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Glioblastoma multiforme (GBM) is one of the most malignant primary tumors in humans.
Despite standard therapeutic strategywith tumor resection combinedwith radiochemotherapy,
the prognosis remains disappointed. Recently, deubiquitinating enzymes (DUBs) has been
reported as potential cancer therapy targets due to their multifunctions involved in the regulation
of tumorigenesis, cell cycle, apoptosis, and autophagy. In this study, we found that knockdown
of ubiquitin specific protease (USP5), a family member of DUB, could significantly suppress
GBMcell line U251 and DBTRG-05MGproliferation and colony formation by inducing cell cycle
G1/S arrest, which was correlated with downregulation of CyclinD1 protein level. CyclinD1 had
been reported to play a critical role in the tumorigenesis and development of GBM via regulating
cell cycle transition. Overexpression of USP5 could significantly extend the half-life of CyclinD1,
while knockdown of USP5 decreased the protein level of CyclinD1, which could be restored by
proteasome inhibitor MG-132. Indeed, USP5 was found to directly interact with CyclinD1, and
decrease its K48-linked polyubiquitination level. Furthermore, knockdown of USP5 in U251
cells remarkably inhibited tumor growth in vivo. Taken together, these findings demonstrate that
USP5 plays a critical role in tumorigenesis and progression of GBM by stabilizing CyclinD1
protein. Targeting USP5 could be a potential therapeutic strategy for GBM.
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INTRODUCTION

Glioblastoma multiforme (GBM) is one of the most malignant primary tumors originated by
neuroglial stem or progenitor cells, which may occur at any age (Weller et al., 2015). There are
approximately 13,000 new cases diagnosed in the USA every year (Reardon and Mitchell, 2017).
Despite the development of current GBM therapeutic strategies includes surgical resection,
chemotherapy, and radiotherapy, or a combination of these treatments, the prognosis remains
gloomy (Ostrom et al., 2014). The average survival of GBM patients is about 14 months (Stupp
et al., 2009), and the 5-years-survival rates are less than 9.8% (Stupp et al., 2009; Carlsson et al.,
2014). Hence, identification of new molecules involved in GBM tumorigenesis and progression
is urgent for the development of more effective therapeutic strategies against this
malignant tumor.
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Among post-translational modifications, ubiquitination plays
a critical role by regulating a wide range of cellular biological
progress, such as cell proliferation, cell cycle progression,
apoptosis, inflammatory response, and DNA-damage repair
(Hoeller and Dikic, 2009; Pal et al., 2014; Liu et al., 2017a;
Yan et al., 2017). Ubiquitylation could be reversed by
deubiquitinating enzymes (DUBs). DUBs are a large group of
proteases which could mediate the removal of ubiquitin
molecules from target proteins (Mevissen and Komander,
2017; Young et al., 2019). The human genome encodes
approximately 115 DUBs, including six subclasses: ubiquitin
specific proteases (USPs), ovarian tumor proteases (OTUs),
ubiquitin carboxyterminal hydrolases (UCHs), Machado-
Joseph disease proteases (MJDs), JAB1/MPN/Mov34
metalloenzymes (JAMMs), and motif interacting with Ub-
containing novel DUB family (MINDY) (Clague et al., 2013;
Abdul Rehman et al., 2016; Weisberg et al., 2017). Recently,
increasing investigations have suggested that USP family has
critical function in tumor cell cycle (Kaistha et al., 2017),
apoptosis (Wang et al., 2017), metastasis (Meng et al., 2019),
and other biological progress (Ling et al., 2017; Gadotti and
Zamponi, 2018; Sun et al., 2020).

In recent years, DUBs have exerted critical roles in GBM via
targeting multiple key proteins involved in the regulation of
tumorigenesis, cell cycle apoptosis, and autophagy. Previous
studies had reported that USP1, USP8, USP11, and USP28
were indispensable for GBM growth via increasing the protein
stability of ID1, FLIPS, PML, and c-Myc, respectively (Lee et al.,
2010; Panner et al., 2010; Guo et al., 2013; Wu et al., 2014).
Moreover, USP8, USP12, USP22 could promote the
radioresistance of GBM stem cells by stabilizing Hedgehog
pathways, Notch, and Sirt1, respectively (Chang et al., 2009;
Wang et al., 2010; Santoni et al., 2013). Furthermore, USP22
promoted GBM chemoresistance to temozolomide by stabilizing
ZEB1 (Siebzehnrubl et al., 2013). Thus, it would be of great
importance to uncover more DUB members involved in GBM
tumorigenesis and progression, which could be potential targets
for GBM clinical therapy.

Ubiquitin specific protease 5 (USP5) belongs to the USP
subfamily, which is located at chromosome 12p13, and
encodes a 93.3 KDa protein (Wilkinson et al., 1995; Ansari-
Lari et al., 1996). According to the current research, USP5 is
reported to be involved in multiple biological progress, such as
inflammatory response (Liu et al., 2018) and DNA damage repair
(Nakajima et al., 2014). Furthermore, USP5 is also found to
contribute to the tumorigenesis and progression of many
malignancies, including neuroblastoma (Cheung et al., 2021),
hepatocellular carcinoma (Liu et al., 2017b; Meng et al., 2019),
multiple myeloma (Mollaoglu et al., 2017; Wu et al., 2020),
pancreatic carcinoma (Kaistha et al., 2017; Li et al., 2017; Lian
et al., 2020), ovarian cancer (Kim et al., 2018; Du et al., 2019),
colorectal cancer (Xu et al., 2019), and non-small cell lung cancer
(Ma et al., 2018; Xue et al., 2020). According to the GEPIA2
database (http://gepia2.cancer-pku.cn), compared with normal
brain tissues, the mRNA level of USP5 in GBM tissues shows an
increasing trend to some extent, indicating that USP5 may
facilitate GBM tumorigenesis, and progression.

MATERIALS AND METHODS

Cell Culture, Antibodies, and Chemicals
The human GBM cell lines U251 and DBTRG-05MG, and human
embryonic kidney cell line (293T) were purchased from the
American Type Culture Collection. These cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 100 μg/ml of penicillin and 100 units/
ml of streptomycin. The primary antibodies against USP5
(ab154170), CyclinD1 (ab134175), CyclinE1 (ab33911), CDK2
(ab32147), CDK4 (ab108357), Ki67 (ab16667), PCNA (ab18197),
Ubiquitin (linkage-specific K48, ab140601) were purchased from
Abcam (USA), CDK6 (13,331), and β-Actin (3,700) were purchased
fromCell Signal Technology (USA). MG-132 (S2619) was purchased
from Selleckchem (USA). Doxycycline hyclate (DOX, D9891) and
Cycloheximide (CHX,239763) were purchased from Sigma (USA).

Stable Cell Establishment for USP5
Overexpression
Lentiviral plasmid expressingUSP5with 3× flag tagwas generated by
GENEWIZ (China). To generate lentiviral particles, HEK293T cells
at 80% confluence in a 10 cm dish were co-transfected with 8 μg
target plasmid, 6 μg psPAX2 (addgene, United States), 2 μg pMD2.G
(addgene, United States) using PEI (Sigma, United States) as a gene
delivery carrier. After being washed and refreshed with the DMEM
medium, cells were further cultured for 30 h. The lentiviral particle-
enriched supernatant was harvested, filtered, and stored frozen at
−80°C. After titration, these lentiviral particles were applied to infect
U251 and DBTRG-05MG cells for 96 h, and using 2mg/ml
puromycin to establish stable expression cells.

Stable Cell Establishment for USP5
Knockdown
U251 and DBTRG-05MG cell lines stably expressing USP5-specific
shRNA or scrambled shRNA control were constructed and lentivirus
particles were packaged by Genechem (China). U251 and DBTRG-
05MGwere infectedwith serial dilutions of lentiviral supernatant and
selected for using 2mg/ml puromycin for 2 weeks. The expression of
shRNA should be induced by 2 ug/mL DOX for 3 days. The human
USP5 shRNA targeting sequences are listed as follows. The targeting
sequence for USP5-shRNA#1 was 5′- TTGCCTTCATTAGTCACA
T-3′; the targeting sequence for USP5-shRNA#2 was 5′- TAGACA
TGAACCAGCGGAT-3′; the targeting sequence forUSP5-shRNA#3
was 5′- CGAGGAGAAGTTTGAATTA-3′; the targeting sequences
for scrambled shRNA was 5′- TTCTCCGAACGTGTCACGT-3′.

Cell Proliferation and Colony Formation
Assay
Cell proliferation assays were performed by CCK-8 assay. Cells (2 ×
103/well) were seeded into 96-well plates with 2 ug/mL DOX
added into the cultural medium. 10 µL CCK-8 solution
(DOJINDO, Japan)/100 uL medium was added and incubated
for an additional 2 h. Then, the absorbance at 450 nm was
measured using a Microplate Absorbance Reader (Bio-Rad,
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United States). As to colony formation assay, tumor cells (1 × 103/
well) were plated into 6-well plates with 2 ug/mL DOX added into
the cultural medium and incubated for 14 days. Cell colonies were
fixed with 4% formaldehyde for 10 min and later stained with
0.1% crystal violet dye for 5 min.

Cell Migration Assay
Cells were plated into 6-well dishes and treated with DOX for
3 days. Then cells were scratched in the center of the well and
continuously cultured with 1% FBSmedium.Wound images were
photographed every 12 h using a light microscope (Nikon, Japan).

Edu Staining Analysis
Edu staining was performed using BeyoClick™ EdU Cell
Proliferation Kit with Alexa Fluor 488 (Beyotime, China)
according to the manufacturer’s protocol. Briefly, cells were
incubated with 10 μM Edu for 2 h at 37°C, and then fixed with
4% paraformaldehyde for 10 min, and blocked with 3% BSA in
0.1% PBS-Triton X-100 for another 1 h. The cells were incubated
with the Click Reaction Mixture for 30 min at room temperature
in a dark place and then incubated with DAPI for 5 min.

Flow Cytometric Analysis
Cell cycle and apoptosis were assayed using Cycle and Apoptosis
Analysis Kit (Beyotime, China) according to the manufacturer’s
protocol. Briefly, cells were collected by centrifuging at 1,000 rpm
at 4°C for 5 min, cell pellets were washed twice with cold PBS
(Procell, China). For apoptosis, cells were labelled with
propidium-iodide mixture and Annexin V-FITC and
subsequently measured by the flow cytometer GALLIOS
(Beckman Coulter, United States). For cell cycle, cells were re-
suspended and fixed with ice-cold ethanol (70%) overnight, and
then labelled with propidium-iodide mixture and subsequently
measured by the flow cytometer GALLIOS. For data evaluation,
the software FlowJo ver. 7.6.5 (Tree Star Inc., Oregon,
United States) was used.

RNA Extraction, cDNA Synthesis, and
qRT-PCR
Total RNA was extracted from tumor cells using TRIzol reagent
(Invitrogen, United States), and cDNA was then synthesized with
5 × all-in-one RT MasterMix (abm, Canada) according to the
manufacturer’s protocol. Quantitative real-time Reverse
Transcription PCR (qRT-PCR) was conducted with 2 × SYBR
Green qPCR MasterMix (Bimake, United States). The relative
mRNA expression was calculated after normalization to GAPDH.
The primer sequences are as following: USP5, 5′CGGATTTGA
CCTTAGCG-3′ (Forward) and 5′-CTGCCATCGAAGTAGCG-
3′ (Reverse), GAPDH, 5′-ATCATCCCTGCCTCTACTGG-3′
(Forward) and 5′-CCCTCCGACGCCTGCTTCAC-3′
(Reverse), CyclinD1, 5′-CCCTCGGTGTCCTACTTCA-3′
(Forward) and 5′- CTCCTCGCACTTCTGTTCCT-3′
(Reverse), CyclinE1, 5′- CAGCCTTGGGACAATAATGC-3′
(Forward) and 5′- TTGCACGTTGAGTTTGGGTA -3′
(Reverse), CDK2, 5′- CAGGATGTGACCAAGCCAGT-3′
(Forward) and 5′- TGAGTCCAAATAGCCCAAGG-3′

(Reverse), CDK4, 5′- ATGGCTACCTCTCGATATGAGC-3′
(Forward) and 5′- CATTGGGGACTCTCACACTCT-3′
(Reverse), CDK6, 5′- GTGAACCAGCCCAAGATGAC-3′
(Forward) and 5′- TGGAGGAAGATGGAGAGCAC-3′
(Reverse), PCNA, 5′- GGCGTGAACCTCACCAGTAT-3′
(Forward) and 5′- TTCTCCTGGTTTGGTGCTTC-3′ (Reverse).

Immunoblotting and Immunoprecipitation
For protein extraction, cells were collected by centrifuging at
1,000 rpm at 4°C for 5 min, cell pellets were washed twice with
cold PBS (Procell, China) and then re-suspended in appropriate
RIPA lysis buffer (Beyotime, China). Protein concentration was
detected by Enhanced BCA Protein Assay Kit (Beyotime, China).
Western blotting was done by electrophoresing 20 μg proteins on
SDS–PAGE and subsequently transferring electrophoretically
onto PVDF membranes (Millipore, Germany). Blocking was
done in 5% non-fat dry milk in 0.1% TBST for 1 h at room
temperature and then incubated with appropriate primary at 4°C
overnight. Then the membranes were incubated with HRP-
labeled corresponding secondary antibodies for 1 h at room
temperature and Super Signal West Dura Extended kit
(Thermo Scientific, United States) was used to detect the
result. β-actin was used as the internal control.

For immunoprecipitation assay, the supernatants with
respective antibodies were incubated on a rotor at 4°C
overnight. Then the protein G agarose beads (Millipore,
Germany) was added into the mixture and incubated with
rotation for an additional 3 h at 4°C. Next, the
immunoprecipitates were washed three times with cold
washing buffer. Finally, the immunoprecipitates resuspended
in loading buffer containing β-mercaptoethanol were
denatured by 100°C for 10 min and then were subjected to
SDS-PAGE experiment.

In Vivo Procedure for Intracranial GBM Cell
Implantation
All animal experiments were performed under the approval of the
Animal Care and Use Committee at Children’s Hospital of
Soochow University, and the experimental procedures for all
mice were performed in accordance with the Regulations for the
Administration of Affairs Concerning Experimental Animals
approved by the State Council of the People’s Republic of
China. (No. ESCU-201700047, ESCU-201700046).

Briefly, eight athymic nude mice were randomized into 2
groups, and anaesthetized with Ketalar and xylazine
(10 mg/kg) and stuck into a stereotactic head frame. A 1.5-
mm bur hole was trained one metric linear unit anterior to
the sutura on the proper hemisphere and a pair of metric linear
unit lateral from the midplane. A Hamilton syringe fastened onto
the pinnacle frame was injected 5 × 105 U251 in 5 μL PBS into the
left striatum of the brain. The skin incision was then closed with
4–0 silk thread. Suitable medications were provided to scale back
pain. To induce USP5 knockdown, mice were fed 2 mg/ml
doxycycline in drinking water. The tumor tissues were
collected after 30 days and prepared for IHC staining. The
tumor volume was calculated as πls2/6, where l represented the

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7203073

Li et al. USP5 Sustains Glioblastoma Proliferation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


long side of the tumor, and s represented the short side of the
tumor. For IHC staining, antigen retrieval was performed using
10 mM citrate buffer (pH 6.0) heated in a pressure cooker for 90 s.
USP5, CyclinD1, Ki-67, PCNA antibodies were applied overnight
at 4°C. Immunostaining was performed by using Envision +
System and diaminobenzidine (DAB) visualization (Dako,
Carpinteria, CA). Sections were counterstained with
hematoxylin and examined by light microscopy.

Statistics
All data were displayed as means ± standard deviations (SD).
Statistical difference between the control and the experimental

groups was analyzed by the two-tailed student’s t-test. p < 0.05
was deemed statistically significant.

RESULTS

USP5 was Essential for GBM Cell
Proliferation in vitro
By searching the GEPIA2 database, USP5 was found to be highly
expressed in most cancers, including GBM (Figure 1A). USP5
had been reported to contribute to the tumorigenesis and
progression of many malignancies, however, the function of

FIGURE 1 | USP5 was closely related with GBM cells proliferation (A) USP5 mRNA expression level in a broad range of tumors and relevant normal tissues
(generated from GEPIA2: http://gepia2.cancer-pku.cn) (B) U251 and DNTRG-05MG cells were infected with USP5 shRNAs (#1, #2, and #3) and control shRNA (shNC)
by lentivirus, shRNA expression was induced by 2 ug/mL Doxycycline (DOX) treatment for 72 h. Western blotting analysis was performed to check the knockdown
efficiency of USP5 shRNAs (C)U251 andDNTRG-05MG cells were infected with USP5 overexpression plasmid with 3 × flag tag (flag-USP5) and empty vector (flag)
by lentivirus. Western blotting was performed to check the expression level of USP5 (D) Proliferation of U251 and DBTRG-05MG cells expressed shNC or shUSP5 (#2,
#3) was detected by CCK-8 assay after DOX treatment at indicated time points (E) Proliferation of U251 and DBTRG-05MG cells expressed flag or flag-USP5 was
detected by CCK-8 assay at indicated time points (F–I)Clone formation levels of U251 and DBTRG-05MG cells expressed shNC or shUSP5 (#2, #3) after DOX treatment
for 14 days (Data were presented with mean ± SD of three independent experiments, *p < 0.05, **p < 0.01).
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FIGURE 2 | USP5 knockdown inhibited GBM cell migration and induced cell cycle arrest in G1 phase (A–D)U251 and DBTRG-05MG cells stably expressed shNC
or shUSP5 (#2, #3) were treated with 2 ug/mL DOX for 72 h. Migration of U251 and DBTRG-05MG cells were determined based on a wound-healing assay. Black bar,
200 μm (E–H) U251 and DBTRG-05MG cells stably expressed shNC or shUSP5 (#2, #3) were treated with 2 ug/mL Dox for 72 h, then cells were incubated with 10 μM
Edu for 2 h. Edu incorporation levels were determined by BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 488. White bar, 100 μm (I–L) U251 and DBTRG-
05MG cells stably expressed shNC or shUSP5 (#2, #3) were treated with 2 ug/mL DOX (+ DOX) or PBS (−DOX) for 72 h. Cell cycle distribution of U251 and DBTRG-
05MG cells was assessed by PI staining and flow cytometry analysis. Representative graphs and statistical analysis of percentages at different cell cycle stages are
shown (M)U251 and DBTRG-05MG cells stably expressed shNC or shUSP5 #3were treated with 2 ug/mL DOX (+ DOX) or PBS (−DOX) for 72 h. Cell apoptosis of U251
and DBTRG-05MG cells was assessed by PI and Annexin V-FITC staining and flow cytometry analysis (Data were presented with mean ± SD of three independent
experiments, *p < 0.05, **p < 0.01).
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FIGURE 3 | USP5 maintained CyclinD1 stability (A, B) Western blotting analysis of USP5, CDK2, CDK4, CDK6, CyclinD1, CyclinE1, and β-actin protein levels in
U251 and DBTRG-05MG cells stably expressed shNC or shUSP5#3 treated with 2 ug/mL Dox for 72 h (C) Real-time PCR analysis of USP5 and CyclinD1 mRNA levels
in U251 and DBTRG-05MG cells stably expressed shNC or shUSP5 #3 treated with 2 ug/mL Dox for 72 h (D–G)U251 and DBTRG-05MG cells stably expressed shNC
or shUSP5#3 treated with 2 ug/mL Dox for 72 h were incubated with 20 μMMG-132 for indicated time points. Western blotting analysis of USP5, CyclinD1, and
β-actin protein levels (H–K) U251 and DBTRG-05MG cells stably expressed empty vector (flag) or USP5 overexpression (flag-USP5) were incubated with 100 μg/ml
CHX for indicated time points. Western blotting analysis of USP5, CyclinD1, and β-actin protein levels (Data were presented with mean ± SD of three independent
experiments, *p < 0.05, **p < 0.01).
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USP5 in GBM is still unknown. Thus, USP5 was knockdown or
overexpressed in GBM cell lines U251 and DBTRG-05MG,
respectively, via lentivirus-mediated plasmid transduction
(Figures 2B,C). USP5 knockdown was induced by
doxycycline treatment for 72 h. The CCK8 assay showed
that knockdown of USP5 significantly suppressed
proliferation of U251 and DBTRG-05MG cells, while its
overexpression relatively increased cell proliferation (Figures
1D,E). Moreover, USP5 knockdown also remarkably inhibited
clone formation of U251 and DBTRG-05MG cells (Figures
1F–I). These results suggested that USP5 was required for GBM
cell growth in vitro.

Knockdown of USP5 Suppressed GBM Cell
Migration and Cell Cycle Progression
As USP5 could sustain GBM cell proliferation, leading us to
further investigate its effect on cell phenotype. Wound healing
assay showed that, compared with negative control, knockdown
of USP5 could prominently prohibit U251 and DBTRG-05MG
migration (Figures 2A–D). Moreover, Edu incorporation assay
revealed that U251 and DBTRG-05MG were significantly
arrested after USP5 knockdown (Figures 2E–H), indicating
that USP5 was critical for GBM cell cycle progression. To
confirm this hypothesis, cell cycle was determined by
cytometry. As shown in Figures 2I–L, U251 and DBTRG-
05MG were observably arrested in the G1 phase after USP5
downregulation. Interestingly, cell apoptosis was not induced
by USP5 knockdown (Figure 2M). These results indicated that
USP5 was important for GBM cell migration and cell cycle
progression.

USP5 Knockdown Decreased CyclinD1
Protein Stability
The above studies showed that GBM cells were arrested in cell
cycle G1 phase after USP5 knockdown, so we wondered
whether USP5 regulated key proteins driving cell cycle G1
to S transition, including CDK2, CDK4, CDK6, CyclinD1, and
CyclinE1 (Malumbres and Barbacid, 2009; Musgrove et al.,
2011). As shown in Figures 3A,B, knockdown of USP5 in
U251 and DBTRG-05MG cells specifically decreased
CyclinD1 protein level. Interestingly, USP5 knockdown had
no effect on CyclinD1 mRNA level (Figure 3C). USP5 is a
member of deubiquitinases, which leading us to hypothesize
the regulation of USP5 on CyclinD1 protein stabilization. In
U251 and DBTRG-05MG cells, the downregulation of
CyclinD1 protein followed by USP5 knockdown could be
rescued by treatment of proteasome inhibitor MG-132
(Figures 3D–G), which indicated that USP5 could prevent
CyclinD1 from proteasome degradation. To confirm this
finding, USP5 was overexpressed in U251 and DBTRG-
05MG cells, followed by treatment of CHX, an inhibitor of
protein synthesis. The results showed that USP5
overexpression prolonged the half-life of CyclinD1 (Figures
3H–K). Taken together, these results suggested that USP5
sustained the stability of CyclinD1.

USP5 Interacted With CyclinD1 Protein and
Decreased Its k48-Linked
Polyubiquitination Modification
According to the above studies, CyclinD1 protein stability was
dependent on USP5. Because the core function of USP5 is to
prevent protein ubiquitination, and k48-linked
polyubiquitination is the main type of modification for protein
degradation, so we wondered whether USP5 removed k48-linked
polyubiquitination chain from CyclinD1 protein. To confirm this
supposition, co-immunoprecipitation assay was performed in
U251 cells. As shown in Figures 4A,B, USP5 could interact
with CyclinD1. To uncover the effect of USP5 on the
ubiquitination level of CyclinD1, USP5 was overexpressed in
U251 and DBTRG-05MG cells, respectively. The results showed
that forced expression of USP5 noticeably decreased CyclinD1-
associated k48-linked polyubiquitination (Figure 3C). Overall,
these results indicated that USP5 bound to CyclinD1 and
downregulated the k48-linked polyubiquitination level.

Knockdown of USP5 Inhibited GBM Growth
in vivo
To investigate the function of USP5 for GBM growth in vivo, we
established orthotopic tumor models by intracranially implanting
U251-shNC and U251-shUSP5#3 cells into nude mice. As shown
in Figures 5A,B, mice in the control group all developed tumors,
while only three quarters in the USP5 knockdown group
produced tumors. Moreover, compared with the control
group, knockdown of USP5 remarkably decreased tumor sizes
(Figures 5C,D). Immunohistochemical staining revealed that the
levels of CyclinD1 and proliferation markers Ki-67 and PCNA
were subsequently decreased after USP5 knockdown in xenograft
sections (Figures 5E–G). These data indicated that USP5 was
essential for GBM growth in vivo via regulating CyclinD1.

DISCUSSION

GBM remains one of the most malignant tumors worldwide with
disappointed prognosis under current therapeutic strategies.
Multiple molecules participated in the tumorigenesis and
development of GBM. Hence, there is an urgent need to
determine the vital genes concerned in tumor progress,
providing promising strategies for precise therapy of patients
with GBM. As ubiquitination modifications play a critical role in
almost all cellular progresses, especially in cancers (Rape, 2018).
Increasing evidences by recent studies indicate that DUBs are also
involved in these activities (Harrigan et al., 2018). Our present
investigation showed that USP5 was essential for GBM growth
both in vitro and in vivo. We then confirmed the function of USP5
in the migration and cell cycle G1 to S progression of GBM cells.
Furthermore, the underlying mechanism of USP5 in regulating
GBM cell cycle arrest was clarified that USP5 directly targeted and
stabilized CyclinD1 by suppressing its k48-linked
polyubiquitination. These results indicated that USP5 could be
an effective target for clinical GBM molecular therapy.
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The proteins belonging to the USP family have already been
reported to play vital roles in a variety of cancer associate
progress. USP5 also has been shown to be a tumor suppressor
in a number of malignant cancers by regulating different proteins.
It had been reported that in GBM cell lines U87 and T98G, co-
knockdown of SF2/ASF1 in addition to USP5 inhibited cell
proliferation and induced apoptosis via regulating hnRNPA1
through its deubiquitinase activity (Vashistha et al., 2020).
Here, we reported that USP5 was also critical for GBM cell
lines U251 and DBTRG-05MG proliferation via mediating cell
cycle G1 to S progression without any alteration on cell apoptosis.
These contrasts may be due to the tumor heterogeneity, as
different GBM cell lines were used in the two independent
investigations. Our data provided another insight into the
functionality of USP5 in the tumorigenesis and development
of USP5-related GBM. And the detailed mechanism of USP5 with
different functions in GBM and how to identify the USP5-related
GBM need to be further investigated.

In pancreatic carcinoma cells, knockdown of USP5 exhibited
growth inhibition effects by suppressing cell cycle G1 to S
transition, which was mediated by downregulating the cell cycle
regulators (Kaistha et al., 2017). However, the underlying mechanism
of USP5 in regulating cell cycle regulators is still under investigation.

Consistent with the previous studies, we found that knockdown of
USP5 in GBM cell lines could significantly inhibit cell proliferation
in vitro and in vivo via induced arrest of cell cycle G1 to S transition.
Several proteins are critical for driving cell cycle G1 to S transition,
including CDK2, CDK4, CDK6, CyclinD1, and CyclinE1. Here, we
revealed that among these proteins, knockdown of UP5 suppressed
CyclinD1 protein level without any alteration of its mRNA level. This
phenomenon is consistent with the regulation of USP5 as a
deubiquitinase, which leading us to continue the following studies.
Proteins modified with k48-linked polyubiquitination are
subsequently degraded in proteasome (Swatek and Komander,
2016). In our study, decreased CyclinD1 protein caused by
knockdown of USP5 could be rescued by treatment of
proteasome inhibitor MG-132. Moreover, overexpression of USP5
obviously prolonged the half-life of CyclinD1 protein. Furthermore,
USP5 was found to contact with CyclinD1 and decreased k48-linked
polyubiquitination level on CyclinD1 protein. These results suggested
that USP5 was essential for CyclinD1 protein stabilization.

It had been reported that USP5 could be activated by multiple
stimuli, such as heat stress (Xie et al., 2018) and nociceptive
information (Stemkowski et al., 2017; Joksimovic et al., 2018).
Previous study had revealed that USP5 was ubiquitinated and
degraded by Smurf1 through the proteasome pathway (Qian

FIGURE 4 | USP5 directly interacted and deubiquitinated and CyclinD1 (A, B) USP5 (A) or CyclinD1 (B) was immunoprecipitated from U251 cells, respectively.
Control immunoprecipitations were with nonspecific IgG, followed by western blotting of the precipitated proteins with antibodies for USP5 and CyclinD1 (C) CyclinD1
was immunoprecipitated from U251 and DBTRG-05MG cells stably expressed empty vector (flag) or USP5 overexpression (flag-USP5), respectively, followed by
western blotting of the precipitated proteins with the antibody specifically for k48-linked ubiquitin (Ub-k48).
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et al., 2016). Moreover, recent investigations had found that
smurf1 functioned as an oncoprotein via mediating PTEN
ubiquitylation in GBM(Chang et al., 2018; Xia et al., 2020).
Thus, further studies could focus on the mechanism of how
USP5 is regulated in GBM.

A number of USPs play critical roles in different malignant
tumors via regulating cell cycle progression (Kaistha et al., 2017;
Kitamura and Hashimoto, 2021; Yuan et al., 2021) and are
continuously investigated as potential therapeutic targets.
Recently, a variety of chemical entities were developed as

USPs inhibitors, such as Pimozide, GW7674, Trifluooerazine,
Rottlerin for USP1(Chen et al., 2011), ML364, LCAHA, 6TG for
USP2 (Davis et al., 2016; Magiera et al., 2017; Chuang et al., 2018),
GEN-6640, GEN-6776, FT67, FT827 for USP7 (Kategaya et al.,
2017; Turnbull et al., 2017). USP14 inhibitor VLX1570 was the
first DUB inhibitor to enter clinical trials for multiple myeloma
therapy, but was deferred due to pulmonary toxicity (Wang et al.,
2015; Rowinsky et al., 2020). Excitingly, increasing numbers of
USP5 inhibitors were under drug discovery, such as RA-9
(Issaenko and Amerik, 2012), Vialimin A (Okada et al., 2013),

FIGURE 5 | Ablation of USP5 impaired the tumorigenicity of GBM cells in vivo. 5 × 105 U251 stably expressed shNC or shUSP5#3 were intracranially injected into
nudemice, respectively (n � 4). ShRNA expression was induced by 2 mg/ml DOX in drinking water, and tumors were collected 30 days after induction (A, B) Photograph
of xenograft tumors from shNC or shUSP5#3 mice (C) Tumor weight from shNC or shUSP5#3 mice (D) Tumor volume from shNC or shUSP5#3 mice (F) IHC staining of
USP5, CyclinD1, Ki-67, and PCNA in xenograft tumors from shNC or shUSP5#3mice (F, G)Ki-67 or PCNA positive cells count in IHC staining sections of xenograft
tumors from shNC or shUSP5#3 mice (Data were presented with mean ± SD of three independent experiments, *p < 0.05, **p < 0.01).
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Curcusone D (Cao et al., 2014), and showed a broad prospect for
molecular therapy.

Taken together, our findings revealed a novel critical role for
USP5 in the maintenance of GBM proliferation via
deubiquitinated and stabilized CyclinD1 to promote cell cycle
progression. These results provided another potent molecular
target for GBM clinical therapy, and further research could screen
or develop clinically available chemicals for USP5 inhibition.
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