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In the past decade, the emergence of machine learning (ML) applications has led to
significant advances towards implementation of personalised medicine approaches for
improved health care, due to the exceptional performance of ML models when utilising
complex big data. The immune-mediated chronic inflammatory diseases are a group of
complex disorders associated with dysregulated immune responses resulting in
inflammation affecting various organs and systems. The heterogeneous nature of these
diseases poses great challenges for tailored disease management and addressing unmet
patient needs. Applying novel ML techniques to the clinical study of chronic inflammatory
diseases shows promising results and great potential for precision medicine applications in
clinical research and practice. In this review, we highlight the clinical applications of various
ML techniques for prediction, diagnosis and prognosis of autoimmune rheumatic
diseases, inflammatory bowel disease, autoimmune chronic kidney disease, and
multiple sclerosis, as well as ML applications for patient stratification and treatment
selection. We highlight the use of ML in drug development, including target
identification, validation and drug repurposing, as well as challenges related to data
interpretation and validation, and ethical concerns related to the use of artificial
intelligence in clinical research.
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INTRODUCTION

Machine learning (ML) is one subset of artificial intelligence (AI) that aims to build analytical models
by learning from existing data. The concept of AI andML can be traced back to the mid-20th century
when building a “machine that can learn from experience” was proposed by mathematician Alan
Turing (Turing, 1995). After decades of incremental development and technological innovation, ML
has emerged as a powerful discipline for a wide range of scientific research and industrial
applications, with a particular strength in discovering patterns in complex, high dimensional
data and examining non-linear relationships. In recent years, substantial clinical breakthroughs
using ML applications have been made including disease prevention, diagnosis, prognosis, drug
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discovery and clinical trial design (Stafford et al., 2020;
MacEachern and Forkert, 2021). Indeed, the rapid expansion
in the availability of patient data has now placed ML under the
spotlight for developing data-oriented precision medicine
approaches. Immune-mediated inflammatory diseases, such as
autoimmune rheumatic diseases (ARDs), inflammatory bowel
disease (IBD), immune mediated chronic kidney disease (CKD)
and multiple sclerosis (MS), comprise a large group of complex,
multifactorial conditions associated with chronic inflammation
triggered by dysregulated immune responses. These diseases are
highly heterogeneous in presentation, commonly involving
multi-organs and systems, and therefore are characterised by
complex pathogenic mechanisms and highly variable response to
therapies. Thus, applying advanced ML techniques to the clinical
study of immune-mediated inflammatory diseases could help
develop personalised medicine approaches and improved disease
management. In this review, ML applications in clinical research
are highlighted and the key challenges and limitations of applying
ML towards the goal of personalised medicine in various
immune-mediated chronic inflammatory diseases are discussed.

Types of Machine Learning
ML approaches can be generally divided into three types:
supervised, unsupervised and reinforcement learning, tailored
for distinct investigation purposes (Figure 1 and Glossary).
Supervised learning algorithms investigate relationships
between predictive variables and outcome from labelled
training datasets and apply the learned rule to establish a

model for classifying new data (Russell et al., 2010).
Classification and regression are two major approaches in
supervised learning, where the classification model aims to
predict category outcome (e.g., diagnosis given by clinician)
and the regression model aims to predict a continuous
outcome (e.g., disease activity score). The application of
supervised learning models is crucial for biomarker
identification in precision diagnostic and therapeutic decision
making, as well as predicting disease prognosis. Conversely,
unsupervised learning algorithms are applied to uncover
hidden patterns in training data without labels. Clustering
approaches within unsupervised learning, including
hierarchical clustering, K-means clustering and Gaussian
mixture models, are the most popular techniques for
assembling data into previously ambiguous bundles.
Unsupervised clustering approaches form the decisive
component in most patient stratification studies and in
identifying disease subtypes (Mossotto et al., 2017; Orange
et al., 2018; Robinson et al., 2020; Martin-Gutierrez et al.,
2021). Finally, reinforcement learning is scripted to
sequentially self-correct from environmental feedback (positive
or negative) and therefore improve the overall model function
without having labelled data (Kaelbling et al., 1996). While the
application of reinforcement learning is less prevalent in clinical
research compared to supervised and unsupervised learning, the
value of reinforcement learning in clinical trial design is
highlighted in numerous studies (Padmanabhan et al., 2015;
Yauney and Shah, 2018; Ribba et al., 2020). Moreover, deep

FIGURE 1 | The main types of machine learning. Main approaches include classification and regression under the supervised learning and clustering under the
unsupervised learning. Reinforcement learning enhance the model performance by interacting with environment. Coloured dots and triangles represent the training data.
Yellow stars represent the new data which can be predicted by the trained model.
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learning, inspired by the biological neural communication
networks in the brain, is a noteworthy subset of ML
algorithms for processing data and extracting patterns that are
used for decision-making. Deep learning can be designed as a
supervised, unsupervised or reinforcement model, which allows it
to handle a variety of tasks. Popular deep learning algorithms
such as recurrent neural networks (RNN) and convolutional
neural networks (CNN) are powerful tools in the field of
computer vision, where medical imaging recognition is widely
studied for disease diagnosis (Le et al., 2009), prognosis (Klang
et al., 2020) and subtypes identification (Suzuki, 2017; Jaber et al.,
2020).

Data Types
The tremendous expansion of patient-derived data accounts for
the popularity of ML approaches in the quest for precision
medicine. Extensive types of patient data are collected as part
of electronic health records (EHR) (e.g., patient demographic
data, routine clinical and serological measurements, imaging
data) and clinical research (e.g., omics data).

Data characteristics, such as universality and potential
applicability for developing effective precision medicine
approaches, facilitate ML-based clinical studies. Electronic
medical records (EMR) data are the most systematically
collected patient data with standardised format and are
frequently applied in clinical ML applications because they are
relatively accessible and easy-to-implement. EMRs are digital
data compiled by healthcare systems, they contain longitudinal
information from individuals, such as medical history, current
diagnoses, medication, disease activity and other clinical
measurements collected at a particular clinical visit. EHRs
contain information beyond EMRs, including cumulative
laboratory and imaging data available for a certain patient as
well as information about their overall health from all the
clinicians involved in their care. Applying ML to data from
EMR/EHRs is a major area of interest within the field of
personalised diagnosis and treatment (Landi et al., 2020).

Medical imaging including magnetic resonance imaging
(MRI), computed tomography, nuclear imaging, x-ray,
electroencephalography and ultrasound etc., are all techniques
with standardised imaging acquisition protocols. These data are
predominantly analysed by deep learning algorithms, which are
the most suitable due to their strength and competence in
analysing the complex detail present in medical images. Deep
learning techniques have shown particular progress in precision
oncology including early diagnosis, identifying cancer subtypes,
early detection of metastasis and aiding clinical decision-making
(Liu et al., 2019; Munir et al., 2019; Tandel et al., 2019).

There are various applications of ML techniques in radiology,
from automatization of routine tasks usually performed by
radiologists and clinicians requesting various investigations,
such as assessment of imaging appropriateness, creating study
protocols to improve image quality and minimise radiation, and
standardisation of the way radiology studies are reported
(Lakhani et al., 2018).

Although the majority of ML applications in radiology are not
specific for use in immune-mediated chronic inflammatory

conditions, which are the focus of our review, various ML
algorithms have been implemented in clinical practice, such as
medical image segmentation (Cooper et al., 1998) which can be
applied to various types of imaging (e.g., brain, spine, lung, liver,
kidney, colon); medical image registration (e.g. integration of
various complementary imaging modalities or time series to
facilitate diagnosis); computer-aided detection and diagnosis
(Doi, 2007) (e.g., mammography, CT colonography, and CT
lung for detection of nodules which assist clinicians in
diagnosis by reducing reading time and improving the
sensitivity of the detection of pathological findings); brain
function/activity analysis and diagnosis of neurological
conditions using functional MR (fMR) images (Pereira et al.,
2009) (to facilitate the non-invasive interpretation of high
dimensional data related to the brain function); content based
image retrieval systems which enables searching for digital images
in large databases based on the contents of the image to facilitate
diagnosis by comparing images with similar features or from
previously-confirmed cases with the same diagnosis; and text
analysis of radiology reports (Dreyer et al., 2005) using natural
language processing (NLP) and natural language understanding
(NLU) (Wang and Summers, 2012).

Biomarker discovery and application is a main focus in modern-
day clinical research, where quantified molecular signatures are used
as indicators for predicting different aspects of certain diseases.
Compared to traditional evaluation of patients by direct clinical
observations of the disease presentation, multiple biomarker panels
from high dimensional datameasured by state-of-the-art technology
allow researchers to pinpoint disease endotypes from a wide
spectrum of clinical presentations and could be particularly
important for precision medicine in complex human diseases.
For disease diagnosis, biomarkers that can be routinely collected
by cheap and easily accessible approaches are preferable since
periodic assessment is crucial for disease detection and early
intervention of high-risk populations. Alternatively, prognostic
biomarkers for predicting associations with mortality, disease
progression, and more active disease, usually involve disease
specific investigations, including analysis of blood (Robinson
et al., 2020; Coelewij et al., 2021), urine (Glazyrin et al., 2020),
cerebrospinal fluid (Toscano and Patti, 2021), tears (Torok et al.,
2013) and even breath (Sola Martínez et al., 2020), as well as
routinely collected imaging data (Ciurtin et al., 2019). Omics
analysis of such biological material, including metabolomics,
proteomics, RNA-sequencing (so-called “big data”) and
autoantibody data are used to study diagnosis and prediction of
disease activity in inflammatory chronic diseases (Teruel et al., 2017;
Imhann et al., 2019). Furthermore, digital clinical data extracted
from EHR can potentially provide digital biomarkers for disease
diagnosis and risk prediction (Wu et al., 2017). With the power of
deep learning, biomarkers extracted from imaging data have already
extended the accuracy of human decision-making (Liu et al., 2019).
However, the expensive operating cost, the invasiveness of certain
imaging approaches and the demand of a relatively large data size to
generate meaningful outcomes from ML models are major
drawbacks for applying imaging biomarkers in ML-based clinical
research. For predicting treatment response such as treatment
resistance and recurrence risk in inflammatory diseases, genetic,
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serological and immunological biomarkers and clinical phenotyping
are frequently applied (Bek et al., 2016; Figgett et al., 2019;
Waddington et al., 2020).

Workflow for Building Machine Learning
Models
To be intelligent and provide new solutions for intractable clinical
needs, ML needs to learn and improve from the given data and
apply it in a dynamic environment. Essential steps involved in
building a ML model include study design, data collection, data
preparation, model training, model evaluation and performance
improvement (Figure 2). Before the actual model training, a
thoughtful study design that answers key questions including
what the unmet clinical need is, what types of data need to be
collected and applied, what types of ML are suitable to address the
study aims etc., are critical for building effective ML models with
suitable clinical value. Gathering data is the first and most
important step of any ML approach, since making inferences
from a given sample is the core task of ML. The quantity and
quality of the collected samples determine whether the model is
effective and representative when applied in practice.
Subsequently, the data preparation process prunes the raw
data into a specific format. Models are constructed using the
training dataset and further evaluated using the validation/testing
dataset. The model validation includes internal validation (e.g.,
k-fold cross-validation) and external validation using an external
cohort. Finally, model performance is enhanced by repeatedly
undergoing model training and evaluation processes until the
performance is optimal.

APPLICATIONS

Machine Learning Applications in Immune
Mediated Inflammatory Disease:
Prediction, Diagnosis and Prognosis
One of the main strengths of ML is the ability to analyse data with
many variables and perform biomarker selection, which could
contribute to precision diagnosis and prognosis. Traditional

analysis techniques tend to examine linear relationships
between individual variables and outcomes and are often
heavily dependent on existing knowledge, which is often
inefficient and short-sighted when dealing with datasets with
overwhelmingly high dimensions, as is the case with omics data.
In contrast, ML approaches can sufficiently handle a large
number of variables in the dataset and can also quantify and
rank the variable importance in model training. For example, the
“mean decrease in Gini” in the random forest model measures the
average (mean) of the total decrease in node impurity of variable,
weighted by the proportion of samples reaching that node in each
individual decision tree in the random forest; thus, a higher
“mean decrease in Gini” implies a greater contribution of a
variable to the overall model performance (see Glossary). ML
methods allow a robust biomarker selection process, enabling
researchers to quickly screen out and combine the most relevant
markers for more comprehensive decision-making. Effective
biomarker selection has been applied extensively in diseases
with a strong genetic determinant such as cancer (Henry and
Hayes, 2012). However, this is more challenging in multifactorial
diseases with substantial environmental susceptibility factors
such as autoimmune inflammatory diseases.

Machine Learning for Diagnosis
There are multiple examples in the literature where predictive ML
models have been used to identify diagnostic biomarkers in
immune mediated inflammatory diseases (Table 1) (Seyed
Tabib et al., 2020; Stafford et al., 2020). For example, ML
techniques applied to proteomics have differentiated between
immune-mediated CKD and other causes of CKD (Glazyrin et al.,
2020). In this study, plasma proteomics data from 131 subjects
balanced across CKD disease patient subtypes (diabetic
nephropathy, glomerulonephritis and hypertensive
nephropathy) and healthy controls were analysed. Principle
component analysis (PCA) selected 175 relevant protein
predictors, which were individually assessed using
conventional statistical methods, but no significant differences
were identified between the groups. However, using the K-nearest
neighbours ML model, the CKD disease group was discriminated
from the healthy group with a 97.8% accuracy, and patients with
diabetic nephropathy were separated from glomerulonephritis

FIGURE 2 | Workflow of machine learning study.
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patients with a classification accuracy of over 96%. A similar
approach was performed with proteomic analysis of 47 urine
samples, which separated healthy controls from CKD disease
with high performance but failed to effectively discriminate
within CKD disease subtypes (Glazyrin et al., 2020). However,
the extremely small dataset in the urine study (eight samples in
the smallest group) greatly limited the power of the ML model as
well as giving an unreliable model performance, due to the
concern of model overfitting the training data (to be discussed
in a later section). Although many ML approaches can deal with
the classification of multiple groups, a decrease in robustness for
most models is inevitable when the number of classes increases.
To overcome this, the above study proposed a two-stage
differential diagnosis; the urine-based ML model for separating
hypertensive nephropathy and healthy control samples from

patients with CKD, to be followed by the plasma-based model
to separate patients with glomerulonephritis and diabetic
nephropathy. Thus, this study provides a potential early
diagnosis strategy using proteomics-based ML-models coupled
with the ability to differentiate between disease subtypes. This
could decrease the use of invasive kidney biopsies, although
further external validation on a large cohort is essential.

Researchers have also explored precision diagnosis of juvenile
idiopathic arthritis (JIA), a heterogeneous autoimmune disease,
using immune-based ML approaches (Van Nieuwenhove et al.,
2019). Immunophenotyping data of 72 JIA patients and 43 age-
matched healthy controls were used as predictors for the
classification model (random forest). After optimisation and
10-fold cross-validation, the random forest model had high
performance with an area under the curve (AUC) of 0.90

TABLE 1 | Examples of machine learning application in precision diagnosis and prognosis of inflammatory diseases.

ML algorithms Type of data Sample sizes Applications References

Applications in Disease Diagnosis

kNN, LR, SVM, DT, PCA Plasma and urine
proteomics

131 plasma and 47 urine samples from
CKD patients

Proteomics-based ML approach was
developed as differential diagnosis tool of
early state CKD.

Glazyrin et al.
(2020)

RF Immunophenotyping 72 JIA and 43 healthy controls MLmethods applied to identify JIA patients
from healthy controls by immune profile

Van Nieuwenhove
et al. (2019)

SVM, RF, kNN, NB fMRI connectivity matrix 41 neuropsychiatric SLE patients and 31
healthy controls

ML classifiers applied for Neuropsychiatric
SLE patients using resting-state fMRI
functional connectivity

Simos et al. (2019)

unsupervised surrogate
assisted feature selection
(SAFE), NLP, LR

Electronic Health Records 114 definite SLE, 49 probable SLE,
237 Non-SLE patients

ML algorithms were applied to identify
lupus patients in electronic health records
and validated the performance of existing
rule-based algorithms

Jorge et al. (2019)

AdaBoost Electronic Health Records 583 SLE, 16174 non-SLE patients ML model trained with noisy labelled
electronic health records are used for
heterogenous lupus identification

Murray et al. (2018)

Applications in Disease Prognosis

Elastic generalized linear
model (GLM), KNN, RF

Whole blood gene
expression data

156 SLE (82 active; 74 inactive) patients Supervised ML approaches were applied
to predict lupus disease activity using gene
expression data

Kegerreis et al.
(2019)

Multinomial LR Laboratory measurements
and demographics

286 SLE with 5,680 visits Screening ML models to identify high
disease activity SLE patients using simple
demographic and laboratory
measurements

Hoi et al. (2021)

RNNs Clinical and laboratory
measurements

132 SLE patients with no baseline
chronic damage (in the 2 years follow up,
38/132 developed chronic damage)

ML algorithms were used to predict the risk
of chronic damage of SLE patients using
longitudinal clinical and laboratory
measurements

Ceccarelli et al.
(2017)

RF, SVM, KNN,
AdaBoost, RNNs

Clinical records 1,624 MS patients (follow up visits in 180,
360 and 720 days)

Supervised ML algorithms were applied to
predict disease course of MS patients
using longitudinal clinical records

Seccia et al. (2020)

Elastic net (GLM) Quantitative measurements
from routine clinical tests

3,515 young and asymptomatic
individuals

General linear model was applied to predict
subclinical atherosclerosis risk in young
and asymptomatic individuals using
longitudinal quantitative laboratory
measurements and routine clinical tests

Sánchez-Cabo
et al. (2020)

RF, LR with and without
interaction, SVM, DT

Serum metabolomics data 80 female SLE patients Supervised ML classifiers were applied to
predict subclinical atherosclerosis in SLE
patients using serum metabolomics data

Coelewij et al.
(2021)

Abbreviation: ML, Machine learning; PCA, principal component analysis; LR, logistic regression model; GLM, generalized linear model; SVM, support vector machine; GB, gradient
boosting; XGBoost, extreme gradient boosting; RF, random forest; DT, decision tree; ET, extremely random trees; GBDT, gradient boosting decision tree; NB, naïve Bayes; NN, neural
network; CNN, convolutional neural networks; RNNs, recurrent neural networks; DL, deep learning; kNN, k-nearest neighbours; NLP, natural language processing; CKD, chronic kidney
disease; JIA, juvenile idiopathic arthritis; SLE, systemic lupus erythematosus; MS, multiple sclerosis.
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when discriminating JIA from healthy using all 42 immune cell
subtypes. iNKT cell subtype was the variable that contributed
most to the random forest model (assessed by mean decrease in
Gini), and was used to build a univariable (iNKT cell only) model
which had an AUC of 0.91. However, after removing iNKT cells
from the model (keeping all other predictors), the model
maintained a good performance (AUC � 0.86). The order of
the variable ranking also remained the same in models with and
without iNKT cells. These results suggested that the contribution
of iNKT cells to JIA pathogenesis may not be the most important
despite being the top ranked variable by the random forest model.
The study illustrates the power of ML analysis in explaining
biological function and the potential clinical application in
precision diagnosis of JIA.

In a study of patients with neuropsychiatric SLE (Simos et al.,
2019), researchers applied a ML model to enhance current
neuropsychiatric SLE diagnosis approaches based on resting-state
functional connectivity MRI (fMRI) imaging data of the brain. ML
classifiers, including random forest, support vector machine, naïve
Bayes and k-nearest neighbours were trained by the fMRI
connectivity matrix derived from fMRI images of the brain
network of 41 neuropsychiatric SLE patients and 31 healthy
controls. The support vector machine model achieved the best
performance, identifying neuropsychiatric SLE patients with and
AUC 0.75, validated by 5-fold cross-validation. This model also
indicated that the frontoparietal brain region contributedmost to the
performance. However, the model performance is not outstanding
for practical use in diagnosis, therefore testing a larger cohort for
model training and performing appropriate external validation in
future studies could potentially elevate the model quality and help
build a neuropsychiatric SLE classification pipeline.

A number of studies have begun to examine the application
of ML techniques to the diagnosis of complex autoimmune
diseases using EHR and EMR data (Murray et al., 2018; Jorge
et al., 2019). In a previous study by Jorge et al. (2019), ML
algorithms were able to identify patients with systemic lupus
erythematosus (SLE), a complex disease whose diagnosis
requires multiple criteria, including clinical presentation,
history of symptoms and, laboratory data. Patients with an
international classification of disease (ICD) code that
suggested a possible diagnosis of SLE (without fulfilling the
criteria for classification as having SLE) were included in the
model training. Selected EMR records were then defined, and
the corresponding patients were assessed by rheumatologists
using clinical expertise and validated SLE classification
criteria, and categorised as either definite SLE, probable SLE
and non-SLE. A novel ML approach combined the rule-based
and natural language processing (NLP) algorithms (Teller,
2000) to identify SLE patients using EHR data (including
laboratory measurements, medications and disease history).
The model achieved an overall good performance (AUC �
0.909) with a 92% positive prediction rate when classifying SLE
(definite and probable) from non-SLE cases. Although the
performance of ML models was not improved compared to
the rule-based methods, the combined method demonstrated a
good performance on both internal and external validation.
This is particularly important for developing a portable and

universal pipeline for identifying SLE patients based on
medical records and implementing into a healthcare system
and could provide a model for classifying complex diseases
such as SLE.

In another study using EHR data to identify SLE patients
(Murray et al., 2018), an ensemble algorithm (AdaBoost learners,
EasyEnsemble (Liu et al., 2009)) was applied to an imbalanced
dataset (derived from 583 SLE, and 16174 non-SLE individual
patient EHR). A high model performance was achieved (AUC
0.97) and maintained in the testing dataset (AUC 0.94), where
definitions of SLE were validated by two rheumatologists using
“strict” and “inclusive” terms respectively.

Similar studies have applied EMR data to classify patients with
rheumatoid arthritis (RA) (Liao et al., 2010) and IBD
(Ananthakrishnan et al., 2013), as well as to identify patient
subsets. For example, a study used EHR to identify
methotrexate-induced liver toxicity in RA patients (Lin et al.,
2015). A logistic regression model was used to classify cases as
having or not methotrexate induced liver toxicity, with a 0.756
positive predictive value. Moreover, EHR-based MLmodels can be
used to screen for genetic disorders with long term health effects
such as familial hypercholesterolemia, which can remain largely
undiagnosed due to the strict privacy rules for universal screening
in some areas. A “random forest” -basedML algorithm (FIND FH)
developed by Myers and colleagues (Myers et al., 2019) identified
individuals with a high chance of having familial
hypercholesterolemia using information available on external
healthcare system databases. Samples from the identified
individuals at risk for FH were further validated by experts with
a precision ranging from 77 to 87%, showing that EHR-based ML
models could be a promising preselection tool for identifying
patients at risk for genetic conditions without universal screening.

Machine Learning in Predicting Disease Prognosis
ML classification models can also be applied in disease activity
prediction of complex autoimmune diseases (Table 1). This has
been attempted in several ways as can be demonstrated in SLE. In
a study using whole blood gene expression data, SLE disease
activity was predicted by ML classifiers (Kegerreis et al., 2019).
The gene expression and module enrichment data of 156 SLE
patients from three datasets were included and stratified for
disease activity using the Systemic Lupus Erythematosus
Disease Activity Index (SLEDAI); active disease SLEDAI≥6
and inactive disease SLEDAI<6. Interestingly, both
conventional gene differential expression analysis and
unsupervised clustering methods (hierarchical clustering) failed
to distinguish SLE patients based on their disease activity alone,
potentially due to the heterogeneous and complex nature of the
disease. Therefore, supervised ML classifiers including random
forest, k-nearest neighbours and generalized linear models were
used to separate patients with active versus inactive disease. The
random forest classifier scored the highest performance with a
peak accuracy of 83% when using raw gene expression data as a
predictor. However, the model performance varied dramatically
when validated by datasets using different technical settings.
When gene modules were used as model predictors, the
performance of the random forest classifier was stable at
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around 70% accuracy regardless of the validation approach. The
mean decrease in Gini impurity from the random forest model
indicated an important role for CD14+ monocytes in SLE patients
with active disease. Although models trained by gene expression
data remain challenging for implementation in the clinical setting
from the point of view of feasibility and cost-effectiveness, the
gene expression features identified between active and inactive
groups of patients may boost the understanding of SLE
pathogenesis.

Another study attempted to identify SLE patients with high
disease activity using ML algorithms without making use of the
validated disease activity score usually implemented in routine
practice (SLEDAI) (Hoi et al., 2021). The longitudinal data of 286
SLE patients (median follow up 5.1 years, a total of 5,680 visits)
including measurements of High Disease Activity (HDA),
defined as SLEDAI-2K≥10, 16 laboratory and three
demographic parameters (age, sex, and ethnicity) were used to
build a multinomial logistic regression model. After screening a
total of 216 models with different variable settings for
optimisation purposes, the final model including seven
laboratory variables and three demographic variables identified
with 88.6% accuracy whether a certain SLE patient had HDA or
not. The model training used data from all visits, irrespective of
their time point and this limited the possibility of using certain
earlier time-points to predict later disease development status.
The study shows the possibility of using a limited amount of
routinely available laboratory measurements and demographics
to select SLE patients with HDA, which could help the early
identification of SLE patients likely to require treatment
escalation after testing the model in a clinical setting.

Another study accurately predicted chronic damage in SLE
with the aim to improve disease management (Ceccarelli et al.,
2017). 413 SLE patients were assessed for chronic damage
evaluated by the validated SLICC/ACR Damage Index (SDI)
(Gladman et al., 1996), which includes longitudinal
measurements of damage potentially acquired within 12 organ
systems. Supervised recurrent neural network (RNN) which is a
class of artificial neural network (see Glossary) was employed to
classify patients without chronic damage at baseline but who
developed damage in the following 2 years versus those who did
not develop chronic damage. Clinical data including
demographics, diagnosis date, co-morbidities and medical
history, and laboratory data including important markers of
SLE were used as predictors for RNN model training. The
RNN model uses the all the longitudinal time point (≥5 visits
for each patient) of chronic damage measurement as the
sequential input, then processes the network through the
hidden layer (layers in between) until connecting the output
layer, which generates the prediction results (see Glossary). To
avoid overfitting, an early stopping technique (stop when AUC
reaches 0.95) and 8-fold cross-validation were applied. Themodel
performance was stable at AUC (0.77) for predicting a chronic
damage-developing group.

Similar studies have also been described in patients with MS.
Seccia and colleagues applied supervised ML algorithms to
predict disease progression of MS and potentially provide
treatment decision support (Seccia et al., 2020). Four common

ML algorithms (random forest, support vector machine,
k-nearest neighbours and AdaBoost) were employed to
identify whether patients with MS will evolve from the initial
Relapsing-Remitting (RR) phase to the Secondary Progressive
(SP) phase over 180, 360 and 720 days using real-world clinical
data. After model optimisation, the prediction accuracy of
random forest, support vector machine, and AdaBoost models
had similar performances around 85% for 180-, 360- and
720 days progression prediction. Due to the nature of MS
evolution, the sample size of transitioning (SP) patients is
usually significantly smaller than the non-transitioning (RR)
patients. This extremely imbalanced data limited the overall
performance of the model and could be improved by a larger
study cohort with more balanced data and external validation.
Moreover, a more integrated and comprehensive approach
combing results from all the high performing models could
improve the overall prediction.

The classification and biomarker selection properties of ML
algorithms can also help to predict the prognosis of diseases with
a long asymptomatic phase. In a recent study of atherosclerosis,
Sánchez-Cabo and colleagues applied ML to predict
cardiovascular risk in asymptomatic individuals (Sánchez-Cabo
et al., 2020). Non-invasive imaging such as computerised
tomography and vascular ultrasound can help to assess
cardiovascular risk but are only recommended in clinical
practice after evaluating traditional risk factors such as serum
cholesterol levels, which could underestimate the long-term
cardiovascular risk in asymptomatic individuals. In this study,
ML models were built based on 3,515 individuals with 115
quantitative predictors collected from routine clinical tests.
Baseline imaging was used to classify samples into four groups
(no disease, focal disease, intermediate disease, generalized
disease) based on the detection of subclinical atherosclerosis.
The “no disease” and “generalized disease” classes were used to
build up an elastic net model (penalized linear regression model)
(see Glossary) using all predictors. After variable selection from
the model, a refined model with 12 predictors was employed. The
refined elastic net model significantly outperformed the
traditional cardiovascular risk assessment scores in predicting
generalized subclinical atherosclerosis and the risk of progression
in 3 years. Notably, this model improved the false-negative
prediction rate meaning that fewer high-risk individuals were
mis-classified in the “no disease” group.

In a recent study of SLE (Coelewij et al., 2021), researchers
attempted to predict subclinical atherosclerosis in SLE patients
using serum metabolomics data. 228 metabolites from 80 female
SLE patients were quantified by nuclear magnetic resonance
spectroscopy and used as predictors. Subclinical atherosclerosis
status of each patient was assessed by femoral and carotid artery
ultrasound scans. After pre-processing the serum metabolomics
data (imputation of missing data, homology reduction and data
scaling), five supervised classification models were applied to
predict subclinical atherosclerosis. The logistic regression with
interactions model achieved the highest classification accuracy
(80%). Feature selection was performed using the top three
models (random forest, logistic regression with and without
interaction) in predicting subclinical atherosclerosis in SLE,
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where very low-density lipoprotein (VLDL) subclasses and
leucine were top ranked in the ML model and were also
validated by the univariate logistic regression. As SLE patients are
known to be at higher risk of developing cardiovascular disease
compared to age and sex-matched healthy individuals, this study
revealed the possibility of using serum biomarkers to identify SLE
patients with high cardiovascular disease risk early and allow
adequate preventative strategies to address this risk. ML
techniques have also been used for complex risk disease
prediction using both genetic and nongenetic data with different
levels of performance. A 7 years longitudinal study in patients with
hepatitis C identified that boosted-survival-tree models were
statistically superior to cross-sectional or linear models for

predicting development of cirrhosis in chronic hepatitis C as a
model of a disease with a non-linear progression trajectory
(Konerman et al., 2019). However, a benchmarked polygenic risk
score which did not account for possible nonlinear effects, had a
better prediction capacity for coronary artery disease than various
ML techniques, such as penalized logistic regression, naïve Bayes,
random forests, support vector machines, and gradient boosting
when tested on an independent data set (Gola et al., 2020). This
suggests that although overall ML strategies can improve the
predictive capacity of individual or composite biomarkers
commonly used in research or clinical practice, the added value
of ML heavily depends on the quality and the relevance of the data
fed into the model.

TABLE 2 | Examples of machine learning application in subtype identification, therapy selection and drug development of inflammatory diseases.

ML algorithms Types of data Sample sizes Application References

Applications in Disease Subtype Identification and Therapy Selection

PCA, PLSDA, sPLS-
DA, k-means clustering,
hierarchical clustering

Whole-blood RNA sequencing data 161 SLE and 57 healthy
controls

ML clustering approaches were applied to
stratify SLE patients based on gene
expression signatures

Figgett et al. (2019)

RF, sPLS-DA,
k-means clustering

Immunophenotyping 45 SS, 29 SLE,14 patients
with both conditions and 31
healthy controls

ML and statistical approaches were
applied to discover shared immune profile
between SS and SLE. Immune cell
signatures were used to stratify patients
into groups with different clinical
presentation regardless of the diagnosis

Martin-Gutierrez
et al. (2021)

RF, sPLS-DA,
k-means clustering

Immunophenotyping 67 juvenile-onset SLE
patients and 39 healthy
controls

ML and statistical approaches were
applied to identify juvenile-onset SLE from
healthy controls using immunophenotyping
data. The immune cell signatures were
used to stratify patients into four groups
with different clinical manifestations

Robinson et al.
(2020)

XGBoost, RF, GBDT,
ET and LR

Electronic Medical Record 87 JIA patients with
etanercept treatment

Supervised classifiers were applied to
predict the treatment efficacy of etanercept
in JIA patients

Mo et al. (2020)

DT, RF, kNN, SVM, LR
with and without
interactions

Serum metabolites 89 MS patients with IFNβ
treatment

Supervised classifiers were applied to
predict the anti-drug antibody
development in MS patients before and
after IFNβ treatment

Waddington et al.
(2020)

Applications in Drug Development

DL (deepDTnet) 15 types of chemical, genomic,
phenotypic, and cellular network profiles

732 small molecules A DL approach was developed for novel
target identification and drug repurposing
using heterogeneous drug–gene–disease
networks from existing drugs

Zeng et al. (2020)

Bayesian network
(BANDIT)

Drug efficacies, post-treatment
transcriptional responses, drug structures,
reported adverse effects, bioassay results
and known targets

>2,000 small molecules A Bayesian machine learning approach
was developed for novel binding target
prediction using diverse data types

Madhukar et al.
(2019)

Translational Network
for Indication Prediction
(CATNIP)

16 different drug similarity features 2,576 small molecules ML algorithm was developed for drug
repurposing using only biological and
chemical information of the molecules

Gilvary et al. (2020)

DL (MathDL) Public databases (PDBbind and ChEMBL) 17,382 protein–ligand
complexes (PDBbind) and 2
million compounds
(ChEMBL)

DL and algebraic topology were used to
rank the attractive binding sites for SARS-
CoV-2 drug development. The model
identified 71 covalent bonding inhibitors for
SARS-CoV-2 main protease, a favourable
drug target of SARS-CoV-2

Nguyen et al.
(2020)

Abbreviation: ML, Machine learning; PCA, principal component analysis; sPLS-DA, sparse partial least squares-discriminant analysis; LR, logistic regression model; SVM, support vector
machine; GB, gradient boosting; XGBoost, extreme gradient boosting; RF, random forest; DT, decision tree; ET, extremely random trees; GBDT, gradient boosting decision tree; NB, naïve
Bayes; NN, neural network; CNN, convolutional neural networks; RNNs, recurrent neural networks; DL, deep learning; kNN, k-nearest neighbours; NLP, natural language processing; SLE,
systemic lupus erythematosus; SS, Sjögren’s syndrome; JIA, juvenile idiopathic arthritis; MS, multiple sclerosis; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Machine Learning for Disease Subtype Identification
and Therapy Selection
Personalised treatment is a fundamental aim of precision
medicine, where individuals receive tailored therapy instead of
the one-size-fits-all approach. The precision of the treatment is
increasingly important in heterogeneous diseases, including
autoimmune inflammatory diseases, where significant disease
signature differences between patients can be overlooked by
the same diagnosis. An effective way of delivering personalised
treatment is by performing a more precise subpopulation
identification based on their distinct pathogenetic signatures.
Signatures can be extracted from genomes, metabolomics,
immunophenotyping and other types of data. Supervised ML
is an ideal tool, specialised in the identification of unique
signatures, while clustering approaches from both supervised
and unsupervised ML are designed for partitioning complex
high dimensional data. An increasing number of studies have
applied ML models to identify subgroups of patients and show
promising results toward more personalised treatment (Table 2)
(McKinney et al., 2010; Waljee et al., 2019; Mo et al., 2020;
Rehberg et al., 2020).

SLE is a chronic ARD with no cure. Due to the heterogeneous
nature of SLE, predicting treatment response of SLE patients
remains challenging. Figgett and colleagues (Figgett et al., 2019)
applied ML clustering approaches to perform SLE patient
stratification using whole-blood RNA-sequencing data. Both
unsupervised clustering (PCA, k-means clustering) and
supervised clustering (partial least squares-discriminant
analysis, PLS-DA) approaches were applied to the gene
expression data from 161 SLE and 57 healthy samples.
Unsupervised PCA provided an overall view of the gene
expression data, which confirmed a higher heterogeneity in
SLE compared with healthy controls. On the other hand,
supervised PLS-DA maximised the difference between SLE and
healthy controls with the help of labelled data, and selected top-
weighted genes from the model. The SLE patients were then
stratified into four clusters (C1–C4) with different gene
expression signatures by k-means clustering. These identified
clusters were supported by ML classifiers, where an 88%
accuracy of model performance showed a clear divergence
between these SLE subpopulations. From the enrichment
analysis, C1 had the most similar gene expression architecture
to healthy samples. Investigating the clinical manifestations of the
clusters identified that flare activity was significantly elevated in
C3 and C4; significantly more renal disorder and discoid rash in
C4; significantly more serositis in C2. Moreover, using PLS-DA,
genes related to disease flare were identified and used to
discriminate between flare and non-flare patients, and
enrichment analysis of the selected genes identified an increase
in inflammatory signalling such as IL-6 and TNF-α, upregulated
proliferation signalling, and haematological disturbances. This
study improved the understanding of SLE heterogeneity and
provides insight for potential personalised treatment in
subpopulations of SLE patients.

In the recent study of primary Sjögren’s syndrome (pSS) and
SLE (Martin-Gutierrez et al., 2021), researchers applied supervised
ML models to identify shared immunological characteristics

between pSS and SLE. These two diseases share some clinical
and laboratory features, despite differences in disease pathogenesis
and overall clinical presentation, leading to a distinct diagnostic
label (Pasoto et al., 2019). Immunophenotyping data comprising
29 immune cell subsets from 45 SS, 29 SLE, 14 patients with both
conditions and 31 healthy controls was generated by flow
cytometry. A range of analysis including supervised ML models
(balanced random forest and sparse partial least squares
discriminant analysis), univariate logistic regression and
multiple t-tests were used to confirm the immunological
similarity between pSS and SLE. Thus, all patient’s data was
then combined (n � 88) and stratified by k-means clustering
into two groups with distinct immune profiles. The balanced
random forest model identified a signature of eight T-cell
subsets that differentiated between the two groups with high
performance (AUC � 0.99). The 5 year clinical trajectory
analysis identified differential damage scores and disease activity
between the two groups. The study suggests the potential of
differentiating pSS and SLE patients based on their
immunological profile and could provide the opportunity for
more accurate targeted treatments across diagnostic boundaries.

ML applications can be used to predict drug efficiency and
provide precise treatment support for heterogeneous diseases. In
a study of JIA (Mo et al., 2020), ML algorithms were employed to
predict the efficiency of biological therapy (etanercept) in JIA
patients using EMR data. A wide range of supervised ML
approaches including extreme gradient boosting (XGBoost),
random forest, gradient boosting decision tree (GBDT),
extremely random trees and logistic regression were tested as
potential predictive models. EMR data from 87 JIA patients
receiving weekly etanercept treatment at the same dose
(0.8 mg/kg) were used for model training. The efficacy of the
etanercept treatment was assessed using a standard disease
activity score validated in adults with RA (DAS44/ESR-3)
(Ranganath et al., 2007; Consolaro et al., 2009) at baseline and
3 months after treatment, where a drop in DAS44 >0.6 was
considered as a response to treatment. Feature selection was
performed in each ML model. After optimisation, XGBoost
outperformed the other models with an AUC 0.79 indicating a
good predictive performance. Although an external validation
was employed, this was small in number (only 14 patients)
thereby limiting the reliability of the validation and the ability
to apply the model in practice. Another study identified a limited
contribution of genetic markers in addition to clinical parameters
in predicting response to anti-TNF therapy in RA using a
Gaussian process regression model which correctly classified
patients’ response in 78% cases (Guan et al., 2019). A recent
ML application for personalised treatment response in RA
investigated with success molecular signatures predictive of
response to adalimumab and etanercept using differential gene
expression in peripheral blood mononuclear cells (PBMCs),
monocytes and CD4+ T cells and methylation analysis in
PBMCs (Tao et al., 2021). The random forest algorithms
implemented to exploit the transcriptome signatures had an
overall accuracy of 85.9 and 79% for response to adalimumab
and etanercept and they have been validated in a partial dataset (a
follow-up study).
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Another study tried to predict anti-drug antibody
development in MS patients treated with interferon β (IFNβ)
(Waddington et al., 2020). More than one third of MS patients
treated with IFNβ develop anti-drug antibodies, which
significantly reduces drug efficacy (Bertolotto et al., 2002).
Researchers quantified 228 serum metabolites and anti-drug
antibody levels of 89 MS patients as part of the ABIRISK
consortium (Hässler et al., 2020), at baseline (before
treatment), 3 and 12 months after treatment initiation. Six
supervised classification models (decision trees, random forest,
kNN, SVM, logistic regression with and without interactions)
were used to predict anti-drug antibody development (at month
12) and were validated by 10-fold cross validation. The decision
tree model outperformed others with a F1 score of 0.788 and a
classification accuracy of 0.854 using baseline metabolomics data
as predictors. Similar models using serum metabolite levels
3 months after treatment showed better performance in
predicting which patients will develop anti-drug antibodies at
12 months by logistic regression models (F1 � 0.88, accuracy �
0.863). The results from variable selection of the models and
experimental validation, suggest that serum lipids might play an
important role in anti-drug antibody development by changing
the lipid composition of immune cell plasma membranes (lipid
rafts). Together, this study demonstrates a potential methodology
for efficient prediction of drug response using big data (omics and
clinical data), which healthcare professionals can use to assess
patients earlier for optimal treatment selection.

Machine Learning for Drug Development
Drug development is a complicated, costly, and time-consuming
process, which depends on a large number of factors. The
pipelines of drug development can be simply divided into two
phases: the drug discovery phase and drug-testing phase (Réda
et al., 2020). The drug discovery phase focuses on target
identification, target validation and small molecule design,
while drug-testing phase includes several preclinical and
clinical trials. The complete timeline of drug discovery varies
from 5 to 15 years (Réda et al., 2020) with more than 50% failure
rate in the late clinical trial phase (Hwang et al., 2016). Due to the
high-failure nature of drug development, developing automated
approaches with high predictive performance is crucial. To date,
numerous studies have investigated the application of ML in drug
development (Table 2), aiming to improve the overall success rate
by enhancing each step of the drug development process with the
extensive use of big data (Vamathevan et al., 2019).

Target Identification and Validation
The first step of drug development is target identification which
often heavily depends on the extensive study of disease
mechanism. Understanding disease mechanisms can be time
and labour intensive; common experimental techniques
ranging from using immunoprecipitation assays to identify
protein-protein interactions in biological samples to genome-
wide CRISPR-Cas9 screens to knock down genes of interest.
Modern high-throughput techniques generate abundant
molecular and biological data, which makes it difficult to
screen potential drug targets using conventional methods. To

speed up the drug target selection process, numerous studies have
developed automated in-silico approaches for drug target
identification and validation.

A recent study by Zeng et al. (2020) developed a
comprehensive deep learning approach called deepDTnet,
which combines networks between drug, gene and disease data
to identify novel targets for the existing drugs with great accuracy
(AUC � 0.96). Retinoic-acid-receptor-related orphan receptor-
gamma-t (ROR-γt) was selected from the deepDtnet approach, as
having potential interaction with multiple drugs. An 18-drug
screening panel of novel candidates selected from deepDTnet
identified that Topotecan (a topoisomerase inhibitor) had an
adequate ROR-γt inhibitory capacity (71.0% at 10 μM).
Furthermore, this drug was able to ameliorate disease in an
experimental mouse model of MS by targeting ROR-γt.

A Bayesian machine learning approach (BANDIT) developed
by Madhukar and colleagues (Madhukar et al., 2019) integrated
different data types such as treatment response, drug efficacy,
molecular structure and adverse effect to predict unknown drug
binding targets. The BANDIT model achieved an overall 90%
accuracy on more than 2,000 small molecules. By applying the
BANDIT approach on 14,000 small molecules with previously
unknown targets, novel protein targets for 4,167 small molecules
were confidently identified. Furthermore, by applying BANDIT
to anti-cancer compounds in clinical development, Dopamine
receptor D2 was identified and validated as a target and a
compound targeting Dopamine receptor D2 is now
undergoing clinical trials for cancer. Overall, BANDIT
represents an efficient and accurate platform to accelerate drug
discovery and direct clinical application. Together, these
approaches overcome the limitation of using only known
targets as input data, thus, can discover targets for orphan
compounds.

Drug Repurposing
Drug repurposing is another powerful application aiming to discover,
validate and apply existing approved drugs for new application. The
process of drug repurposing is much conserved by renouncing the
standard drug development pipeline approach and investigating
similarities between various disease processes potentially targeted
by the same therapeutic interventions, so that new effective
treatments can be delivered faster to patients. This is a more cost-
effective approachwhich led in recent years to the testing and licensing
of similar classes of therapeutic agents acrossmany immune-mediated
chronic inflammatory diseases (March-Vila et al., 2017; Balasundaram
et al., 2019; Gilvary et al., 2020; Martin-Gutierrez et al., 2021). In a
recent study of computational drug repurposing, researchers
developed a ML (Gradient Boosting model) approach, Creating A
TranslationalNetwork for Indication Prediction (CATNIP)which can
effectively connect similar drugs by solely analysing the biological and
chemical data of the molecule without the knowledge of the current
therapeutic disease applications of the drug (Gilvary et al., 2020). The
CATNIP model was trained with 2,576 small molecules with a good
model performance (AUC � 0.84). By performing CATNIP, a strong
connection was identified between a kinase inhibitor drug
(vandetanib) and diabetes, suggesting that vandetanib could be a
potential treatment for type 2 diabetes.
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To date, many ML approaches have been applied to discovering
effective drugs for acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). One of the studies selected the SARS-CoV-2 main protease
(Mpro) as a potential drug target because it was highly conserved and
encoded by a distinct gene. Due to the 96.08% similarity between
SARS-CoV-2 and SARS-CoV (Xu et al., 2020), researchers
hypothesised that inhibitors for SARS-CoV Mpro might be effective
in blocking SARS-CoV-2 Mpro (Nguyen et al., 2020). By combing the
mathematics analysis and deep learning models (MathDL), the
binding affinity of 137 Mpro–inhibitors were predicted and ranked
without any additional laboratory data. The model revealed that
Gly143 was the most attractive residue in Mpro and 71 covalent
bonding inhibitors interacting with the SARS-CoV-2 Mpro were
identified. The study extended the current knowledge of the SARS-
CoV-2 Mpro and provide important information for COVID-19 drug
discovery.

Another study applied AI algorithms (BenevolentAI) to explore
potential treatment options for COVID-19 using existing anti-
cytokine therapies which enabled large-scale clinical trials to be
rapidly conducted (Stebbing et al., 2020). Researchers aimed to
identify existing drugs that could influence the COVID-19
infection progression by blocking the “cytokine storm” and reduce
the associated inflammatory damage associated with a heightened
immune response to the virus. Baricitinib is a (JAK)1/JAK2 inhibitor
approved for RA treatment which was predicted to have an anti-viral
(COVID-19) effect by the BenevolentAI algorithms. The following
laboratory validation identified in-vitro and in-vivo evidence of a
reduction in viral infectivity by baricitinib. In a pilot study, four
COVID-19 patients were treated with baricitinib resulting in
symptom improvement and viral load reduction, providing
evidence for clinical benefit derived from ML-driven therapeutic
target identification.

CHALLENGES

Despite the promise of ML research in the field of precision
medicine, many challenges still need to be addressed to ensure the

further development and acceptance of ML approaches
(summarised in Table 3).

Data Quality
Being a data-driven approach, the performance of the ML model
depends heavily on the quality of the data that it builds on. Data
needs to have a sufficient sample size and quality in order to
represent the target population in the clinical application. In
general, a larger sample size is essential for the development of a
more robust ML model, which allows accurate prediction for
supporting clinical decisions. ML models trained by small sample
sizes often suffer from the problem of “overfitting,” where the
model over relies on characteristics from the under-represented
training data and loses the ability to effectively perform in
practice. Similar to the multiple testing issue in conventional
statistics, ML models with small sample size might cause false
significant discoveries due to random variation under numerous
repetitions. For example, one can generate 1,000 different splits of
train/test data and evaluate performance. If the performance
based on splits shows a great variance, this might indicate an
“unstable” model. One way to improve model reliability due to
small sample size is by reducing the model variance, as low
variance algorithms are less influenced by the specificity of the
training data. However, model variance reduction often results in
an increase in model biased error, leading to a weakened
predictive performance of models (Kohavi and Wolpert, 1996).
Meanwhile, obtaining a larger sample size often requires more
resources (time, funding, access to large patient populations and
computer power etc.). One way to ensure the appropriateness of
study design for the research outcome investigated is by having
universal guidance of the adequate sample size required for the
ML model training for researchers to follow. Studies have already
attempted to develop tools to assist decision making in study
design. For example, an r package “pmsampsize” was developed
to calculate the minimum sample size for the predictive model
development to avoid model overfitting, taking into account the
number of participants, outcome events and predictive variables
(Riley et al., 2019).

TABLE 3 | Challenges in applying machine learning techniques in precision medicine for immune-mediated chronic inflammatory diseases.

· Robust models require sufficient high-quality data Inadequate sample size in model development can lead to miss representation of the real
population and model overfitting. Power calculations under universal guidance are
essential during the study design process for ML studies

· External validation using independent datasets are an imperative step for
predictive model implementation

Lack of external validation is markedly common in studies of autoimmune disease and
raises several concerns including model overfitting, poor reproducibility, and
generalisability. Online platforms with high-quality and well-defined datasets could enable
data reuse which might help researchers with limited access to multiple cohorts to perform
model validation

· Obstacles in model implementation in clinical practice Limited interdisciplinary knowledge for translating model metrics to biologically relevant
discoveries; lack of usable drugs for model stratified patients; and absence of significant
improvement over the traditional approach. These can be improved by using standard
practice guidance such as TRIPOD, which allow researchers to carefully assess their
model for implementation

· Ethical concerns Clinical predictive models rely on large amounts of personal healthcare data which raise the
concern of private data leakage. AI/ML models can discriminate against groups based on
ethnicity, gender or economic status due to reliance on biased “real world” data where
minority groups maybe underrepresented
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However, the use of a limited sample size can be sometimes
inevitable due to the rare nature of certain diseases. To overcome
the limitation of small sample size, more comprehensive
procedures and careful considerations are necessary for
generating reliable results. One example is juvenile-onset SLE
(JSLE) – a rare ARD. In one study, researchers applied a ML
model to stratify JSLE patients based on their immune profile
(Robinson et al., 2020). Only 67 JSLE patients and 39 healthy
controls with 28 immune cell predictors were included in the
analysis. A random forest algorithm was selected as it was less
likely to overfit the data due to an implanted bagging method and
random feature selection in the model ensembled by a large
number of decision trees (Tin Kam, 1995; Breiman, 2001). The
results of this model were combined with additional analysis such
as the sparse-PLS-DA and univariate logistic regression and were
further validated by 10-fold cross-validation. Although the lack of
an external validation dataset meant there was still risks for
overfitting and not being able to extrapolate the results, the
study shows the potential for applying a ML-based pipeline to
other rare and heterogeneous immune-mediated inflammatory
conditions (Choi and Ma, 2020).

Another challenge in the development of ML models is access
to high quality and well-defined datasets, needed for algorithm
training and evaluation. In recent years there has been a big push
to make research data FAIR (Findable, Accessible, Interoperable
and Reusable) (Wilkinson et al., 2016). Datasets generated in
research studies should collect enough machine-readable
metadata to allow for discovery and searches. Ideally, clear
rules for data access and use should be available, as well as use
of domain-specific ontologies to describe the data. There should
also be enough information available describing how the
acquisition of data was carried out, enabling re-use of data.

Reproducibility and External Validation in
Machine Learning
Issues with multiple testing and p-hacking has contributed largely
to the reproducibility “crisis” in science. The 2016 Nature survey
pointed out that more that 70% of scientists have failed to
reproduce other scientists reported results (Baker, 2016).
P-hacking in traditional statistics usually means that tests are
done on data in an exploratory manner, if something significant is
found, a hypothesis is formed based on this finding, i.e., working
backwards from data to find patterns and relationships. However,
the statistical tests are only valid if the hypothesis is formed first.
In ML, working backwards from data to reveal patterns is exactly
what is done. In the case of ML, overfitting can be considered the
analogy to p-hacking. Overfitting usually means that the ML
model can perfectly reproduce training data, but fails on
independent data. The way to handle this by data scientists is
appropriate internal and external validation of models.

To achieve the highest model performance, many clinical
studies tend to avoid data splitting for model development.
Resampling methods such as bootstrapping and k-fold cross-
validation are economical internal validation, therefore, they are
often applied to prevent model overfitting. On the other hand,
external validation using an independent cohort is not often

performed, potentially due to limited access to similar cohorts,
despite being the most straightforward way to evaluate the
generalizability of the model. Less than 10% of autoimmune
studies combine cross-validation with an independent test dataset
for validating model performance (Stafford et al., 2020).
However, external validation remains a crucial step for model
implementation in real-world clinical practice and the absence of
external validation will raise several concerns for the model
integrity including bias of the model, lack of reproducibility
and lack of model generalizability (Ho et al., 2020). One
example is the publication of GWAS studies that are required
to have at least two independent data sets for validation to assure
a creditable result (Oetting et al., 2017). As external validation
requires data from independent sources, access to publicly
available online datasets from different studies has become a
suitable solution to overcome the lack of independent validation
cohorts (Riley et al., 2016). These online databases provide a great
opportunity to improve the research quality of ML applications in
immune-mediated inflammatory diseases that are often rare
conditions associated with a limited number of datasets
available. They provide options for researchers to validate their
models on more relevant populations, as most current external
validation studies use small local datasets simply because of the
better accessibility.

Model Implementation in Clinical Practice
Transforming a well-performed model into an actual clinical
application associated with improvement in patient outcomes can
be challenging; the term “AI Chasm” describes the discrepancy
between the model development and translation of models to
real-world applications (Keane and Topol, 2018). The clinical
impact of potentially promising ML models requires careful
evaluation before considering implementation in clinical
settings. For example, a wide range of performance metrics
(accuracy, AUC, precision, sensitivity, specificity etc.) (see
Glossary) are applied to represent the predictive efficacy of ML
models in clinical studies. However, most of the metrics do not
directly affirm the clinical applicability and can be difficult to
evaluate with limited interdisciplinary knowledge (Saito and
Rehmsmeier, 2015; Shah et al., 2019). Another common
obstacle for the clinical translatability of ML data arrives
where emerging ML studies that stratify patients with novel
signatures suffer from the lack of effective drugs for the newly
identified targets. Furthermore, the reported predictive model
needs to provide clinically meaningful advantages over traditional
approaches, such as significantly outperform the existing
standard statistical approach in relevant fields (Shah et al.,
2019). To help address these questions, standard practice
guidance is necessary. Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)
guideline is an internationally accepted reporting guideline
developed to improve the reliability and value of prediction
models for diagnostic or prognostic purposes (Moons et al.,
2015). TRIPOD-ML focuses on the standardised methodology
of ML model development (Collins and Moons, 2019), which
together with the interdisciplinary effort from trained experts in
different clinical and technology areas of expertise, can ensure
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that ML applications maximise their chance to translate into
precision medicine approaches associated with patient benefit.

Ethical Concerns
The upsurge of ML applications in personalised medicine has raised
potential ethical concerns regarding data privacy, as a wide range of
big datasets including personal information from genetics data,
demographic data and medication history are stored and used in
various studies. Anonymisation is the most straightforward and
commonway for privacy protection ofmedical datasets by removing
personal data for de-identification purposes. However, advanced re-
identification techniques were developed and used to target the
vulnerability of the anonymisation system by data mining
companies, and data were then exploited by health insurance
companies (Tanner, 2017). Thus, more rigorous data handling
methods such as data decentralisation (storing data in separate
locations) and federated machine learning (training algorithm
across different decentralised local data) are necessary for
institutes and companies dealing with large-scale personal data
(Rieke et al., 2020). From patients and the general public’s
perspective, there is an innate scepticism related to the use of AI
for clinical applications, especially with limited understanding about
howML and personal data are used inmedical research. Face-to-face
communication between specialists and patients is effective in
conveying the scope of ML applications and addressing questions
and concerns in terms of patient satisfaction (Mirzaei and Kashian,
2020). Public education events such as interactive Patient and Public
Involvement and Engagement (PPIE) activities can inform patients
about how AI and ML research can lead to better disease
management and how data are handled within a secured
framework. With a better understanding of ML approaches and
how personal data are stored, used and protected, patients are more
likely to engage with such research.

The phenomenon of ML algorithm-driven discriminating
decisions has been well-observed in other areas of research using
AI, such as racial discrimination in criminal charge facial recognition
technology (Perkowitz, 2021) and gender discrimination in job
recruitment algorithms (Yarger et al., 2019). Algorithm
discrimination is not exempt in the clinical world. For example,
an implemented algorithm in the US healthcare system for future
health care needs prediction is heavily biased against black patients
because of the lack of data on these patients (Obermeyer et al., 2019).
This algorithm-intrinsic bias is inherited from existing inequality in
society as black patients are generally less accessible to the healthcare
system. Another study showed that the predicted hospital mortality
of patients in critical care can vary by up to 20% according to their
ethnic group (Chen et al., 2018). Many inflammatory diseases are
independently associated with demographic variables such as age,
sex and ethnicity. For example, autoimmune diseases are more
frequent in the female population (Gleicher and Barad, 2007),
which sometimes, for practical reasons, promotes research only
within the most represented groups of patients, discriminating
against the under-represented ones. Moreover, model
development is highly data-driven with low tolerance to missing
values in model training, which can also lead to potential bias by not
capturing the real-life patient population of interest. For example,
previous studies showed that vulnerable populations are less likely to

attend the same clinic regularly due to limited access to healthcare,
including diagnostic testing and medicines (Arpey et al., 2017;
Gianfrancesco et al., 2018). Unintentionally excluding these
incomplete datasets will lead to development of models that are
less effective in populations with existing disadvantages. Thus, it is
important for researchers and data scientists representing the
diversity of the human condition to have opportunities to
participate in the decision making and algorithm supervision
process, assessment of the underlying biases associated with AI
and ML and implementation of regulatory adjustments. This will
avoid the development of discriminating decision-aiding algorithms.

The Future of Personalised Medicine
With such challenges evident at every possible step during the
application of ML approaches, the ambition of personalised
medicine to ensure that every individual receives an optimal
treatment decision guided by their disease particularities and
individual risk becomes uncertain. To warrant a future for ML
applications in the clinical field, it is crucial to have universal
procedure guidelines from data collection, data processing to
model training, validation, and implementation (Figure 2). By
ensuring the standardisation of ML applications, research study
design can be optimised to facilitate granular and relevant data
collection, as well as the use of an adequate sample size in relation
to data multidimensionality to minimize the risk of significant
data redundancy which can hamper the relevant patient
identification (Plant and Barton, 2021). In addition,
identification of reproducible biomarkers associated with
response to therapy is one of the key requirements for
personalized medicine approaches and we advocate for the use
of truly independent data sets for validation. Although in theory,
personalized medicine could be advanced by the use of ML
algorithms for individual disease risk identification and
prognostic, as well as therapy selection, its implementation in
large health systems poses the ethical challenges of reconciling
health risk inequalities with finite health care resources and
standardised taxpayer or health insurance contributions (Rose,
2013). Future research should provide answers regarding the
advantages of ML-driven personalised medicine strategies for
long-term outcomes of patients in real-life.

CONCLUSION

The versatility of ML applications allows researchers to tackle
divergent unmet clinical needs of immune-mediated
inflammatory disease with the most effective tools (Figure 1).
Predictive ML models with outstanding biomarker selection
capability are crucial for developing diagnostic and prognostic
approaches with high sensitivity and accuracy, which are
particularly useful in the early stages of the disease, as well as
for the long-term disease management and selection of therapies
at every disease stage. Patient stratification by unsupervised
models and advanced drug development strategies supported
by deep learning providing a more personalised treatment
selection is especially relevant for patients with immune-
mediated chronic inflammatory diseases, because of
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heterogeneity in clinical presentation, evolution and response to
therapy. Despite several challenges which might impede some of
the ML applications in clinical research and practice, the
contribution of AI and ML techniques to personalised
medicine for improved patient care is no doubt revolutionary.
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GLOSSARY

Types of ML

Supervised Learning The type of ML algorithms which generates
predictive models based on labelled training data. Two main types of
supervised learning include classification and regression, capable of predicting
category and continuous output, respectively.

Unsupervised Learning The type of ML algorithms which discovers
underlying data structure based on unlabelled training data. Clustering is the
main type of unsupervised learning.

Reinforcement Learning The type of ML algorithms which
sequentially self-correct from either positive or negative environmental
feedback to maximise the model function.

Deep Learning A subfield of machine learning that applies multiple layers
of non-linear information processing for supervised or unsupervised feature
extraction and transformation, using various neural network frameworks.

Main ML Model

Decision Tree A tree-like predictive model going from observation to
prediction result by repeatedly splitting the data into data subset based on
selected variables. There are two main types of decision tree (classification
tree, regression tree) which serves different purpose (predict category result or
continuous result).

Random Forest An ensemble classifier trained by a large number of
unrelated decision trees. Bagging methods (or bootstrap aggregating) selects
random samples from dataset when training each decision tree, which is
applied in random forest models to improve model stability and accuracy.

Logistic Regression A supervised classifier used to predict the
probability of a binary variable.

Naive Bayes A supervised classifier based on Bayes theorem. Naive Bayes
models assume that the occurrence of a certain feature is independent of the
occurrence of other features.

Support Vector Machine (SVM) A supervised learning model that
builds a hyperplane in a high dimensional space for optimal separation
between two classes, which can be used for classification and regression
purposes.

K-Nearest Neighbours (kNN) A non-parametric classification
algorithm which assigns the class of an unknown observation based on the
class of a number (k) of similar observations in the feature space.

Artificial Neutral Network Algorithms that mimic the neural
networks of the human brain. The artificial neuron (node) in a neural network
processed the received signals and transmit to connected neurons. A neural
network contains layers of interconnected nodes, where signals travel from the
first layer (input layer), through the hidden layers eventually to the last layer
(output layer).

Performance Metrics

Classification Accuracy (CA) The rate of correct classifications
(number of correct predictions divided by the total number of predictions).

Confusion Matrix A 4x4 table showing the performance of a
classificationmodel. Rows represent the occurrences in the predicted class and
columns represent the occurrences in the actual class.

Area Under Curve (AUC) An aggregatedmeasure of performance of a
binary classifier on all possible threshold values.

Precision Performance metrics for specific class.

Fraction of correctly predicted occurrences in a specific
predicted class

True Positive/(True Positive + False Positive).

Recall (Sensitivity) Fraction of correctly predicted occurrences in a
specific actual class

True Positive/(True Positive + False Negative).

F1 Score The harmonic mean of precision and recall.

2 × Precision × Recall/(Precision + Recall).

Gini Importance The average gain of purity (model improvement) by
splits of a given variable. Replacing a more important variables usually cause a
larger decrease in Gini-gain. ML Model such as random forest uses “mean
decrease in Gini importance” to measure the variable importance in
generating the model performance.

Other Terms

Overfitting Problem when a machine learning model fits too well to a
particular dataset, causing it to lose generalization and predictive performance
on other datasets.

Cross-Validation Model validation method designed to estimate the model
performancewhen predicting new data which is not in the originalmodel training,
to avoid problems such as overfitting or selection bias. K-fold cross-validation
randomly partitioning the data into “k” complementary subset. “k-1” portions will
be used in model training and the remaining portion for validation, and process
repeats until all data is used in model training and validation.
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