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Rationale: Galectin-3 (Gal-3) is an immune regulator and an important driver of fibrosis in
chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Previous
work has shown that global deletion of galectin-3 reduces collagen deposition in a
bleomycin-induced pulmonary fibrosis model (MacKinnon et al., Am. J. Respir. Crit.
Care Med., 2012, 185, 537–46). An inhaled Gal-3 inhibitor, GB0139, is undergoing
Phase II clinical development for idiopathic pulmonary fibrosis (IPF). This work aims to
elucidate the role of Gal-3 in the myeloid and mesenchymal compartment on the
development of acute and chronic lung injury.

Methods: LgalS3fl/fl mice were generated and crossed with mice expressing the myeloid
(LysM) and mesenchymal (Pdgfrb) cre drivers to yield LysM-cre+/-/LgalS3fl/fl and Pdgfrb-
cre+/-/LgalS3fl/fl mice. The response to acute (bleomycin or LPS) or chronic (bleomycin)
lung injury was compared to globally deficient Gal-3−/− mice.

Results: Myeloid depletion of Gal-3 led to a significant reduction in Gal-3 expression in
alveolar macrophages and neutrophils and a reduction in neutrophil recruitment into the
interstitium but not into the alveolar space. The reduction in interstitial neutrophils corelated
with decreased levels of pulmonary inflammation following acute bleomycin and LPS
administration. In addition, myeloid deletion decreased Gal-3 levels in bronchoalveolar
lavage (BAL) and reduced lung fibrosis induced by chronic bleomycin. In contrast, no
differences in BAL Gal-3 levels or fibrosis were observed in Pdgfrb-cre+/-/LgalS3fl/fl mice.

Conclusions: Myeloid cell derived Galectin-3 drives acute and chronic lung inflammation
and supports direct targeting of galectin-3 as an attractive new therapy for lung
inflammation.
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INTRODUCTION

Galectin-3 (Gal-3) is a pro-fibrotic, mammalian ß-galactoside binding lectin found to be highly
upregulated in the injured lung, particularly in patients with idiopathic pulmonary fibrosis (IPF)
suffering acute exacerbations (MacKinnon et al., 2012). Previous work has shown that global deletion
of Gal-3 reduces collagen deposition in a bleomycin-induced pulmonary fibrosis model (MacKinnon
et al., 2012). Gal-3 has been shown to stimulate migration and collagen synthesis in fibroblasts (Nishi
et al., 2007) whilst regulating alternative, pro-fibrotic, macrophage activation (Mackinnon et al.,
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2008). GB0139 (formerly TD139), a novel, inhaled, small
molecule Gal-3 inhibitor developed by Galecto Biotech,
reduces fibrosis severity following bleomycin administration
(MacKinnon et al., 2012; Delaine et al., 2016), and targets lung
macrophages in IPF (Hirani et al., 2021). GB0139 is currently
undergoing a Phase IIb clinical trial for the treatment of IPF
(NCT03832946).

Despite its known contribution during chronic lung disease,
the role of Gal-3 in the development of acute lung injury (ALI)
remains unclear. In humans, Gal-3 is a marker of airway
inflammation in bronchial asthma (Elkolaly and Ali, 2018)
and is elevated in patients with chronic obstructive pulmonary
disease (COPD), where it is associated with neutrophil
accumulation in the small airways (Pilette et al., 2007). It has
also recently been implicated for its role in inflammatory and
fibrotic responses following COVID-19 infection (Garcia-Revilla
et al., 2020).

Gal-3 also acts as a pro-inflammatory mediator in acute colitis
(Simovic Markovic et al., 2016) and neuroinflammation
(Burguillos et al., 2015) where it promotes NOD-like receptor
family, pyrin domain containing 3 (NLRP3) inflammasome
activation and IL-1β production in macrophages (Simovic
Markovic et al., 2016), whilst acting as a ligand for Toll-like
receptor 4 (TLR4) (Burguillos et al., 2015). In alveolar epithelial
cells (AECs), Gal-3 activates ERK, AKT and JAK/STAT1
signalling pathways, leading to dysregulated pro-inflammatory
cytokine release during influenza and Streptococcus pneumoniae
co-infection (Nita-Lazar et al., 2015) and enhances the
pathogenic effects of H5N1 avian influenza virus by
promoting excessive host inflammatory responses via
macrophage NLRP3 inflammasome activation (Chen et al.,
2018). Mice deficient in Gal-3 develop less severe
inflammation and IL-1β production than wild type (WT) mice
(Chen et al., 2018).

In this study, we aimed to elucidate the major cell types
involved in Gal-3 mediated acute (mild and moderate) and
chronic lung inflammation. We used the LysM and Pdgfrb
promoters (Foo et al., 2006) to generate mice with a specific
deletion in the myeloid or mesenchymal compartment,
respectively. The LysM-cre targets predominately lung
macrophages but also neutrophils and dendritic cells
(McCubbrey et al., 2017) while Pdgfrb-Cre has been shown
to effectively target recombination in PDGFRß+ mesenchymal
cells in liver, lung and skeletal and cardiac muscle (Henderson
et al., 2013). Mice with a specific depletion of Gal-3 in the
myeloid (LysM-cre+/Lgals3fl/fl) or the mesenchymal (Pdgfrb-
cre+/Lgals3fl/fl) compartment were generated and compared
with responses in Gal-3 expressing and globally deficient mice
with LPS/bleomycin injury. We show that selective myeloid
depletion decreased lung Gal-3 levels and diminished acute
lung injury via a reduction in neutrophil recruitment and
inflammation as well as reducing bleomycin-induced
fibrosis, whereas depletion in the mesenchymal
compartment had no effect. Some of the results of these
studies have been previously reported in the form of an
abstract (Mackinnon et al., 2019).

METHODS

Generation of Genetically Modified Animals
All animal experimental work was carried out under a project
license approved by the local Animal Welfare and Ethical Review
body (AWERB) and issued in accordance with the Animals
(Scientific Procedures) Act 1986. C57BL/6 were purchased
from Harlan Laboratories. Generation of Gal-3−/− mice by
gene-targeting technology has been described previously (Hsu
et al., 2000). LgalS3flox/flox mice (C57BL/6N-Lgals3tm1c(EUCOMM)

Wtsi/H mice were generated as described (Maupin et al., 2018)
from an ES cell clone (clone I.D. EPD0377_1_A09) by MRC
Harwell UK). Transgenic mice with selective depletion of Gal-3 in
myeloid or mesenchymal cells were created by cross breeding
LysM-cre mice (kindly provided by Dr. Luca Cassetta Edinburgh
UK) or Pdgfrb-cre mice (provided by Ralf Adams, University of
Münster, Germany) (Foo et al., 2006) with LgalS3flox/flox mice,
respectively, to yield LysM-cre+/-/LgalS3fl/fl mice and Pdgfrb-
cre+/-/LgalS3fl/fl mice.

Induction of lung Inflammation
10 µg Lipopolysaccharide (LPS, serotype 0127:B8, L4516, Sigma-
Aldrich, Missouri, United States) or 33 µg bleomycin (BI3543,
Apollo Scientific, UK) in 50 µl 0.9% NaCl, was instilled intra-
tracheally (i.t.). Lungs were examined at 24 and 48 h (bleomycin/
LPS) or 21 days post bleomycin. Blood was obtained via the vena
cava. Bronchoalveolar lavage (BAL) was collected (3 ml x 0.8 ml
PBS) to retrieve cells from the alveolar compartment. Lungs were
then perfused with 2 ml sterile saline via the right ventricle prior
to removal.

Histology and Immunohistochemistry
Lungs were fixed in formalin and embedded in paraffin-wax prior
to sectioning and staining with haematoxylin and eosin or
Masson’s trichrome. Inflammation and fibrosis was
determined using published methods (Murao et al., 2003;
Hübner et al., 2008). For immunohistochemistry, sections
underwent antigen retrieval using 10 mM sodium citrate buffer
pH 6.0. The following primary antibodies were used; PDGFRβ
(rabbit anti human/mouse clone Y92, 1:500, ab32570, Abcam),
Gal-3 (FITC-conjugated anti-Gal-3 CL8942F, Cedarlane). For
Gal-3 sections were incubated with an anti-rat biotin-conjugated
secondary (BA-4001-5, Vectorlabs) and visualised with DAB
chromogen using a DS9800 Leica Biosystem. Slides were
scanned using an Axioscan microscope with a 20x lens. For
immunofluorescent staining slides were incubated sequentially
with anti-PDGFRβ followed by donkey anti-rabbit HRP polymer
and amplified with tyramide OPAL 650 (Okoyabio). Slides
underwent antigen retrieval prior to incubation with anti-Gal-
3 and goat anti-rat Alexa Fluor 488 (Molecular Probes). Slides
were mounted in fluorescent mounting medium (Dako) and
imaged on a Zeiss Axio imager z1 fluorescence microscope.

BAL Analysis
Total protein within BAL was performed using a Pierce BCA
Total Protein Assay Kit (23227; ThermoFisher Scientific). Gal-3
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was measured by enzyme-linked immunosorbent assay [ELISA
(mouse Gal-3 DuoSet; R&D Systems)] as per the manufacturers’
instructions. Cytokine profiles were assessed using the mouse
magnetic luminex assay (LXSAMSM, R&D Systems,
Minneapolis, MN, United States) as per the manufacturers’
instructions.

Flow Cytometric Analysis of Lung Digests,
BAL and Blood Cells
Cellular analysis of lung digests was performed according to
published methodology (Humphries et al., 2018). In brief,
minced lungs were digested with 0.1 mg/ml DNase 1 (DN-
25, Sigma-Aldrich) and 1 mg/ml Collagenase D (11088866001,
Roche) at 37°C for 1 h. Cells were resuspended in PBS and
strained through a 40 μm cell strainer (352340, BD
Biosciences). Red cells were lysed with cold ACK buffer
(Ammonium-Chloride-Potassium, A10492-01, Invitrogen).
Lung digest, BAL and blood cells were blocked with Fc
block™ (1:100) for 10 min at 4°C prior to antibody staining
for 30 min on ice. Cells were fixed with FACS lysing solution
(349202, BD Biosciences) prior to flow cytometric analysis
using an LSR Fortessa (BD Biosciences). Data analysis was
performed using FlowJo software, version 7.2.4 (Tree Star Inc.,
United States).

The following antibodies were used from BD Biosciences or
Biolegend: BV605 anti-mouse CD11b, eFluoro-450 anti-mouse
CD11b, PE-Cy7 anti-mouse CD11c, AF700 anti-mouse CD11c,
APC anti-mouse CD24, BV650 anti-mouse CD45, PE anti-
mouse CD64, BV421 anti-mouse CD64, APC-Cy7 anti-mouse
Ly-6C, PerCP anti-mouse Ly-6C, Alexa-Fluor 700 anti-mouse
Ly-6G, BV711 anti-mouse Ly-6G, PerCP-Cy5.5 anti-mouse
MHC II, PE anti-mouse CD80, PE-Cy7 anti-mouse CD206,
PE anti-mouse Siglec-F, PE-Cy7 anti-mouse CD3, PE anti-
mouse CD4, Alexa Fluor 700 anti-mouse CD8, Pacific Blue
anti-mouse B220, Live/Dead fixable aqua, and FITC anti-mouse
Gal-3 (Cedarlane Labs).

Bone Marrow Cell Isolation
Bone marrow was flushed from the femurs of LysM-cre+/- mice
using DMEM (ThermoFisher Scientific, Massachusetts,
United States) and processed for flow cytometric analysis.

Total Lung collagen
Left lobe total collagen levels were quantified using the soluble
(S1000, Biocolor, United Kingdom) and insoluble (S2000,
Biocolor) sircol assays as per the manufacturers’ instructions.

Statistics
Data are represented as mean ± the standard error of the mean
(SEM). Quantification of histology/immunohistochemistry was
performed blinded by the investigator. Statistical comparisons
were made using two-tailed Students t-test or one-way/two-way
analysis of variance (ANOVA) with Bonferroni post-test for
multiple comparisons. A p-value of less than 0.05 was
considered statistically significant (* � p < 0.05, ** � p < 0.01,
*** � p < 0.001). All graphs and statistics were performed using

the statistical package GraphPad Prism 5 for Windows
(GraphPad Software, California, United States).

RESULTS

Generation of Mice With Myeloid and
Mesenchymal Conditional Gal-3 Deletion
Lgals3 flox mice (Lgals3fl/fl) were generated as described by
Maupin et al. (2018) and crossed with mice expressing either
the LysM-cre or the Pdgfrb-cre transgene to obtain mice with a
new genomic Lgals3-null allele in the myeloid or mesenchymal
compartment. Gal-3 depletion was initially examined in bone-
marrow derived cells from LysM-cre+, LysM-cre- and Gal-3-/-

mice (Figures 1A–C). Monocytes and neutrophils obtained
from the bone marrow of LysM-cre+ mice exhibited a 35 and
75% reduction in surface Gal-3 expression, respectively, when
compared to LysM-cre- mice, indicating predominate
depletion in neutrophils following recombination. No
changes were observed in eosinophils, which displayed low
levels of Gal-3. The apparent higher mean fluorescence in Gal-
3−/− eosinophils is due to increased cellular autofluorescence in
those cells. There was no difference in the frequency of
monocytes, neutrophils or eosinophils between the
genotypes (Figure 1D).

Bleomycin-Induced Acute Lung Injury
To confirm Gal-3 knockdown in various pulmonary leukocyte
subsets, mice received 33 µg bleomycin and were retrieved at
24 h (for gating strategy see Figure 2A). Despite inducing mild
inflammation, a reduction in neutrophil recruitment was
observed in LysM-cre+ and Gal-3−/− mice compared to LysM-
cre- mice following acute bleomycin administration
(Figure 2B). Compared to globally deficient Gal-3−/− mouse
lung digests, Gal-3 expression was only significantly reduced by
26% in both neutrophils and alveolar macrophages in mice
bearing the conditional deletion, with overall expression found
to be highest on alveolar macrophages (Figure 2C).
Surprisingly, inflammatory (Ly-6Chi) monocytes, patrolling
(Ly-6Clow) monocytes (Supplementary Figures S1A,B) and
interstitial macrophages did not exhibit significantly reduced
Gal-3 expression in the LysM-cre+ mice. Gal-3 levels for all cell
types observed were significantly lower in Gal-3−/− mice
compared to LysM-cre+, indicating incomplete depletion in
LysM-cre+ neutrophils and alveolar macrophages. No changes
in eosinophil, CD103+ dendritic cell (DC) or CD11b+ DC Gal-3
expression were observed in LysM-cre+ mice (Supplementary
Figures S1A,B). B cells, CD4+ T cells and CD8+ T cells exhibited
low Gal-3 expression in all genotypes and were not affected by
the presence of the transgene (Supplementary Figure S1C).
However there was a 35% reduction in Gal-3 expression in the
CD45− cell population which would comprise primarily lung
epithelial cells in LysM-cre+mice (Supplementary Figure S1D),
suggesting that the LysM promotor also partially targets the
epithelium which is in keeping with other studies (McCubbrey
et al., 2017). Alveolar macrophages and the epithelium are the
major sources of Gal-3 in the lung.
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FIGURE 1 | –Confirmation of Myeloid cell Gal-3 depletion using bone marrow-derived leukocytes. (A) Gating strategy to identify monocytes (CD45+, CD11b+,
Ly6C+, CD24−), neutrophils (CD45+, CD11b+, Ly6C−, CD24+, Ly6G+, SiglecF−) and eosinophils (CD45+, CD11b+, Ly6C−, CD24+, Ly6G−, SiglecF+) in bone marrow
leukocytes. (B) Gal-3 expression in bone marrow-derived leukocytes. Gal-3 expression on was assessed via flow cytometry. (C) Quantification of Gal-3 expression on
monocytes, neutrophils and eosinophils. Red line represents mean fluorescence intensity (MFI) in Gal-3−/− mice. (D) Proportion of monocytes, neutrophils and
eosinophils in the bone marrow. Data represented as mean ± SEM. Analysed via 1-way ANOVA (n � 6, *p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 2 |Bleomycin-induced acute lung injury. Mice received 33 µg bleomycin and were retrieved at 24 h. (A) Flow cytometric gating strategy to identify immune
cell subsets and Gal-3 expression within the lung. After gating for single, live cells, leukocytes were selected based on CD45 expression. Alveolar macrophages (MΦ)
(Siglec F+ CD11bint CD11c+ CD64+), CD103+ dendritic cells (DCs - CD11c+ CD103+ CD24+), neutrophils (CD11b+ Ly-6G+) and eosinophils (SiglecF+ CD11b+ CD11c–),
followed by identification of the populations with overlapping expression patterns: interstitial macrophages (CD11b+MHC II+ CD11c+ CD64+ CD24–), CD11b+ DCs
(CD11b+ MHC II+ CD11c+ CD24+ CD64–), inflammatory monocytes (CD11b+ MHC II−CD64− Ly-6Chi) and patrolling monocytes (CD11b+ MHC II−CD64− Ly-6Clow). (B)
Interstitial leukocyte frequencies following acute bleomycin. (C)Galectin-3 expression in leukocyte subsets. Red line represents mean fluorescence intensity (MFI) inGal-
3−/− mice. d) Gal-3 levels in serum and BAL. Data represented as mean ± SEM. Analysed via 1-way ANOVA (b,c) or students t-test. (D) (n � 6, *p < 0.05, **p < 0.01,
***p < 0.001).
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FIGURE 3 | – LPS induced acute lung injury. (A) LPS injury assessment in LysM-cre- mice. LysM-cre- mice received either PBS or 10 µg LPS and were retrieved
24 h later. (B) Effect of myeloid cell Gal-3 depletion on LPS-induced lung inflammation. 10µg LPSwas administered i. t. to LysM-cre- and LysM-cre+mice and retrieved at
24 or 48 h. Injury levels were analysed via histological inflammation score, tissue digest and BAL assessment. (C)BAL total neutrophils in LysM-cre-, LysM-cre+ andGal-
3−/− mice following 24 h LPS or saline control. Data represented as mean ± SEM. Analysed via students t-test (n � 4–5, **p < 0.01, ***p < 0.001). Images taken
at x200.
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Galectin-3 was detectable in both serum and bronchoalveolar
lavage fluid (BALf) of LysM-cre transgene mice (Figure 2D). No
significant differences in Gal-3 levels were observed between the
conditional knockout mice, however similar trends towards
reduced expression was seen in both serum and BAL in LysM-
cre+ mice. A trend of reduced pro-inflammatory cytokine levels
(IL-6 and G-CSF) were also observed in Gal-3−/− mice with a
significant reduction in G-CSF in LysM-cre+ mice compared to
LysM-cre- (Supplementary Figure S2). No differences were
observed in the anti-inflammatory cytokine IL-10.

LPS-Induced Acute Lung Injury
Moderate pulmonary inflammation was then assessed using the
LPS model of ALI. LPS administration resulted in significant
pulmonary inflammation at 24 h, as seen by alveolar membrane
thickening, capillary congestion, intra-alveolar haemorrhage,
and interstitial and alveolar neutrophil infiltration
(Figure 3A). Flow cytometric analysis of lung digests
revealed an increase in interstitial macrophage, inflammatory
monocyte and neutrophil recruitment alongside a reduction in
alveolar macrophages following LPS administration. BAL cell
counts were elevated resulting from alveolar neutrophil
infiltration which corresponded with increased total protein
levels.

Myeloid Cell-Derived Gal-3 Partially
Reduces LPS-Induced Acute Lung Injury
To assess the contribution of myeloid cell-derived Gal-3, the LPS
model of ALI was assessed in LysM-cre mice (Figure 3B).
Histology inflammation score was significantly reduced in
LysM-cre+ mice 24 h after LPS administration, with a further
reduction seen at 48 h that correlated with a reduction in
interstitial neutrophil accumulation. BALf Gal-3 increased with
time in LysM-cre- mice but was significantly reduced at 48 h in
LysM-cre+ mice.

Neutrophil and alveolar macrophage Gal-3 levels were
significantly reduced at both time points in LysM-cre+ mice,
whilst interstitial macrophage displayed reduced expression at
48 h. Expression was again found to be highest on alveolar
macrophages and correlated with Gal-3 levels in BALf.
Immunohistochemistry confirmed macrophage and
neutrophil Gal-3 depletion (Supplementary Figure S3A).
Reduced staining of Gal-3 in epithelial cells was also
apparent in LysM-cre+ mice.

We showed no significant differences in circulating neutrophil
numbers following LPS administration in LysM-cre+ andGal-3−/−

mice (Supplementary Figure S4) and no difference in neutrophil
precursors in the bone marrow (Figure 1). In the BAL, although
neutrophils were the predominant cell type following LPS in all
genotypes there was a reduced overall number of neutrophils only
inGal-3−/−mice with no difference between LysM-cre- and LysM-
cre+ (Figure 3C). This suggests differences in the role of Gal-3 in
the regulation of neutrophil extravasation and alveolar
infiltration. Total neutrophil numbers in BAL following acute
bleomycin were not determined.

Mesenchymal Deletion of Gal-3 has No
Effect on Bleomycin-Induced Fibrosis
Chronic bleomycin injury was then examined in Pdgfrb-cre mice
to assess the contribution of mesenchymal cell (in particular,
myofibroblast) Gal-3 on the development of pulmonary fibrosis.
Immunofluorescence staining in Pdgfrb-cre- mice showed some
co-expression of PDGFRβ and Gal-3 in mesenchymal cells
however the majority of the Gal-3 positive cells were
macrophages and epithelial cells and there was no co-
localisation of PDGFRβ and Gal-3 in Pdgfrb-cre+ mice
(Supplementary Figure S2). No differences in fibrosis, BAL
protein or Gal-3 levels were observed at 21 post-bleomycin
administration following mesenchymal Gal-3 deletion
(Figure 4C) suggesting myofibroblast Gal-3 is not a major
contributor to fibrosis in the bleomycin model.

Myeloid Cells Are a Key Contributor of Gal-3
That Drive Fibrosis
To determine if myeloid cell derived Gal-3 drives fibrosis, mice
were treated with 33 μg bleomycin i. t. and examined at day 21
where peak fibrosis occurs. Histological analysis demonstrated a
significant increase in pulmonary fibrosis following bleomycin
administration, which was significantly reduced in LysM-cre+ and
Gal-3−/− mice (Figures 4A,B). Total lung collagen content was
reduced from 9.41 ± 1.22 μg to 7.04 ± 0.90 μg collagen/mg of lung
tissue in LysM-cre+ compared to and LysM-cre- mice, and to
4.95 ± 0.42 μg collagen/mg of lung tissue in Gal-3−/− (Figure 4B).
Levels of BAL total protein and BAL Gal-3 correlated with the
levels of fibrosis. Myeloid deletion reduced Gal-3 levels in BAL
by 60%.

DISCUSSION

Using transgenic mice with selective depletion of Gal-3 in
myeloid or mesenchymal cell compartments, we assessed both
the role and cellular source of Gal-3 in acute and chronic lung
injury. Specific deletion of Gal-3 in LysM-cre+ mice resulted in a
decrease in Gal-3 expression primarily in CD11b+/CD24+/Ly-
6G+ neutrophils and alveolar macrophages with only a partial
reduction in expression on CD11b+/Ly-6C+ monocytes
compared to mice with a global deletion in Gal-3. This
resulted in a reduction in ALI and interstitial neutrophil
recruitment. Previous work shows the LysM-cre driver targets
alveolar macrophages and neutrophils with higher efficiency than
infiltrating macrophages and monocytes (McCubbrey et al.,
2017). In our studies alveolar macrophages displayed the
highest positivity for Gal-3 and the reduction in BAL Gal-3 in
LysM-cre+ mice revealed alveolar macrophages as a key cellular
source of Gal-3 in the inflamed lung.We hypothesise that alveolar
macrophage derived Gal-3 plays a key role in neutrophil
recruitment and found a reduction in the neutrophil
chemoattractant G-CSF (Parsons et al., 2005) and IL-6, a
typical biomarker of ALI (Castellani et al., 2019). A reduction
in alveolar macrophage number was also observed following LPS.
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LPS has been shown to induce alveolar macrophage necrosis
resulting in IL-1α release, endothelial cell activation and increased
vascular permeability that allows neutrophils to infiltrate the
lungs (Dagvadorj et al., 2015).

The fact that a partial reduction in Gal-3 was detected in BALf
indicates that another cell type is contributing to Gal-3 levels in
the alveolar space. Epithelial cells express Gal-3 (Pilette et al.,
2007) yet are also affected by the LysM-cre driver, with
recombination observed in a quarter of lung epithelial cells
(McCubbrey et al., 2017). In our study, Gal-3

immunohistochemistry in the LysM-cre+ mice show decreased
staining in both recruited neutrophils and alveolar macrophages
alongside a partial reduction in the epithelium. Flow cytometry
analysis of lung digests confirmed a 35% reduction in Gal-3 levels
in CD45− cells following acute bleomycin.

Myeloid Gal-3 deletion reduced interstitial neutrophil
recruitment yet had no significant impact on the % of
circulating neutrophils nor the number of neutrophils
recruited into the alveolar space when compared to LysMcre-

mice. A reduction in total BAL neutrophils was only observed in

FIGURE 4 | - Effect of myeloid cell and myofibroblast Gal-3 depletion on bleomycin induced fibrosis. Bleomycin was administered i. t. to LysM-cre -, LysM-cre+,
Pdgfrb-cre--Pdgfrb-cre+ mice or global Gal-3−/− mice. Lungs were retrieved on day 21. (A) Lung sections from LysM-cre+/- and Gal-3−/− mice 21 days after bleomycin
administration, stained with Masson’s trichrome (purple) to identify fibrosis. (B) Fibrosis score, lung collagen, BAL total protein and BAL Gal-3 from LysM-cre+/- andGal-
3−/− mice 21 days after bleomycin administration. (C) Effect of mesenchymal cell Gal-3 depletion 21 days after bleomycin administration. Data represented as
mean ± SEM. Analysed via 1-way ANOVA (B) or student’s t-test (C) (n � 4-5, **p < 0.01, ***p < 0.001).
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Gal-3−/− mice. This leads us to conclude that the lack of Gal-3
from myeloid cells (the key source of pulmonary Gal-3) mainly
impacts extravasation of neutrophils from the circulation. This
should be confirmed in bleomycin-induced ALI. Migration of
neutrophils into the airways, although partially dependent on
Gal-3, is not significantly altered in the LysMcre+mice, suggesting
Gal-3 in the alveolar space derived from other cells (most likely
AECs) is sufficient to recruit airway neutrophils. The impact of
myeloid Gal-3 deletion on neutrophil extravasation from the
vasculature vs migration into the alveolar space could be
explained by differential effects on endothelial vs epithelial
adhesion and migration. The ability of Gal-3 to facilitate
adhesion is complex and dependent both on the local
concentration of Gal-3 and the degree of cross linking and the
repertoire of integrins expressed on endothelial and epithelial
cells. In addition, Gal-3 can weaken cell–matrix adhesion by steric
hindrance when it is bound either to integrins or their
extracellular matrix ligands (Hughes, 2001). For endothelial
migration, tight adhesion and cross-linking of neutrophils to
the endothelium has been shown to be dependent on Gal-3
oligomerization (Sato et al., 2002). For epithelial migration,
Gal-3 enables neutrophils to bind to laminin and migrate
through the basement membrane into sites of inflammation
(Kuwabara and Liu, 1996) and is required for optimal
migration out of the vasculature and into the airways
following A. fumigatus infection (Snarr et al., 2020). In this
model, Gal-3 deficient mice were found to contain reduced
BAL neutrophils compared to WT mice and, through the use
of adoptive transfer studies, it was determined that Gal-3 from
lung cells rather than neutrophil Gal-3 was necessary for effective
neutrophil airway migration. This could in part explain why
alveolar neutrophil recruitment was relatively unaffected in
LysMcre+ mice compared LysMcre- in the present study as
epithelial Gal-3 could be driving recruitment of neutrophils
into the alveoli. The precise mechanisms whereby Gal-3
regulates endothelial vs epithelial migration in the context of
sterile ALI requires further study.

Lung conditions such as ALI and acute respiratory distress
syndrome (ARDS) are driven by neutrophil-mediated lung
injury and a reduction in pulmonary neutrophil number
(e.g., via reduced recruitment or accelerated apoptosis) has
been shown to be protective (Dorward et al., 2016, 2017;
Humphries et al., 2018). Although non-activated neutrophils
express relatively low levels of Gal-3, addition of exogenous
Gal-3 induces neutrophil activation (Yamaoka et al., 1995;
Kuwabara and Liu, 1996) and inhibits neutrophil apoptosis
(Farnworth et al., 2008). Neutrophil activation has also been
shown to be enhanced in vitro following LPS-induced Gal-3
oligomerization (Fermino et al., 2011), suggesting its inhibition
is beneficial for reducing pro-inflammatory neutrophil activity
following LPS-induced ALI. However, other reports have
suggested Gal-3 acts as a negative regulator of LPS induced
inflammation (Li et al., 2008; Nieminen et al., 2008). In this
study a peri-lethal dose of LPS was administered by the intra-
peritoneal route and is not a comparable ALI model.

Gal-3 also acts as an adhesion molecule following Streptococcal
pneumonia infection to promote neutrophil recruitment (Sato et al.,

2002; Nieminen et al., 2008) and elevated levels found in exudates
have been shown to correlate with increased migration to
inflammatory sites (Sano et al., 2000). Following aspergillus
infection, extracellular Gal-3 enhances neutrophil motility and
extravasation into the airways to reduce fungal burden (Snarr
et al., 2020). While there is some evidence that Gal-3 may
contribute to pathogen clearance in infection models, in sterile
ALI augmented numbers of activated neutrophils and delayed
rates of apoptosis would result in an overall exacerbation of
tissue injury and failure of resolution.

Gal-3 expression is upregulated in activated myofibroblasts
during hepatic fibrosis (Henderson et al., 2006). We therefore
used the Pdgfrb-cre system, known to target lung myofibroblasts
(Henderson et al., 2013), to delete Gal-3 expression in
myofibroblasts. Reduced fibrosis in response to chronic
bleomycin was observed following myeloid Gal-3 deletion
whereas deletion within the mesenchymal compartment had
little effect despite effective reduction in Gal-3 in PDGFRβ
positive cells in Pdgfrb-cre+ mice. This suggests that myeloid
Gal-3 is a key driver of inflammation-induced fibrosis in the lung.
Interestingly, therapeutic administration of the specific Gal-3
inhibitor GB0139 during the fibrotic phase of bleomycin
injury was sufficient to reduce fibrosis after initial
inflammation had resolved (MacKinnon et al., 2012).
Inhibition of Gal-3 in AECs in vitro (either isolated from Gal-
3−/− mice or treated with GB0139) and in human AECs
transfected with siRNA to Gal-3, resulted in a reduction
TGFβ-induced beta-catenin activation and epithelial to
mesenchymal transition (EMT) (MacKinnon et al., 2012).
EMT has been suggested to be a mechanism that contributes
to IPF pathogenesis, generating extra-cellular matrix
accumulation contributing to scarring, although lineage tracing
experiments have been unequivocal. Nevertheless, the epithelium
appears to be a major producer of Gal-3 in the injured lung and
may play an important role in acute, leading to chronic,
inflammation. Inhibition of Gal-3 expression in these cells
using an epithelial-driven cre system may help to address this
question.

One limitation of this study is that only surface Gal-3 was
measured so it is conceivable that intracellular Gal-3 could be
contributing to some of the effects seen here. The use of inhibitors
that function exclusively extracellularly via binding to the Gal-3
CRD domain vs cell permeable inhibitors acting in a glycan
independent fashion will help will answer this question. These
studies are underway. Studies with the predominately extracellular
Gal-3 inhibitor GB0139 delivered by the i. t. route have shown
effective reduction in bleomycin-induced fibrosis (MacKinnon
et al., 2012). Results from a Phase I clinical trial in IPF patients
with GB0139 demonstrate a way to target the lung directly to
reduce Gal-3 expression (Hirani et al., 2021).

Gal-3 inhibition may offer protection both in the acute phase
and in the longer-term fibrotic sequelae following injury. This
work identifies alveolar macrophages as a significant source of
Gal-3 that drives inflammation and the development of
pulmonary fibrosis and confirms direct targeting of Gal-3 in
the lung as an attractive novel therapy for both acute lung injury
and chronic lung disease.
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