ch/
mutagenicity-paper/tree/crossvalidations/tensorflow/prediction-
v5-norm.ipynb

• CDK descriptors: https://git.in-silico.ch/mutagenicity-
paper/tree/crossvalidations/tensorflow/prediction-v5-ext.
ipynb

Pyrrolizidine Alkaloids:
• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-
paper/tree/pyrrolizidine-alkaloids/tensorflow/prediction-v5-
ext-ext-Padel-2D.ipynb

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/
tree/pyrrolizidine-alkaloids/tensorflow/prediction-v5-ext-
Padel-2D.ipynb

3 RESULTS

3.1 10-Fold Crossvalidations
Crossvalidation results are summarized in the following tables:
Table 1 shows results with MolPrint2D descriptors and Table 2
with CDK descriptors.

Figure 2 depicts the position of all crossvalidation results in
receiver operating characteristic (ROC) space.

Confusion matrices for all models are available from the git
repository https://git.in-silico.ch/mutagenicity-paper/tree/
crossvalidations/confusion-matrices/, individual predictions
can be found in https://git.in-silico.ch/mutagenicity-paper/
tree/crossvalidations/predictions/.

All investigated algorithm/descriptor combinations give
accuracies between (80 and 85%) which is equivalent to the
experimental variability of the Salmonella typhimurium
mutagenicity bioassay (80–85%, Piegorsch and Zeiger, 1991)).
Sensitivities and specificities are balanced in all of these models.

3.2 Pyrrolizidine Alkaloid Mutagenicity
Predictions
Mutagenicity predictions of 602 pyrrolizidine alkaloids (PAs)
from all investigated models can be downloaded from https://git.
in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/pa-
predictions.csv. A visual representation of all PA predictions can
be found at https://git.in-silico.ch/mutagenicity-paper/tree/
pyrrolizidine-alkaloids/pa-predictions.pdf.

For the visualization of the position of pyrrolizidine
alkaloids in respect to the training data set we have
applied t-distributed stochastic neighbor embedding
(t-SNE, (Maaten and Hinton, 2008) for MolPrint2D and
CDK descriptors. t-SNE maps each high-dimensional
object (chemical) to a two-dimensional point, maintaining
the high-dimensional distances of the objects. Similar objects
are represented by nearby points and dissimilar objects are
represented by distant points. t-SNE coordinates were
calculated with the R Rtsne package using the default
settings (perplexity � 30, theta � 0.5, max_iter � 1,000).
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Figure 3 shows the t-SNE of pyrrolizidine alkaloids (PA) and
the mutagenicity training data inMP2D space (Tanimoto/Jaccard
similarity), which resembles basically the structural diversity of
the investigated compounds.

Figure 4 shows the t-SNE of pyrrolizidine alkaloids (PA) and
the mutagenicity training data in CDK space (Euclidean
similarity), which resembles basically the physical-chemical
properties of the investigated compounds.

Figure 5 and Figure 6 depict two example pyrrolizidine alkaloid
mutagenicity predictions in the context of training data. t-SNE
visualisations of all investigated models can be downloaded from
https://git.in-silico.ch/mutagenicity-paper/figures.

Table 3 summarizses the outcome of pyrrolizidine alkaloid
predictions from all models with MolPrint2D and CDK
descriptors.

Figure 7 displays the proportion of positive mutagenicity
predictions from all models for the different pyrrolizidine
alkaloid groups. Tensorflow models predicted all 602
pyrrolizidine alkaloids, lazar MP2D models predicted 560
compounds (301 with high confidence) and lazar CDK models
500 compounds (246 with high confidence).

For the lazar-HC model, only 50/41% of the PA dataset were
within the stricter similarity thresholds of 0.5/0.9 (MP2D/CDK).
Reduction of the similarity threshold to 0.2/0.5 in the lazar-all model
increased the amount of predictable PAs to 93/83%. As the other ML
models do not consider applicability domains, all PAs were predicted.

Although most of the models show similar accuracies,
sensitivities and specificities in crossvalidation experiments
some of the models (MPD-RF, CDK-RF and CDK-SVM)
predict a lower number of mutagens (2–5%) than the majority
of the models (14–25%, Table 3, Figure 7).

Over all models, the mean value of mutagenic predicted PAs
was highest for otonecines (65%, 407/623), followed by

macrocyclic diesters (31%, 1,042/3,356), dehydropyrrolizidines
(27%, 74/268), tertiary PAs (19%, 1,201/6,307) and retronecines
(15%, 762/5,054).

When excluding the aforementioned three deviating models,
the rank order stays the same, but the percentage of mutagenic
PAs is higher.

The following rank order for mutagenic probability can be
deduced from the results of all models taken together:

Necine base: Platynecine < Retronecine << Otonecine.
Necic acid: Monoester < Diester << Macrocyclic diester.
Modification of necine base: N-oxide < Tertiary PA <

Dehydropyrrolizidine.

4 DISCUSSION

4.1 Data
A new training dataset for Salmonella mutagenicity was created
from three different sources (Kazius et al, 2005; Hansen et al,
2009); EFSA, 2016). It contains 8,290 unique chemical structures,
which is according to our knowledge the largest public
mutagenicity dataset presently available. The new training data
can be downloaded from https://git.in-silico.ch/mutagenicity-
paper/tree/mutagenicity/mutagenicity.csv.

4.2 Algorithms
Lazar is formally a k-nearest-neighbor algorithm that searches for
similar structures for a given compound and calculates the
prediction based on the experimental data for these structures.
The QSAR literature calls such models frequently local models,
because models are generated specifically for each query
compound. The investigated tensorflow models are in contrast
global models, i.e. a single model is used to make predictions for

TABLE 1 | Summary of crossvalidation results with MolPrint descriptors (lazar-HC, lazar with high confidence, lazar-all, all lazar predictions, RF, random forests, LR-sgd,
logistic regression (stochastic gradient descent), LR-scikit, logistic regression (scikit), NN, neural networks, SVM, support vector machines).

Lazar-HC Lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 84 82 80 84 84 84 84
True positive rate 89 85 78 83 83 82 83
True negative rate 78 78 82 84 85 85 86
Positive predictive value 83 80 81 84 84 84 85
Negative predictive value 86 84 80 84 84 83 84
Nr. predictions 5,864 7,782 8,303 8,303 8,303 8,303 8,303

TABLE 2 | Summary of crossvalidation results with CDK descriptors (lazar-HC, lazar with high confidence, lazar-all: all lazar predictions, RF, random forests, LR-sgd, logistic
regression (stochastic gradient descent), LR-scikit, logistic regression (scikit), NN, neural networks, SVM, support vector machines).

Lazar-HC Lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 85 82 84 79 80 85 82
True positive rate 87 84 81 81 80 85 82
True negative rate 82 80 86 78 80 85 82
Positive predictive value 85 81 85 79 80 85 82
Negative predictive value 85 82 82 80 80 85 82
Nr. predictions 4,872 7,353 8,077 8,077 8,077 8,077 8,077
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all compounds. It has been postulated in the past, that local
models are more accurate, because they can account better for
mechanisms that affect only a subset of the training data.

Table 1, Table 2 and Figure 2 show that the
crossvalidation accuracies of all models are comparable to
the experimental variability of the Salmonella typhimurium
mutagenicity bioassay (80–85% according to (Piegorsch and
Zeiger, 1991). All of these models have balanced sensitivity
(true positive rate) and specificity (true negative rate) and
provide highly significant concordance with experimental
data (as determined by McNemar’s Test). This is a clear
indication that in silico predictions can be as reliable as
the bioassays. Given that the variability of experimental
data is similar to model variability it is impossible to
decide which model gives the most accurate predictions, as
models with higher accuracies might just approximate
experimental errors better than more robust models.

Our results do not support the assumption that local
models are superior to global models for classification
purposes. For regression models (lowest observed effect
level) we have found however that local models may
outperform global models (Helma et al, 2018) with
accuracies similar to experimental variability.

As all investigated algorithms give similar accuracies the
selection will depend more on practical considerations than on
intrinsic properties. Nearest neighbor algorithms like lazar have
the practical advantage that the rationales for individual
predictions can be presented in a straightforward manner that
is understandable without a background in statistics or machine
learning (a screenshot of the mutagenicity prediction for 12,21-
Dihydroxy-4-methyl-4,8-secosenecinonan-8,11,16-trione is depicted
in Figure 8). This allows a critical examination of individual
predictions and prevents blind trust in models that are
intransparent to users with a toxicological background.

FIGURE 2 | ROC plot of crossvalidation results (lazar-HC, lazar with high confidence, lazar-all: all lazar predictions, RF, random forests, LR-sgd, logistic regression
(stochastic gradient descent), LR-scikit, logistic regression (scikit), NN, neural networks, SVM, support vector machines).
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4.3 Descriptors
This study uses two types of descriptors for the characterization
of chemical structures:

MolPrint2D fingerprints (MP2D, (Bender et al, 2004) use atom
environments (i.e., connected atom types for all atoms in a
molecule) as molecular representation, which resembles
basically the chemical concept of functional groups. MP2D
descriptors are used to determine chemical similarities in the
default lazar settings, and previous experiments have shown, that
they give more accurate results than predefined fingerprints (e.g.,
MACCS, FP2-4).

Chemistry Development Kit (CDK, Willighagen et al., 2017)
descriptors were calculated with the PaDEL graphical interface
(Yap, 2011). They include 1D and 2D topological descriptors as
well as physical-chemical properties.

All investigated algorithms obtained models within the
experimental variability for both types of descriptors (Table 1,
Table 2, Figure 2).

Given that similar predictive accuracies are obtainable from
both types of descriptors the choice depends once more on
practical considerations:

MolPrint2D fragments can be calculated very efficiently for
every well defined chemical structure with OpenBabel (O’Boyle
et al, 2011). CDK descriptor calculations are in contrast much
more resource intensive and may fail for a significant number of
compounds (from 8,290).

MolPrint2D fragments are generated dynamically from
chemical structures and can be used to determine if a
compound contains structural features that are absent in
training data. This feature can be used to determine
applicability domains. CDK descriptors contain in contrast a
predefined set of descriptors with unknown toxicological
relevance.

MolPrint2D fingerprints can be represented very efficiently as
sets of features that are present in a given compound which makes
similarity calculations very efficient. Due to the large number of

FIGURE 3 | t-SNE visualization of mutagenicity training data and pyrrolizidine alkaloids (PA) in MP2D space.
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substructures present in training compounds, they lead however to
large and sparsely populated datasets, if they have to be expanded
to a binary matrix (e.g., as input for tensorflow models). CDK
descriptors contain in contrast in every case matrices with 1,442
columns which can cause substantial computational overhead.

4.4 Pyrrolizidine Alkaloid Mutagenicity
Predictions
4.4.1 Algorithms and Descriptors
Figure 7 shows a clear differentiation between the different
pyrrolizidine alkaloid groups. Nevertheless differences between
predictions from different algorithms and descriptors (Table 3)
were not expected based on crossvalidation results.

In order to investigate, if any of the investigated models
show systematic errors in the vicinity of pyrrolizidine-
alkaloids we have performed a detailled t-SNE analysis of
all models (see Figure 5 and Figure 6 for two examples, all

visualisations can be found at https://git.in-silico.ch/
mutagenicity-paper/tree/figures).

None of the models showed obvious deviations from their
expected behavior, so the reason for the disagreement between
some of the models remains unclear at the moment. It is however
possible that some systematic errors are covered up by converting
high dimensional spaces to two coordinates and are thus invisible
in t-SNE visualisations.

Only two compounds from the PA dataset (Senecivernine and
Retronecine) are part of the training set. Both are non-mutagenic and
were predicted as non-mutagenic by all models (instances have been
removed from the training set for unbiased predictions). Despite the
exact concordance, we cannot draw any general conclusions about
model performance based on two examples with a single outcome.

4.4.2 Necic Acid
The rank order of the necic acid is comparable in all models. PAs
from the monoester type had the lowest genotoxic probability,

FIGURE 4 | t-SNE visualization of mutagenicity training data and pyrrolizidine alkaloids (PA) in CDK space.
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followed by PAs from the open-ring diester type. PAs with
macrocyclic diesters had the highest genotoxic probability. The
result fits well with current state of knowledge: in general, PAs,
which have a macrocyclic diesters as necic acid, are considered to
be more mutagenic than those with an open-ring diester or
monoester (EFSA, 2011; Fu et al, 2004). As pointed out above,
open diesters and macrocyclic PAs have a reduced detoxification
due to steric hinderance of the respective esterases (Ruan et al,
2014). This was also confirmed by more recent studies,
confirming that macrocyclic- and open-diesters are more
genotoxic in vitro than monoesters (Allemang et al, 2018;
Louisse et al, 2019; Hadi et al, 2021).

4.4.3 Necine Base
In the rank order of necine base PAs, platynecine is the least
mutagenic, followed by retronecine, and otonecine. Saturated
PAs of the platynecine-type are generally accepted to be less or
non-mutagenic and have been shown in in vitro experiments to

form no DNA-adducts (Xia et al, 2013). In literature, otonecine-
type PAs were shown to be more mutagenic than those of the
retronecine-type (Li et al, 2013).

4.4.4 Modifications of Necine Base
The group-specific results reflect the expected relationship
between the groups: the low mutagenic probability of N-oxides
and the high probability of dehydropyrrolizidines (DHP) (Chen
et al., 2010). However, N-oxides may be in vivo converted back to
their parent mutagenic/tumorigenic parent PA (Yan et al, 2008),
on the other hand they are highly water soluble and generally
considered as detoxification products, which are in vivo quickly
renally eliminated (Chen et al., 2010).

DHP are regarded as the toxic principle in the metabolism of
PAs, and are known to produce protein- and DNA-adducts
(Chen et al., 2010). None of our investigated models did meet
this expectation and all of them predicted the majority of DHP as
non-mutagenic. However, the following issues need to be

FIGURE 5 | t-SNE visualization of MP2D random forest predictions.
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considered: On the one hand, all DHP were outside of the stricter
applicability domain of MP2D lazar. This indicates that they are
structurally very different than the training data and might be out
of the applicability domain of all models based on this training
set. In addition, DHP has two unsaturated double bounds in its
necine base, making it highly reactive. DHP and other

comparable molecules have a very short lifespan in vivo, and
usually cannot be used in in vitro experiments.

Overall the low number of positive mutagenicity predictions
was unexpected. PAs are generally considered to be genotoxic,
and the mode of action is also known. Therefore, the fact that
some models predict the majority of PAs as not mutagenic seems

FIGURE 6 | t-SNE visualization of all CDK lazar predictions.

TABLE 3 | Summary of pyrrolizidine alkaloid predictions.

Model MP2D mutagenic Nr. predictions CDK mutagenic Nr. predictions

Lazar-all 20% (111) 93% (560) 39% (193) 83% (500)
Lazar-HC 25% (76) 50% (301) 45% (111) 41% (246)
RF 5% (28) 100% (602) 2% (10) 100% (602)
LR-sgd 21% (127) 100% (602) 16% (97) 100% (602)
LR-scikit 20% (118) 100% (602) 15% (88) 100% (602)
NN 21% (124) 100% (602) 25% (150) 100% (602)
SVM 14% (82) 100% (602) 3% (19) 100% (602)
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contradictory. To understand this result, the experimental basis
of the training dataset has to be considered. The training dataset is
based on the Salmonella typhimurium mutagenicity bioassay
(Ames test). There are some studies, which show mutagenicity
of PAs in the Ames test (Chen et al., 2010). Also, Rubiolo et al.
(1992) examined several different PAs and several different
extracts of PA-containing plants in the Ames test. They found
that the Ames test was indeed able to detect mutagenicity of PAs,
but in general, appeared to have a low sensitivity. The pre-
incubation phase for metabolic activation of PAs by
microsomal enzymes was the sensitivity-limiting step. This
could very well mean that the low sensitivity of the Ames test
for PAs is also reflected in the investigated models.

In summary, we found marked differences in the predicted
genotoxic probability between the PA groups: most mutagenic
appeared the otonecines and macrocyclic diesters, least
mutagenic the platynecines and the mono- and diesters. These
results are comparable with in vitro measurements in hepatic
HepaRG cells (Louisse et al, 2019), where relative potencies (RP)

were determined: for otonecines and cyclic diesters RP � 1, for
open diesters RP � 0.1 and for monoesters RP � 0.01.

Due to a lack of differential data, European authorities based
their risk assessment in a worst-case approach on lasiocarpine, for
which sufficient data on genotoxicity and carcinogenicity were
available (HMPC, 2014; EMA, 2020). Our data further support a
tiered risk assessment based on in silico and experimental data on
the relative potency of individual PAs as already suggested by
other authors (Merz and Schrenk, 2016; Louisse et al, 2019; Rutz
et al, 2020).

The practical question how to choose model predictions in the
absence of experimental data remains open. Tensorflow
predictions do not include applicability domain estimations
and the rationales for predictions cannot be traced by
toxicologists. Transparent models like lazar may have an
advantage in this context, because they present rationales for
predictions (similar compounds with experimental data) which
can be accepted or rejected by toxicologists and provide validated
applicability domain estimations.

FIGURE 7 | Summary of pyrrolizidine alkaloid predictions.
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5 CONCLUSION

A new public Salmonellamutagenicity training dataset with 8,309
experimental results was created and used to train lazar and
Tensorflow models with MolPrint2D and CDK descriptors. All
investigated algorithm and descriptor combinations showed

accuracies comparable to the interlaboratory variability of the
Ames test.

Pyrrolizidine alkaloid predictions showed a clear separation
between different classes of PAs which were generally in
accordance with the current toxicological knowledge about
these compounds. Some of the models showed however a

FIGURE 8 | Lazar screenshot of 12,21-Dihydroxy-4-methyl-4,8-secosenecinonan-8,11,16-trione mutagenicity prediction.
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substantially lower number of mutagenicity predictions, despite
similar crossvalidation results and we were unable to identify the
reasons for this discrepancy within this investigation.

Our data show that large difference exist with regard to
mutagenic probabilities between different pyrrolizidine
subgroups. To adjust risk assessment of pyrrolizidine
contamination, our data supports a tiered risk assessment
based on in silico predictions and experimental data of
individual pyrrolizidine alkaloids.
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