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Chinese herbal medicines (CHMs) are widely used in Asian countries. They show multiple
pharmacological activities, including antiviral activities. The 5′-long terminal repeat (LTR)
region of HIV-1, required for viral transcription, is a potential drug target for HIV-1
reactivation and intrinsic cell death induction of infected or latently infected cells.
Modulation of HIV-1 reactivation requires interactions between host cell proteins and
viral 5′-LTR elements. By evaluation of two CHMs- Xanthium strumarium and Pueraria
montana, we found that 1) X. strumarium reactivated HIV-1 latently infected cells in J-Lat
8.4, J-Lat 9.2, U1, and ACH-2 cells in vitro; 2) 27 nuclear regulatory proteins were
associated with HIV-1 5′-LTR using deoxyribonucleic acid affinity pull-down and LC-MS/
MS analyses; and 3) among them, silencing of XRCC6 reactivated HIV-1 5′-LTR
transcriptional activity. We found that X. strumarium inhibits the 5′-LTR associated
XRCC6 nuclear regulatory proteins, increases its viral 5′-LTR promoter transcriptional
activity, and reactivates HIV-1 latently infected cells in vitro. These findings may contribute
to understanding the 5′-LTR activity and the host cell nuclear regulatory protein machinery
for reactivating HIV-1 and for future investigations to eradicate and cure HIV-1 infection.
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INTRODUCTION

Highly active antiretroviral therapy (ART) for human
immunodeficiency virus type 1 (HIV-1) infection has
dramatically reduced HIV-1 viral loads and decreased
morbidity and mortality (Granich et al., 2010). However, HIV-
1 patients cannot be cured due to the HIV-1 viral genome
integrated into human genome and become long-lived
memory T cells with provirus as HIV-1 reservoirs (Coiras
et al., 2009; Richman et al., 2009). HIV-1 remains in a latent
state within resting CD4+ T cells (one of the HIV-1 latently
infected cells) even in the presence of HAART (Warren et al.,
2020).

The HIV-1 retroviral genome contains a duplication of the
viral transcriptional control sequences in the 5′- and 3′- long
terminal repeat (LTR) regions (Klaver and Berkhout, 1994;
Roebuck and Saifuddin, 1999). The viral 5′-LTR
transcriptional activity is much higher than the 3′-LTR
transcriptional activity (Klaver and Berkhout, 1994). Latency
reversal agents (LRAs) can demethylate and induce HIV-1 5′-
LTR transcriptional activity (Ishida et al., 2006). These studies
have prompted studies on epigenetic and transcriptional
regulation of the 5′-LTR as a potential drug target for HIV-1
reactivation and intrinsically induce cell death in infected cells
(Baxter et al., 2018; Rao et al., 2021). Studies on LRAs that target
the 5′-LTR have highlighted the potential for eradication and cure
of HIV-1 infection (Chun et al., 1998; Chun et al., 1999; Kulkosky
et al., 2001; Wang et al., 2005; Archin et al., 2009; Kauder et al.,
2009). LRAs may provide a shock and kill strategy for eradicating
HIV/AIDS by stimulating HIV-1 replication and transcription in
HIV-1 latently infected cells.

In Taiwan, Chinese herbal medicines (CHMs) have been
widely used in HIV-1 infected patients (Tsai et al., 2018).
Xanthium strumarium subsp. sibiricum (Patrin ex Widder)
Greuter (X. strumarium) (Family Asteraceae), also called
Cocklebur or Xanthii Fructus, is a CHM. X. strumarium has
multiple pharmacological activities including the antiviral activity
(Guo et al., 2013; Lin et al., 2014; Shi et al., 2015; Amin et al., 2016;
Jiang et al., 2017; Fan et al., 2019; Kim et al., 2019; Xia et al., 2020a;
Xia et al., 2020b; Yuan, 2020). As a traditional Chinese herbal
medicine, Pueraria montana var. lobata (Willd.) Sanjappa and
Pradeep (P. montana) (Family Fabaceae) has antiviral activity
against the human respiratory syncytial virus (HRSV) (Lin
T.-J. et al., 2013). Furthermore, P. montana can effectively inhibit
HIV-1 entry into cells by suppressing viral attachment to the cell
surface (Mediouni et al., 2018). However, there are no studies on
the role of X. strumarium and P. montana in eradicating HIV-1
viral reservoirs.

Evaluating the two CHMs- X. strumarium and P. montana,
we found that X. strumarium reactivated HIV-1 latently
infected cells in vitro. HIV-1 5′-LTR DNA affinity pull-
down coupled with LC-MS/MS analyses identified 27
nuclear regulatory proteins in X. strumarium-treated cells.
Characterization of the HIV-1 5′-LTR promoter activity by
silencing these newly identified nuclear regulatory proteins
was also examined. To our knowledge, this is the first study to
describe X. strumarium exerting a HIV-1 reactivation activity

via a mechanism that modulating the composition of nuclear
regulatory proteins in the 5′-LTR region.

MATERIALS AND METHODS

Cells
J-Lat cell lines (clones 8.4 and 9.2)were clonal Jurkat cells with a latent
HIV-1 provirus, in which the enhanced green fluorescent protein
(EGFP) replaces the nef coding sequence and a frameshift mutation
in the env gene (Jordan et al., 2003). J-Lat cells were monitored for
HIV-1 reactivation by Western blot analysis because EGFP protein
expression levels were controlled by the HIV-1 5′- LTR.

ACH-2 (T cell-derived) and U1 (promonocyte-derived) cell
lines were cells with full-length proviruses, without EGFP
replacing coding sequence [ACH-2 cells: there is a point
mutation in the Tat-responsive element (TAR) (Emiliani et al.,
1996), and U1 cells. There are mutations in Tat (Emiliani et al.,
1998)]. ACH-2 and U1 cells were monitored for HIV-1
reactivation by detecting HIV-1 gene products (e.g., HIV-1
p24 virus capsid protein). J-Lat cells, ACH-2 cells, and U1
cells were grown in RPMI 1640 medium with 10% fetal bovine
serum (FBS) (Gibco), 100 U/mL penicillin (Gibco), 100 U/mL
streptomycin (Gibco), and 2 mM L-glutamine (Gibco).

TZM-bl cells are clonal HeLa cells that stably express large cell
surface receptors, including cluster of differentiation four receptors
(CD4) and C-C chemokine receptor type 5 (CCR5) (Todd et al.,
2012). Moreover, TZM-bl cells were cells with their genome
integrated with copies of the firefly luciferase and beta-
galactosidase genes under the HIV-1 5′-LTR control. TZM-bl cells
were monitored for HIV-1 reactivation by detection of firefly
luciferase activity or beta-galactosidase protein expression levels
under the HIV-1 5′-LTR control. TZM-bl cells were grown in
DMEM with 10% fetal bovine serum (FBS) (Gibco), 100 U/mL
penicillin (Gibco), 100 U/mL streptomycin (Gibco), and
2mM L-glutamine (Gibco). J-Lat, ACH-2, U1, and TZM-bl cells
were obtained from the AIDS Research and Reference Reagent
Program, National Institutes of Health (NIH), United States.

Chinese Herbal Medicine and Related
Marker Compounds
Crude herbal extract powders of the two Chinese herbal medicines
(CHMs)- Xanthium strumarium subsp. sibiricum (Patrin exWidder)
Greuter (X. strumarium) (Family Asteraceae) and Pueraria montana
var. lobata (Willd.) Sanjappa and Pradeep (P. montana) (Family
Fabaceae) were provided by Chuang-Song-Zong Pharmaceutical Co.,
Ltd., one of the good manufacturing process (GMP)- pharmaceutical
manufacturers for CHMs in Taiwan. These preparations have been
described previously (Cheng et al., 2019). Fine and crude herbal
extract powders were prepared by filtering through a 20-mesh metal
sieve, then mixing 1.0 g of powder with 40ml distilled water. After
shaking overnight at 4°C, the mixture was filtered through a 100-
mesh metal sieve. Filtrate (crude water extract) was sterilized using a
0.44 µm syringe filter and used for further evaluation.

X. strumarium and P. montana related marker compounds
(Figure 1) were obtained from commercial pharmaceutical or
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FIGURE 1 | LC-MS/MS analysis of marker compounds and the extracts of X. strumarium and P. montana. (A) Extracted ion chromatogram (EIC) of standards of
chlorogenic acid and 1,3-dicaffeoylquinic acid and their fragmented ions. (B) base peak chromatogram (BPC) and EIC of the X. strumarium extract. (C) EIC of standards
of daidzein, genistein, and ononin and their fragmented ions. (D) BPC and EIC of the P. montana extract.
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chemical companies. Chlorogenic acid (catalog number:
CFN99116; purity: ≥98.0%), daidzein (catalog number:
CFN98774; purity: ≥98.0%), genistein (catalog number:

CFN98681; purity: ≥98.0%), and ononin (catalog number:
CFN99136; purity: ≥98.0%) were purchased from ChemFaces
Biochemical (Wuhan, Hubei, China). 1,3-dicaffeoylquinic acid

FIGURE 1 | (Continued).
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(catalog number: D8196; purity: ≥98.0%) was purchased from
Sigma-Aldrich, Inc. (St. Louis, MO, United States).

Cell Viability Assay
J-Lat cell lines (clones 8.4 and 9.2) and Jurkat cells were cultured
overnight in 96-well plates. Culture medium containing P.
montana (1 mg/ml), P. montana (2 mg/ml), X. strumarium
(1 mg/ml), X. strumarium (2 mg/ml), TNF-alpha (5 ng/ml),
and TNF-alpha (10 ng/ml) were then added and incubated
with cells for additional 24, 48, and 72 h at 37°C
(Supplementary Figure S2). For X. strumarium related
marker compounds, J-Lat cell lines (clones 8.4 and 9.2) were
cultured overnight in 96-well plates. Culture medium containing
chlorogenic acid (10 µM), chlorogenic acid (20 µM), chlorogenic
acid (50 µM), chlorogenic acid (100 µM), 1,3-dicaffeoylquinic
acid (10 µM), 1,3-dicaffeoylquinic acid (20 µM), 1,3-
dicaffeoylquinic acid (50 µM), 1,3-dicaffeoylquinic acid
(100 µM), and X. strumarium (2 mg/ml) were then added and
incubated with cells for additional 48 h at 37°C (Supplementary
Figure S3A–D). For prostratin, J-Lat cell lines (clones 8.4 and
9.2) were cultured overnight in 96-well plates. Culture medium
containing prostratin (0.5 µM), prostratin (1 µM), and prostratin
(5 µM) were then added and incubated with cells for an additional
48 h at 37°C (Supplementary Figure S3E, F).

This was followed by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-
2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay (Roche,
Indianapolis) as described previously (Tsai et al., 2011; Lin Y.-
J. et al., 2013). After treatment, 10 µL ofWST-1 was added to each
well, followed by incubation at 37°C for 1 h. Absorbance at
450 nm was measured against background controls using a 96-
well plate reader. Cell survival rates were calculated as the ratio of
the optical density of treated cells at 450 nm (OD450) to the
OD450 of untreated cells. Four wells were analyzed for each
concentration. The data shown in Supplementary Figures S2, S3
represent the mean ± SD for three independent experiments.

Liquid Chromatography-Tandem Mass
Spectrometry Analysis for Marker
Compounds and the Extracts of X.
Strumarium and P. Montana
A high-performance LC system (Ultimate 3000 LC; Dionex,
Germany) coupled with a quadrupole-time-of-flight MS
(Q-TOF MS) (maXis impact; Bruker, Taiwan Co. Ltd.) was
used with the full scan, DDA and multiple reaction
monitoring (MRM) function (Cheng et al., 2019).

For LC-MS analysis, an Atlantis T3 analytical column (C18,
3 μm, 2.1 × 150mm; Waters, Milford, MA, United States) was used
with a flow rate of 0.2 ml/min and the mobile phases of solvent A
(0.1% formic acid) and solvent B (100% acetonitrile). Three LC
gradient methods, A and B, were used to produce suitable separation
conditions for different compounds. In method A, solvent B was
maintained at 5% for 1min and then increased to 99% for 18 min.
After maintaining this for 2.5 min, solvent B was decreased to 5%
and held at this concentration for 3 min at a flow rate of 0.2 ml/min.
Method A was used to analyze the marker compounds of
chlorogenic acid and 1,3-dicaffeoylquinic acid in X. strumarium

(Figure 1). In method B, the flow rate was 0.25ml/min, and solvent
B wasmaintained at 1% for 3 min, then increased to 99% for 15 min.
After maintaining this concentration for 4 min, solvent B was
decreased to 1% and held at this concentration for 3min. The B
method was used to analyze the marker compounds of daidzein,
genistein, and ononin in P. montana (Figure 1).

The mass spectrometer was operated in negative ion mode for
chlorogenic acid and 1,3-dicaffeoylquinic acid analysis in the m/z
range 50–1,000 at 2 Hz. The capillary voltage of the ion source was set
at -2500V for the negative mode, and the endplate offset was 500V.
The nebulizer gas flowwas 1 bar, and the drying gas flow rate was 6 L/
min. The drying temperature was set to 200°C. For daidzein, genistein,
and ononin, themass spectrometer was operated in positive ionmode
using an m/z range of 50–800 at 2 Hz. The capillary voltage of the ion
source was set at +4500 V, and the endplate offset was 500V. The
nebulizer gas flowwas 1 bar, and the drying gas flow rate was 8 L/min.
The drying temperature was set to 200°C.

Western Blot Analysis
J-Lat cells were incubated with X. strumarium and P. montana (1 or
2mg/ml) for 24 and 48 h, respectively, at 37°C, followed by Western
blot analysis (Figures 2A,B). Cells treated with TNF-alpha (5 and
10 ng/ml) were used as positive controls. The cells were then lysed in
RIPA buffer (catalog number 89900, Pierce, Thermo Fisher Scientific,
Rockford, IL, United States) with a protease inhibitor (complete
EDTA-free protease inhibitor, catalog number 11873580001, Roche
Life Science, Sigma-Aldrich) and a phosphatase inhibitor (catalog
number 88667, Pierce), subjected to 12% sodium dodecyl sulfate
polyacrylamide gel electrophoresis, and then transferred to
polyvinylidene fluoride membranes (Millipore, Billerica, MA,
United States). The membranes were incubated with primary
antibodies overnight at 4°C. The primary antibodies included anti-
GFP (catalog number GTX113617), GeneTex, Inc. (Irvine, CA,
United States), and anti-tubulin (catalog number 11224-1-AP)
antibodies from Proteintech Group Inc. (Rosemont, IL,
United States). Thereafter, the membranes were incubated with
alkaline phosphatase-conjugated secondary antibodies (Sigma-
Aldrich). Signals were visualized using a chemiluminescence kit
(Chemicon), according to the manufacturer’s protocol.

Enzyme-Linked Immunosorbent Assay
For J-Lat 9.2 cells, cells were incubated withX. strumarium (2 mg/
ml) for 48 h (Figure 3A). For U1 cells, cells were incubated with
X. strumarium (0.5, 1, and 2 mg/ml) for 48 h (Figure 3B). For
ACH-2 cells, the cells were incubated with X. strumarium (0.5, 1,
and 2 mg/ml) for 48 h (Figure 3C). Thereafter, the culture
supernatants were collected and detected using a HIV p24
antigen enzyme-linked immunosorbent assay (ELISA) kit
(Zeptometrix) according to the manufacturer’s instructions.

Human Immunodeficiency Virus-1 59-Long
Terminal Repeat DNA-Affinity Extractions
Using Capture Biotin-Tagged Probe
Approach and Cell Nuclear Extracts
The pNL4-3 plasmid contained a HIV-1 5′- LTR fragment
(corresponding to nt 1–789, where nt 1 was the start of the
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5′-LTR U3 region) upstream of the EGFP gene (generously given
by Prof. Chien-Hui Hung, Graduate Institute of Clinical Medical
Sciences (Chiayi Branch) Chang-Gung University). The pNL4-3
plasmid was used as the DNA template for the in vitro
synthesized 621-bp-long DNA fragment of the HIV-1 5′-LTR
(GenBank AF324493.2: nt 1–621) by polymerase chain reaction
(PCR). The following primers were used: forward primer, 5′-/
desBioTEG/TGGAAGGGCTAATTTGGT-3′ and reverse
primer: 5′-/Cy3/CCACACTGACTAAAAGGGTCTG-3′.

J-Lat 9.2 cells were treated with X. strumarium (2 mg/ml) for
24 h. The treated cells were harvested, washed, and resuspended
in ice-cold PBS. Cells were used as negative controls. Thereafter,
the treated cells and cell-only controls were lysed and extracted
using a nuclear extraction kit (NE-PER Nuclear and Cytoplasmic
Extraction Reagents, Thermo Scientific).

The J-Lat 9.2 cell nuclear extracts were pre-incubated with
magnetic beads. Biotin-tagged HIV-1 5′-LTR DNA fragments
were then incubated with J-Lat 9.2 cell nuclear extracts for 4 h

at 4°C (Figure 4A). Biotin-tagged DNA/nuclear protein
complexes were affinity-purified using streptavidin-magnetic
beads. The biotin-tagged DNA/nuclear protein/streptavidin-
magnetic bead complexes were washed with ice-cold PBS.
Nuclear proteins bound to capture biotin-tagged probes
were purified and prepared for LC-MS/MS analysis. All
assays were performed in triplicate in three independent
experiments.

Liquid Chromatography-Tandem Mass
Spectrometry Analysis for Protein
Identification
The purified proteins were identified using a nanoflow UPLC
system (UltiMate 3,000 RSLCnano system, Dionex,
Netherlands) coupled to a quadrupole time-of-flight
(Q-TOF) mass spectrometer (maXis impact, Bruker,
Germany). The peptides were separated using an RP C18
capillary column (25 cm × 75 µm id) at a 300 nL/min flow rate,
and eluted with a linear ACN gradient from 10 to 50% ACN in
0.1% formic acid for 90 min. The eluted peptides from the
capillary column were sprayed into the MS using a captive
spray ion source (Bruker, Germany). Data acquisition from
Q-TOF was performed using Data Analysis software (version
4.1, Bruker, Germany). Proteins were identified by the
nanoLC-MS/MS spectra (Table 1) by searching the
SwissProt database using the MASCOT search algorithm
(version 2.3.02).

Luciferase Activity Under the Human
Immunodeficiency Virus-1 59-Long Terminal
Repeat Control Coupled With siRNA Assay
The TZM-bl cells were transfected with pcDNA HIV-1 viral
tat-flag gene plasmid and siRNAs including siHMGA1,
siNCL, siRBBP4, siYBX1, siIFI16, siNOLC1, siXRCC5,
siXRCC6, siTOP2B, and siSRSF1 for 24 h or 48 h,
respectively (Supplementary Table S2, Figure 4B, and
Figure 4D). siNC was used as a negative control. Scramble
siRNAs (siNC) was transfected into TZM-bl cells. After 24 h
or 48 h of incubation, the transfected cells were lysed using a
cytoplasmic extraction kit (NE-PER Nuclear and
Cytoplasmic Extraction Reagents, Thermo Scientific).
Thereafter, the cell lysates were applied to detect
firefly luciferase activity using the luciferase Assay System
(Promega) according to the manufacturer’s
recommendations. All assays were performed in triplicates
in three independent experiments.

Real-Time Polymerase Chain Reaction
Cellular RNA was isolated using a QIAamp® RNA Mini Kit
according to the manufacturer’s instructions (Qiagen, Valencia,
CA, United States). RNAwas eluted in 60 μL buffer, and real-time
TaqMan RT-PCR assays were used to determine siRNA
knockdown efficiency. The primers used for quantitative PCR
(qPCR) amplification were as follows: HMGA1, forward: 5′-
GAAAAGGACGGCACTGAGAA-3′and reverse: 5′-CTCTTA

FIGURE 2 | Effect of P. montana and X. strumarium on protein
expressions under the control of HIV-1 5′- LTR in J-Lat cells, respectively. (A)
J-Lat 8.4 cells and (B) J-Lat 9.2 cells were treated with herbal extracts for 24
and 48 h, respectively. J-Lat cells only were served as the negative
controls (Lane 1). P. montana treated J-Lat cells were served as the
experimental group (Land 2, P. montana (1 mg/ml); Lane 3, P. montana
(2 mg/ml)). X. strumarium treated J-Lat cells were also served as the
experimental group (Lane 4, X. strumarium (1 mg/ml); Lane 5, X. strumarium
(2 mg/ml)). TNF-alpha (5 and 10 ng/ml) treated J-Lat cells were served as the
positive controls (Lanes 6 and 7). The un-treated and treated cell lysates were
then resolved by SDS-PAGE and Western blot analysis.
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GGTGTTGGCACTTCG-3′; NCL, forward: 5′-CCACTTGTC
CGCTTCACA -3′and reverse: 5′-TCTTGGGGTCACCTTGAT
TT-3′; SRSF1, forward: 5′-GGCGGTCTGAAAACAGAGTG-
3′and reverse: 5′-TTTAAATCCTGCCAACTTCCA-3′; IFI16,
forward: 5′-ACTCCTCAGATGCCACCAAC-3′ and reverse:
5′-TCATTTTGGAGATTGTGTCTTCAC-3′; NOLC1, forward:
5′-ATAAGTTCGCCAAAGCGACA-3′ and reverse: 5′-CTA
AGAGGGAAGAGGCATTGG-3′; RBBP4, forward: 5′-CGG
ATGAACAAAACCATCTTG-3′ and reverse: 5′-CTGAAC
CAAAACCTCCAAATTC-3′; TOP2B, forward: 5′-AGCCTG
GAAAGAAGCACAAG-3′ and reverse: 5′-TCGGAGGAACTA
TCATCATGC-3′; XRCC5, forward: 5′- GAGCCCACTTCAGCG
TCT-3′ and reverse: 5′-CAGCAGGATTCACACTTCCA-3′;
XRCC6, forward: 5′-CCTTTTGACATGAGCATCCA-3′ and
reverse: 5′-AATTTTTGTCTTTCTCGGTACCAT-3′; YBX1,
forward: 5′-GGAGGGTGCTGACAACCA-3′ and reverse: 5′-
GCTGTCTTTGGCGAGGAG-3′; firefly luciferase, forward: 5′-
AGGTCTTCCCGACGATGA-3′ and reverse: 5′-GTCTTTCCG
TGCTCCAAAAC-3′; GFP, forward: 5′-GAAGCGCGATCA
CATGGT-3′ and reverse: 5′-CCATGCCGAGAGTGATCC-3′.

Reverse transcription was performed in a 10 μL reaction
mixture consisting of 2 μL RNA template, 1 μL RT primer
mix, 1 μL dNTP mix (10 mm each), and 6 μL RNA/DNAse-
free water at 65°C for 5 min. Next, a reaction mixture of 4 μL
5 × MMLV buffer, 0.8 μL MMLV enzyme, and 5.2 μL RNA/
DNAse-free water was added to each RNA sample. Reverse
transcription reactions were performed at 42°C for 60 min
cDNA was amplified by PCR in a 20 μL reaction mixture
containing 5 μL cDNA, 10 μL, 2 × Mastermix, 1 μL primer/
probe mix, and 4 μL RNA/DNAse-free water. Real-time
TaqMan RT-PCR conditions were 95°C for 10 min, 50 cycles
of 95°C for 10 s, and 60°C for 60 s. RNA levels were detected using
a 7900HT Fast Real-Time PCR System (Life Technologies,
Carlsbad, CA, United States).

Statistical Analysis
A Student’s t-test was used to compare the differences between
the two groups (Figure 3 and Figure 4). Statistical significance
was set at p < 0.05. A statistical package (SPSS 19.0) was used for
all analyses.

RESULTS

Liquid Chromatography-Tandem Mass
Spectrometry Analysis of X. Strumarium
and P. Montana
To confirm the quality of X. strumarium and P. montana,
their corresponding marker compounds (Mun and Mun,
2015; Yoo et al., 2015) were purchased and identified in
their extracts using LC-MS/MS analysis. Figure 1A, B
show that chlorogenic acid and 1,3-dicaffeoylquinic acid
were identified in X. strumarium based on their retention
time, precursor ions, and fragmented ions. Daidzein,
genistein, and ononin were identified in the extracts of P.
montana (Figure 1C, D).

Effect of X. Strumarium on Protein
Expressions Under the Control of Human
Immunodeficiency Virus-1 59-Long Terminal
Repeat Region in J-Lat Cells
J-Lat cells included J-Lat 8.4 and 9.2 cells (Jordan et al., 2003).
These J-Lat cells contained an EGFP gene under HIV-1 5′-long
terminal repeat (LTR) control, allowing the detection of HIV-1
reactivation. In this study, to evaluate the HIV-1 reactivation
activity for X. strumarium and P. montana, J-Lat cells were used
(Figure 2). Water extracts (1 or 2 mg/ml) of X. strumarium or P.

FIGURE 3 | Effect of X. strumarium on HIV-1 p24 viral protein expressions under the control of HIV-1 5′- LTR in U1 and ACH-2 cells, respectively. (A) J-Lat 9.2 cells
were treated with X. strumarium (2 mg/ml) for 48 h. (B)U1 cells were treated with X. strumariumwithin various concentrations (0, 0.5, 1, and 2 mg/ml) for 48 h. (C) ACH-
2 cells were treated with X. strumarium within various concentrations (0, 0.5, 1, and 2 mg/ml) for 48 h. J-Lat 9.2, U1, or ACH-2 cells only were served as negative
controls. The un-treated and treated cell culture supernatants were then detected by a HIV-1 p24 viral protein ELISA kit.
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FIGURE 4 | Identification ofX. strumarium-associated nuclear regulatory proteins thatwere interactedwith the HIV-1 5′- LTR region of the HIV-1 genome. (A) flowchart
for DNA affinity capture of X. strumarium-associated nuclear regulatory proteins interacting with HIV-1 5′-LTR region (nt 229–455). (B) Relative mRNA expression level (%) of
10 nuclear regulatory genes-HMGA1,NCL,SRSF1, IFI16,NOLC1,RBBP4, TOP2B, XRCC5, XRCC6, and YBX1 in TZM-bl cells with pcDNAHIV-1 viral tat-flag gene plasmid
after transfection with siRNAs for these 10 interest genes, respectively for 24 h. The siRNAs of interest genes included siHMGA1, siNCL, siRBBP4, siYBX1, siUSF2,
siIFI16, siNOLC1, siXRCC5, siXRCC6, siTOP2B, and siSRSF1. The scramble siRNAs were transfected into the TZM-bl cells and served as the negative controls (siNC). After
24 h transfection, the mRNA expression levels of these 10 interest genes were quantified by RT-qPCR method according to the manufacturer’s recommendations.

Continued

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7208218

Chen et al. X. Strumarium in HIV-1 5′-LTR Activity

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


montana were incubated with J-Lat cells for 24 and 48 h,
respectively. TNF-alpha (5 and 10 ng/ml)-treated cells served
as the positive controls. The activation of EGFP protein
expression under HIV-1 5′-LTR control was detected using
SDS-PAGE and Western immunoblotting against anti-EGFP
antibodies (Figure 2).

As shown, for J-Lat 8.4 cells, cells treated with 1 or 2 mg/ml
X. strumarium (Lanes 4 and 5) resulted in significant EGFP
protein expressions in the cell lysates at 24 and 48 h when
compared with the cells only (Lane 1) (Figure 2A). TNF-alpha
(5 and 10 ng/ml)-treated cells served as positive controls

(Lanes 6 and 7). However, cells treated with 1 or 2 mg/ml
P. montana (Lanes 2 and 3) resulted in very low EGFP protein
expression when compared with the cells only (Lane 1)
(Figure 2A). Tubulin is a housekeep gene (Greer et al.,
2010) and is used as an internal control in this study.
Similar reactivation results were also observed in J-Lat 9.2
cells (Figure 2B). Significant levels of EGFP expressions were
also observed in X. strumarium-treated cells (Lanes 4 and 5).
These results suggested that X. strumarium reactivated HIV-1
latently infected cells via inducing EGFP protein expressions
under the HIV-1 5′-LTR control.

FIGURE 4 | (Continued ) (C) Characterization of the firefly luciferase activity under the HIV-1 5′-LTR control by silencing (siRNAs) of NCL, IFI16, NOLC1,
TOP2B, XRCC5, XRCC6, and YBX1, respectively for 24 h. As previously described, TZM-bl cells were transfected with pcDNA HIV-1 viral tat-flag gene
plasmid and siRNAs for interest genes, respectively. After 24 h transfection, the cell lysates were then detected for the luciferase activity using luciferase
Assay System (Promega) according to the manufacturer’s recommendations. (D) Relative mRNA expression level (%) of 10 nuclear regulatory genes-
HMGA1, NCL, SRSF1, IFI16, NOLC1, RBBP4, TOP2B, XRCC5, XRCC6, and YBX1 in TZM-bl cells with pcDNA HIV-1 viral tat-flag gene plasmid after
transfection with siRNAs for these 10 interest genes, respectively for 48 h. As previously described, after 48 h transfection, the mRNA expression levels of
these 10 interest genes were quantified by RT-qPCR method. (E) Characterization of the firefly luciferase activity under the HIV-1 5′-LTR control by silencing
(siRNAs) of NCL, IFI16, TOP2B, XRCC5, XRCC6, and YBX1, respectively for 48 h. As previously described, after 48 h transfection, the cell lysates were then
detected for the luciferase activity using luciferase Assay System (Promega). (F) Relative mRNA expression level (%) of XRCC5 and XRCC6 in TZM-bl cells with
pcDNA HIV-1 viral tat-flag gene plasmid after transfection with siXRCC5, siXRCC6, and siXRCC5+siXRCC6, respectively for 48 h. As previously described,
after 48 h transfection, the mRNA expression levels of XRCC5 and XRCC6 were quantified by RT-qPCR method. (G) Characterization of the firefly luciferase
activity under the HIV-1 5′-LTR control by silencing (siRNAs) for XRCC5, XRCC6, and XRCC5 + XRCC6, respectively for 48 h. As previously described, after
48 h transfection, the firefly luciferase mRNA expression levels were quantified by RT-qPCR method. Data represent means ± SD for three independent
experiments..
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Effect of X. Strumarium on Human
Immunodeficiency Virus-1 Viral p24 Protein
Expressions Under the Control of Human
Immunodeficiency Virus-1 59-Long Terminal
Repeat Region in J-Lat 9.2, U1, and ACH-2
Cells
In this study, to evaluate the effect of X. strumarium on HIV-1
reactivation activity, HIV-1 p24 virus capsid proteins in the cell
culture supernatants were detected in J-Lat 9.2, U1, and ACH-2
cells using enzyme-linked immunosorbent assay (ELISA) analysis
(Figure 3). J-Lat 9.2 cells treated with X. strumarium (2 mg/ml)
resulted in significantly increased HIV-1 p24 virus capsid protein
expressions (900 pg/ml) in the cell culture supernatants at 48 h
when compared with the un-treated cell controls (100 pg/ml)
(Figure 3A).

The U1 cells (promonocyte-derived cell line) and ACH-2 cells
(T cell-derived cell line) were the cells with the full-length HIV-1
proviruses to detect the reactivation of HIV-1 gene products
(Emiliani et al., 1996; Emiliani et al., 1998). U1 cells treated with
X. strumarium (0.5, 1, or 2 mg/ml) resulted in significant
increased HIV-1 p24 virus capsid protein expressions (2,142,
2,215, and 3,252 pg/ml, respectively; p � 0.001 for X. strumarium
(0.5 mg/ml)) in the cell culture supernatants at 48 h when
compared with the un-treated cell controls (1765 pg/ml)
(Figure 3B). ACH-2 cells treated with X. strumarium (0.5, 1,
or 2 mg/ml) also resulted in increased HIV-1 p24 virus capsid
protein expressions (1,135, 1,150, and 1,238 pg/ml, respectively;
p � 0.004 for X. strumarium (0.5 mg/ml)) at 48 h when compared
with the un-treated cell controls (950 pg/ml) (Figure 3C). These
results suggested that X. strumarium reactivated J-Lat 9.2 cells
and another two kinds of HIV-1 latently infected cells by
inducing HIV-1 p24 virus capsid protein expression under the
HIV-1 5′-LTR control.

Identification of X. Strumarium-Associated
Nuclear Regulatory Proteins that Were
Interacted With the Human
Immunodeficiency Virus-1 59- Long
Terminal Repeat Region of the Human
Immunodeficiency Virus Type 1 Genome
Our results showed that X. strumarium exhibited HIV-1
reactivation activity, which was controlled by HIV-1 5′-LTR.
HIV-1 5′- LTR-associated nuclear regulatory proteins may be
involved in HIV-1 reactivation. To identify nuclear regulatory
proteins affected by X. strumarium, J-Lat 9.2 cells were treated
with or without X. strumarium. The cell nuclear extracts then
interacted with the biotin-labeled HIV-1 5′- LTR DNA fragments
(Figure 4A). The streptavidin-magnetic bead pull-down assay
was then used to capture the nuclear regulatory proteins
associated with HIV-1 5′- LTR. LC-MS/MS analysis was then
applied to identify nuclear regulatory proteins.

The nuclear regulatory proteins identified are listed in Table 1.
For the increased nuclear regulatory proteins after X. strumarium
treatment, there were 27 nuclear regulatory proteins associated

with the HIV-1 5′-LTR region (Table 1). These included
HMGA1, ILF2, NCL, SRSF1, SRSF3, SUB1, CHAF1B, CBX3,
H2AC1, H3F3, IFI16, NFYB, NFYC, NOLC1, PSIP1, RBBP4,
RCC2, TCF7, TFAP4, TFCP2, TOP2B, UBP1, USF1, USF2,
XRCC5, XRCC6, and YBX1. Thereafter, these 27 nuclear
regulatory proteins were subjected to Ingenuity Upstream
Regulator Analysis using Ingenuity Pathway Analysis (IPA) to
identify potential mechanistic upstream regulator signal
transduction. As shown in Supplementary Table S1, there
were 10 of the 27 nuclear regulatory proteins associated with
upstream regulators, including MAX, MYC, NFKBIA, and E2F1.
These 10 nuclear regulatory proteins included HMGA1, NCL,
SRSF1, IFI16, NOLC1, RBBP4, TOP2B, XRCC5, XRCC6,
and YBX1.

To investigate the role of these 10 identified nuclear
regulatory proteins in HIV-1 reactivation activity under the
control of the HIV-1 5′-LTR region, the TZM-bl cells
transfected with pcDNA HIV-1 viral tat-flag gene plasmid
and siRNAs for the 10 genes of interest were used in this
study after 24 and 48 h transfection, respectively (Figures
4B,D). As shown in Figure 4B, after 24 h of transfection,
silencing of NCL, IFI16, NOLC1, TOP2B, XRCC5, XRCC6,
and YBX1, respectively, effectively inhibited their mRNA
expression levels when compared with the siNC controls
(siNC: 100%; siNCL: 40%; siIFI16: 25%; siNOLC1: 50%;
siTOP2B: 35%; siXRCC5: 50%; siXRCC6: 50%; and siYBX1:
70%). There were no significant differences in HMGA1, SRSF1,
and RBBP4 mRNA expression between siRNA-treated and
siNC-treated cells (Figure 4B). Cells transfected with siNCL,
siIFI16, siNOLC1, siTOP2B, siXRCC5, siXRCC6, and siYBX1
were then detected for firefly luciferase activity at 24 h after
transfection (Figure 4C). As shown in Figure 4C, cells
transfected with siNCL, siIFI16, siXRCC5, and siXRCC6,
respectively, resulted in increased luciferase activity at 24 h
under the control of HIV-1 5′-LTR region when compared
with the siNC transfected cells (siNC: 100%; siNCL: 140%;
siIFI16: 140%; siXRCC5: 170%; and siXRCC6: 170%).

As shown in Figure 4D, after 48 h transfection, silencing of
NCL, IFI16, TOP2B, XRCC5, XRCC6, and YBX1, respectively,
effectively inhibited their mRNA expression levels when
compared with the siNC controls (siNC: 100%; siNCL: 75%;
siIFI16: 40%; siTOP2B: 50%; siXRCC5: 50%; siXRCC6: 55%; and
siYBX1: 80%). There were no significant differences in HMGA1,
SRSF1, NOLC1, and RBBP4 mRNA expression between siRNA-
treated and siNC-treated cells (Figure 4D). Cells transfected with
siNCL, siIFI16, siTOP2B, siXRCC5, siXRCC6, and siYBX1 were
then detected for firefly luciferase activity at 48 h after
transfection (Figure 4E). As shown in Figure 4E, cells
transfected with siXRCC5 and siXRCC6, respectively, showed
increased luciferase activity at 48 h under the control of the HIV-
1 5′-LTR region when compared with the siNC transfected cells
(siNC: 100%; siXRCC5: 155%; and siXRCC6: 160%). The 24 and
48 h siRNA transfection results indicated that silencing of XRCC5
and XRCC6 resulted in increased luciferase activity, suggesting
that XRCC5 and XRCC6 may play roles in the reactivation
activity under the HIV-1 5′-LTR control.
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To investigate the effect of XRCC5 and XRCC6 in mRNA level
on HIV-1 reactivation activity in the HIV-1 5′-LTR region, TZM-
bl cells transfected with pcDNAHIV-1 viral tat-flag gene plasmid
and siXRCC5, siXRCC6, and siXRCC5 + siXRCC6 were used
after 48 h transfection (Figures 4F,G). As shown in Figure 4F,
after 48 h transfection, silencing (siRNAs) of XRCC5 and XRCC6,
respectively, effectively inhibited their mRNA expression levels
when compared with the siNC controls (siNC: 100%; siXRCC5:
10%; and siXRCC6: 10%). Cells transfected with siXRCC6 and
siXRCC5 + siXRCC6, respectively, resulted in increased mRNA
levels of the firefly luciferase gene when compared with the siNC
transfected cells at 48 h after transfection (siNC: 100%; siXRCC6:
175%; and siXRCC5 + siXRCC6: 150%; Figure 4G) (p � 0.021 for
siXRCC6; p � 0.041 for siXRCC5 + XRCC6).

To investigate the relationship betweenX. strumarium and the 2
nuclear regulatory proteins- XRCC5 and XRCC6, J-Lat 8.4 cells
were treated with X. strumarium (2 mg/ml) for 48 h
(Supplementary Figure S1). The mRNA levels of GFP, XRCC5,
and XRCC6 were quantified by RT-qPCR. As shown in
Supplementary Figure S1A, after 48 h treatment, X.
strumarium (2 mg/ml) reactivated the GFP mRNA expressions
to 35,000% when compared with the untreated cells (J-Lat 8.4 cells
only: 100%). As shown in Supplementary Figure S1B, after 48 h of
treatment, there were no significant differences in XRCC5 mRNA
expression between the untreated and treated cells. As shown in
Supplementary Figure S1C, after 48 h of treatment, XRCC6
mRNA expression was reduced to 10% in the X. strumarium
(2 mg/ml)-treated cells when compared with the untreated cells
(J-Lat 8.4 cells only: 100%). These results suggest that X.
strumarium may reduce XRCC6 mRNA expression. Silencing of
5′-LTR associated XRCC6 nuclear regulatory protein may
reactivate latent HIV-1 infected cells in vitro.

DISCUSSION

Chinese herbalmedicines (CHMs) exhibit multiple pharmacological
properties. Chinese herbal medicines (CHMs) have been widely
used in Taiwan, including in HIV-1 infected patients (Tsai et al.,
2018). This study found that X. strumarium reactivated three HIV-1
latent cell models. Our deoxyribonucleic acid (DNA) affinity pull-
down assay identified 27 nuclear regulatory proteins were associated
with HIV-1 5′-LTR region in X. strumarium treated cells. In
addition, silencing of the XRCC6 nuclear regulatory protein
reactivated HIV-1 5′-LTR promoter activity.

We first found that X. strumarium reactivated the HIV-1 5′-
LTR driven transcription of the GFP reporter gene in J-Lat 8.4 and
J-Lat 9.2 cells. In addition, X. strumarium exhibited the activation
activity of the HIV-1 5′-LTR-driven protein expressions in J-Lat
9.2, U1, and ACH-2 cells by inducing HIV-1 viral p24 protein
expressions. No similar studies have reported that X. strumarium
can reactivate HIV-1 latently infected cells. Cary et al. showed that
Euphorbia kansui, a CHM, can effectively activate CD4+ T cells and
reactivate HIV-1 from latency, particularly when combined with
HDACi (SAHA) or BETi (JQ1) (Cary et al., 2016). EK-16A, an
ingenol derivative isolated from Euphorbia kansui, has been
demonstrated to be 200-fold more potent than prostratin in

reactivating latent HIV-1. Some natural compounds can be used
with prostratin to activate HIV-1 5′-LTR, such as calcineurin and
quercetin. Calcineurin enhances the non-tumor-promoting nuclear
factor-kappaB (NF-κB) inducer prostratin and stimulates the latent
HIV reservoir (Chan et al., 2013). A combination of quercetin and
prostratin reactivates latent HIV-1 gene expression (Yang et al.,
2018). This study observed that X. strumarium reactivated HIV-1
latently infected cells in vitro. Further studies in isolating active
compounds from X. strumarium should be performed.

Our results showed that deoxyribonucleic acid (DNA) affinity
pull-down assay identified 27 nuclear regulatory proteins associated
with the HIV-1 5′-LTR region from the X. strumarium-treated
nuclear extracts. We also found that X. strumarium may reduce
XRCC6 expressions in the mRNA level (Supplementary Figure
S1). The reactivation activity by silencing X-ray repair cross-
complementing 6 (XRCC6) reactivated protein expression under
the control of the HIV-1 5′-LTR region. The HIV-1 5′-LTR
contains many binding sites for cellular transcription factors for
transcriptional regulation (Perkins et al., 1993; Perkins et al., 1994;
El Kharroubi et al., 1998; Scalabrin et al., 2017; Wang et al., 2019;
Ait Ammar et al., 2021). These HIV-1 5′-LTR interacting protein
observations may offer therapeutic approaches for triggering the
switch from latency to active replication, thereby eliminatingHIV-1
latent infection (Vemula et al., 2015).

Our study showed that the reactivation activity of the HIV-1 5′-
LTR region was silenced by X-ray repair cross-complementing 6
(XRCC6). Ku is a dimeric protein complex that binds to DNA
double-strand break ends and is required for the non-homologous
end joining (NHEJ) pathway of DNA repair. The Ku heterodimer
acts as a transcription repressor and regulates transcription from
the HIV-1 promoter (Jeanson and Mouscadet, 2002; Shadrina
et al., 2016). Ku70 (X-ray repair cross-complementing 6, XRCC6)
and Ku80 (X-ray repair cross-complementing 5, XRCC5) are two
subunits of humanKu proteins encoded by theXRCC6 andXRCC5
genes, respectively. The XRCC5 and XRCC6 dimers act as
regulatory factors of DNA-dependent protein kinase (DNA-PK)
by increasing the affinity of the catalytic subunit PRKDC to DNA
by 100-fold. The XRCC5 and XRCC6 dimers are involved in
stabilizing the broken DNA ends and bringing them together.
The XRCC5 and XRCC6 dimers, together with APEX1, act as
negative regulators of transcription.

To our knowledge, this study is the first to demonstrate that X.
strumarium may modulate the composition of these 5′-LTR
associated nuclear regulatory proteins, affect 5′-LTR promoter
activity, and reactivate HIV-1 latently infected cells in vitro. We
identified 27 nuclear regulatory proteins associated with the HIV-1
5′-LTR region in X. strumarium-treated cells. Silencing of XRCC6
reactivates HIV-1 5′-LTR transcriptional activity. A limitation of
this study was the lack of the use of primary human cells and
isolation of active compounds from X. strumarium. However, with
the use of current cell lines, we observed that X. strumarium
reactivated HIV-1 in vitro. Future studies on primary human cells
and isolation of active compounds from X. strumarium will be
conducted. These findings may contribute to understanding the
viral 5′-LTR promoter activity and the mechanism by which drug-
induced host cell nuclear regulatory proteins reactivate HIV-1 and
for future investigations to eradicate and cure HIV-1 infection.
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