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Mechanical ventilation is an indispensable life-support treatment for acute respiratory
failure in critically ill patients, which is generally believed to involve uncontrolled
inflammatory responses. Oxytocin (OT) has been reported to be effective in animal
models of acute lung injury. However, it is not clear whether Oxytocin has a protective
effect on ventilator-induced lung injury (VILI). Therefore, in this study, we aimed to
determine whether OT can attenuate VILI and explore the possible mechanism of this
protection. To this end, a mouse VILI model was employed. Mice were pretreated with OT
30min before the intraperitoneal injection of saline or nigericin and ventilation for 4 h, after
which they were euthanized. Pathological changes, lung wet/dry (W/D) weight ratio,
myeloperoxidase (MPO) activity, the levels of inflammatory cytokines [i.e., interleukin
(IL)-1β, IL-6, and IL-18] in lung tissues and bronchoalveolar lavage fluid (BALF), and
expression of NLRP3, Toll-like receptor 4 (TLR4), caspase-1, nuclear factor (NF)-κB, and
GSDMD in lung tissues were measured. OT treatment could reduce pathological injury, the
W/D ratio, and MPO activity in VILI mice. Our data also indicated that OT administration
alleviated the expression of TLR4/My-D88 and the activation of NF-κB, NLRP3, and
caspase-1 in lung tissues from the VILI mice model. Furthermore, OT also decreased the
levels of IL-1β, IL-6, and IL-18 in the bronchoalveolar lavage fluid. Moreover, the OT
administration may alleviate the activation of GSDMD partially through its effects on the
NLRP3-mediated pathway. Collectively, OT exerted a beneficial effect on VILI by
downregulating TLR4-and NLRP3-mediated inflammatory pathways.
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1 INTRODUCTION

Mechanical ventilation (MV), as an essential life-support treatment
for the acute respiratory failure in critically ill patients (Goligher et al.,
2015; Lee et al., 2020), may lead to local and systemic inflammatory
responses due to lung over-distension, which may cause the
occurrence and development of ventilator-induced lung injury
(VILI) (Slutsky and Ranieri, 2013). Uncontrolled inflammatory
responses are generally presumed to play critical roles in VILI
(Cressoni et al., 2016). Despite low tidal volumes and
maintenance of positive-end expiratory pressure, there is still high
mortality in critically ill patients (Park et al., 2015). Thus, studies
exploring effective treatments for VILI are essential.

Toll-like receptor 4 (TLR4) primarily was thought to be the sensor
of pathogen-associated molecular patterns (PAMPs) (Takeuchi et al.,
1999) that acted by activating nuclear factor kappa-light-chain-
enhancer in activated B cells (NF-κB) and inducing the release of
inflammatory chemokines and cytokines (Hu et al., 2010; Guijarro-
Muñoz et al., 2014; Hongli et al., 2018). The NLRP3 inflammasome,
which is aNOD-like receptor located in the cytoplasm, It is composed
of apoptosis-related speckle-like protein (ASC), caspase-1, and
NLRP3.

Oxidative stress was recently shown to activate the NLRP3
inflammatory corpuscles and caspase-1, which causes pyroptosis
(Wu et al., 2018). In recent years, functions of other inflammatory
caspases and gasdermin D (GSDMD), which is the critical substrate
and the direct mediator of pyroptosis, have been discovered to
provide insights into the mechanism of pyroptosis (Pandeya et al.,
2019; Xia 2020). Moreover, active caspase-1 plays an essential role in
cleaving GSDMD, a member of the gasdermin family, to induce
pyroptosis (Yang et al., 2016; Wu et al., 2018). In addition, GSDMD,
as a family of pore-forming proteins involved in the immune
response, has been recently described as participating in the
immune regulation in various inflammatory disease models,
including inflammatory bowel disease (IBD), sepsis, and
autoimmune diseases (Toldo et al., 2015). However, researchers
have not examined whether inflammasome-activated GSDMD
contributed to the progression of VILI-induced inflammation.
GSDMD was identified by two independent screening approaches
as a critical effector of pyroptosis (Man and Kanneganti 2015; Toldo
et al., 2015; He et al., 2016).

Oxytocin (OT), a 9-amino acid neuropeptide, is synthesized in
a limited number of discrete brain regions, including the
supraoptic, paraventricular (PVN), and accessory nuclei of the
hypothalamus (Althammer and Grinevich, 2017). In addition to
its typical effects, OT was recently shown to play a role in the
respiratory system as well, and evidence showed that asthma
worsened in approximately 30% of pregnant women (Chanez
et al., 2007; Almqvist et al., 2008). In pathological conditions, the
anti-inflammatory properties of OT have attracted severe
concern. In addition, in response to inflammatory stimuli,
macrophage OT receptor (OTR) expression is dramatically
upregulated, suggesting that OTR may contribute to OT’s
anti-inflammatory effect (Szeto et al., 2017). Meanwhile, L-
368,899, a selective antagonist of the oxytocin receptor, could
weaken OT’s effects. As shown in our previous study, OT reduced
lipopolysaccharide (LPS)-induced injury in the lungs, and the

levels of NLRP3 inflammatory factors, TLR4, IL-1β, IL-18, and
IL-6, the effects of OT could be weakened by pretreatment with L-
368,899 (An et al., 2019). Moreover, nigericin, the NLRP3
activator, was applied to further explain the potential anti-
inflammatory mechanism of OT (Humayun et al., 2019).
However, it is not clear whether OT can exert protective anti-
inflammatory effect during MV.

The present study aimed to explore OT’s possible effect on
VILI and identify the underlying molecular mechanisms. Our
present study found that OT protected against VILI through
NLRP3 pathways (Figure 1).

2 MATERIALS AND METHODS

2.1 Animals
Male C57BL/6 mice, ages 6–8 weeks and weighting approximately
20–22 g were obtained from the Center of Experimental Animal at
the Shandong University (Jinan, China). The mice were housed in
specific conditions, with laboratory temperature (approximately
22–27°C) and relative humidity (40–60%) on a 12 dark/12 h light
cycle, and received unlimited access to food and water. All
experimental animal protocols were approved by Experimental
Animals of Shandong University.

2.2 Animal Model of VILI and Experimental
Design
2.2.1 Part One
Male C57BL/6 mice were randomly divided into five groups and
all drugs were administered intraperitoneally (ip): 1) Control
group [90 min saline +30 min saline + MV (7 ml/kg, 120 breaths/
min)]; 2) OT group [90 min saline +30 min OT (0.1 mg/kg)]+
MV (7 ml/kg, 120 breaths/min); 3) VILI group [90 min saline
+30 min saline + MV (28 ml/kg, 60 breaths/min)]; 4) OT + VILI
group [90 min saline +30 min OT (0.1 mg/kg) + MV (28 ml/kg,

FIGURE 1 | Oxytocin protects against ventilation-induced lung injury
through NLRP3- mediated inflammatory pathways.
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60 breaths/min)]; 5) L-368,899 + OT + VILI group [90 min L-
368,899 (5 mg/kg) + 30 min OT (0.1 mg/kg) + MV (28 ml/kg,
60 breaths/min)] following the experimental procedure as
outlined below:

2.2.2 Part Two
Male C57BL/6 mice were randomly divided into four groups and
all drugs were administered ip: 1) Control group [30 min normal
saline + MV (7 ml/kg, 120 breaths/min)]; 2) VILI group [30 min
normal saline +30 min MV (28 ml/kg, 60 breaths/min)]; 3) OT +
VILI group [30 min OT (0.1 mg/kg) + MV (28 ml/kg, 60 breaths/
min)], and 4) OT + nigericin + VILI group [30 min OT
(0.1 mg/kg) + nigericin (5 mg/kg) + MV (28 ml/kg, 60 breaths/
min)] following the experimental procedure as shown below:

All mice were anesthetized with an ip injection of 50 mg/kg
sodium pentobarbital (Duque-Wilckens et al., 2018; An et al.,
2019). After 4 h of ventilation treatment, all mice were
sacrificed, and lung tissues and BALF were collected for
further analysis.

2.3 Hematoxylin and Eosin Staining and
Histopathological Assessment
The right upper lung lobe was collected, fixed with 4%
paraformaldehyde, then sectioned and stained with
hematoxylin and eosin (HE). The degree of lung inflammation
in the alveolar tissue was assessed by two researchers who were
blinded to the information concerning specimens using an optical
microscope and assigning scores. Each tissue received the
following scores based on the damage level: 0: normal tissue;
1: slight damage; 2: moderate damage; 3: severe damage; and 4:
maximal damage (Vaschetto et al., 2008).

2.4 Measurement of Lung Wet/Dry Weight
Ratio, Protein Concentrations, and MPO
Activity in BALF
After 4 h of ventilation treatment, the lungs were lavaged with
0.3 ml PBS by tracheal intubation and pumped back after 3 s. The
same operation was repeated three times in a total volume of
0.9 ml PBS, and the recovery rate was 90%. The lungs were blotted
dry with filter paper, weighed to obtain the wet weight, and then
were dried in an oven at 65°C for 48 h to obtain the dry weight.
The lung wet/dry (W/D) ratio was calculated. Protein
concentrations were determined using the BCA protein assay
(ComWin Biotech, China). myeloperoxidase (MPO) activity, an
indicator of the neutrophils and macrophages infiltration, was
determined using test kits obtained from Nanjing Jiancheng
Bioengineering Institute, China. The enzymatic activity was
assessed by measuring the changes in the absorbance at
450 nm using a Varioskan Flash multifunction plate reader
(Thermo Scientific, IL, United States).

2.5 Real-Time RT-PCR Analysis
The relative expression of different inflammation cytokines was
measured using RT-qPCR. The total RNAs from fresh lung
tissues were isolated using RNA Simple Total RNA kits (Aidlab

Biotech, China), and then reverse transcription (RT) was performed
on cDNA with Reverse Transcription Kit (Takara, Japan).
Subsequently, qPCR was performed with the SYBR Green PCR
Kit (Toyobo, Japan) and the Bioer Real-Time qPCR System
(Bioer Technology, China). The 10-µl reaction system is
comprised according to the report. The sequences of the specific
primers BeijingGenomics Institute (Beijing, China) used in this study
for quantitative real-time PCR are shown in Table 1. The expression
levels of target mRNAs were normalized to actin.

2.6 Measurement of Cytokine Levels in
BALF
The levels of IL-1β, IL-6, and IL-18 in BALF were measured using
mouse inflammatory cytokines ELISA kits (Wuhan Boster
Biological Technology, China).

2.7 Western Blotting
Lung tissues were homogenized in the 4°C RIPA buffer (Beyotime
Institute of Biotechnology, Shanghai, China) to obtain total
protein. The protein concentration was determined using a
BCA kit (ComWin Biotech, China). Subsequently, the protein
samples were loaded and electrophoresed on SDS-polyacrylamide
gels and were transferred onto membranes (Millipore, MA,
United States). The membranes were blocked with a blocking
solution (5% skim milk) for 1 h at room temperature and
incubated with the following primary antibodies overnight at
°C: anti-NLRP3 (dilution 1:1,000, Abcam 263899), anti-Caspase-
1 (dilution 1:1,000, Abcam 108362), anti-TLR4 (dilution 1:1,000,
Abcam 22048), anti-My-D88 (dilution 1:1,000, Abcam 2064),
anti-NF-κB (dilution 1:1,000, Cell Signaling Technology 8242),
anti-IL-1β (dilution 1:1,000, Abcam 9722), anti-IL-6 (dilution 1:
1,000, Abcam 233706), anti-GSDMD (dilution 1:1,000,
ab219800) and anti-β actin (dilution 1:4,000, Proteintech
Group). The next day, all membranes were incubated with a
secondary antibody conjugated to horseradish peroxidase at
room temperature for 1 h. Finally, the membranes were
imaged using enhanced chemiluminescence (ComWin Biotech,
China) using a Bio-Rad ChemiDoc gel system.

2.8 Immunohistochemistry
The primary antibodies were anti-NLRP3 (Abcam 269899), and a
VECTASTAIN Universal Quick Kit was also used. Secondary
antibodies were Ready-to-Use Kit (Vector Laboratories, CA,
United States). After being stained with 3, 3-diaminobenzidine (DAB),
lung tissues were observed under a Nikon Eclipse 80i light microscope.
We used ImageJ software to quantify intensities in all images.

2.9 Statistical Analysis
Data with normal distribution are expressed as mean ± standard
deviation of the mean and the difference was evaluated using one-
way ANOVA for statistical analysis among groups. Student’s
t-test was performed for paired samples. For data that were not
normally distributed, multiple comparisons were carried out
using Kruskal-Wallis test. SPSS version 20.0 for Windows;
SPSS Inc. Chicago, IL, United States) was used for analysis.
p < 0.05 were considered statistically.
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3 RESULTS

3.1 The Protective Effect of OT on VILI
3.1.1 OT Reduces Histopathological Lung Injury in the
Mouse VILI Model
We assessed pathological changes to evaluate the protective and
anti-inflammatory effects of OT on VILI using HE staining. As

shown in Figure 2, the Control group and Control + OT group
exhibited an approximately typical structure (Figures 2A,B). The
VILI group (Figure 2C) showed increased congestion,
inflammatory cell infiltration, and degeneration in the lung.
However, OT attenuated VILI-related pathological changes
(Figure 2D). Furthermore, we presented histological lung
injury scores in Figure 2F.

TABLE 1 | Primer sequences were used to detect the ASC, IL-1β, IL-6, NLRP3, GSDMD, IL-18, and Caspase-1 mRNAs with RT-qPCR.

Name F (59-39) R (59-39)

ASC GTCTTAGGGGCGGAAACCAA CCGCGGTCACCTTTTACTCT
IL-1β TGCCACCTTTTGACAGTGATG TGTGCTGCTGCGAGATTTGA
IL-6 GTCCTTCCTACCCCAATTTCCA TAACGCACTAGGTTTGCCGA
NLRP3 CTCGTCACCATGGGTTCTGGT AACGGACACTCGTCATCTTCA
GSDMD GATCAAGGAGGTAAGCGGCA CACTCCGGTTCTGGTTCTGG
IL-18 GCAGTGGTTTTCAGCTGGG CACACCACAGGGGAGAAGTG
Caspase-1 GGACCCTCAAGTTTTGCCCT AACTTGAGCTCCAACCCTCG

FIGURE 2 | Oxytocin attenuates ventilation-induced lung injury-related pathological changes in the mouse model. Pathological changes in mouse lung tissues are
observed using HE staining by light microscopymagnification ×200. (A)Control group. (B)Control + OT group. (C) VILI group. (D)OT + VILI group. (E) L-368,899 +OT +
VILI group. (F) The lung histopathological scores are presented. The data are presented as themeans ± SD (n � 5). ***p < 0.001 compared with the Control and Control +
OT groups, ###p < 0.001 compared with the VILI group, and +++p < 0.001 compared with the OT + VILI group. OT, oxytocin; SD, standard deviation; VILI,
ventilation-induced lung injury.
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3.1.2 OT Decreases the Lung W/D Ratio, Reduces
Protein Concentration, and Inhibits MPO Activity in
BALF
We used W/D ratios to evaluate the pulmonary edema.
Compared with the standard control, the W/D ratio of VILI
mice was higher (Figure 3A). However, OT decreased the W/D
ratio in lung tissues compared with that in the VILI group
(Figure 3A). Moreover, OT reduced protein concentration in
BALF of lung compared with that in the VILI group (Table 2).
Meanwhile, the MPO activity in lung tissues of the VILI group
was higher than that in the control group. However, compared
with the VILI group, OT decreased MPO activity (Figure 3B).

3.1.3 OT Decreases Production of Cytokines in Lung
Tissue and BALF From the Mouse VILI Model
Inflammation is considered the primary response to injuries or
infections. However, uncontrolled inflammatory repertoire may
also lead to lung tissue damage (Morton et al., 2012; Szeto et al.,
2017). We measured the levels of IL-1β, IL-6, and IL-18 in lung
tissue and BALF using qPCR and ELISA to evaluate whether OT
treatment decreased the inflammatory response in the mouse
VILI model. As shown in Figure 4, the expression of IL-1β, IL-6,
and IL-18 in lung tissue was increased in the VILI group

compared with the control group (p < 0.05). However, OT
decreased the levels of IL-1β, IL-6, and IL-18 in lung tissues
compared with the VILI group.

3.1.4 OT Reduces OTR Expression in the Lung Tissues
of the Mouse VILI Model
In this study, we analyzed OTR expression to investigate the
underlying mechanism of OT. As shown in Figure 5, the
expression of the OTR protein in the VILI group was
increased compared with that in the control group. However,
compared with the VILI group, OT reduced the expression of the
OTR protein in the OT + VILI group.

3.1.5 OT Administration Inhibits TLR4/My-D88/NF-κB
Activation in the Mouse VILI Model
Next, we used western blotting to investigate the TLR4/My-D88/
NF-κB pathway activation after VILI by determining protein
levels (Figure 6). Compared with the control and control + OT
groups, TLR4 levels were increased in the VILI group (Figure 6).
Meanwhile, compared with those in the VILI model group, OT
inhibited TLR4, My-D88, and NF-κB expression.

3.1.6 OT Administration Inhibits NLRP3/Caspase-1
Expression in the VILI Mouse Model
In this study, we used western blotting to investigate the
expression of NLRP3/caspase-1. As shown in Figure 7,
compared with the control group and the control + OT group,
MV increased NLRP3 and caspase-1 proteins expression (p <
0.05). However, compared with the VILI group, OT decreased the
expression of these proteins (Figure 7).

3.1.7 L-368,899, an Antagonist of the Oxytocin
Receptor, Could Weaken the OT’s Effects
As shown in Figure 2E, compared with the OT + VILI group, we
found that L-368,899 could aggravate histopathological changes
in the lungs. Moreover, L-368,899 administration increased the
W/D ratio andMPO activity compared with the OT +VILI group

FIGURE 3 |Oxytocin attenuated the lung wet/dry ratio and myeloperoxidase activity.Effects of OT on the lung W/D ratio (A) and MPO activity (B) are presented as
the means ± SD. *p < 0.05, **p < 0.01 compared with the Control and Control + OT groups; #p < 0.05 and ##p < 0.01 compared with the VILI group. +p < 0.05 and ++p <
0.01 compared with the OT + VILI group (n � 5). MPO, myeloperoxidase; OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung injury.

TABLE 2 | Effects of Oxytocin on protein permeability in BALF.

Group Protein
(mg/ml) in BALF

control 0.475 ± 0.013
control + OT 0.390 ± 0.010
VILI 0.808 ± 0.007**
OT + VILI 0.576 ± 0.009##

L-368899 + OT + VILI 0.703 ± 0.021++

Data are presented as the means ± standard deviations. **p < 0.01 compared with the
Control and Control + OT groups; ##p < 0.01 compared with the VILI group. ++p < 0.01
compared with the OT + VILI group.
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(Figures 3A,B). Furthermore, L-368,899 increased inflammatory
cytokine levels compared with the OT + VILI group (Figure 4).
Compared with the OT + VILI group, L-368,899 administration
increased the expression of the OTR, TLR4/My-D88/NF-κB and
NLRP3/caspase-1 (Figures 5−7).

3.2 Nigericin has Potentially Partial Effect on
OT’s Anti-Inflammation
3.2.1 Effects of OT on the Expression of NLRP3,
Caspase-1, IL-1β, and GSDMD in Lung Tissues of VILI
Mice Treated With and Without Nigericin
Immunohistochemistry and western blotting with antibodies
against NLRP3, caspase-1, IL-1β, and GSDMD were
performed to determine whether NLRP3-mediated pyroptosis
in response to OT. As shown in Figures 8A,B, elevated NLRP3
levels were observed in the mouse VILI model; OT (0.1 mg/kg)
treatment decreased the expression of NLRP3, caspase-1, IL-1β,
and GSDMD proteins in the mouse VILI model. However,
compared with the OT treatment alone or control group, the
OT plus nigericin treatment increased the expression levels of
NLRP3, caspase-1, IL-1β, and GSDMD in VILI mice. In addition,
GSDMD is the critical substrate and the direct executioner of

pyroptosis. Therefore, our results indicate that the anti-
pyroptosis effect of OT could be partially mediated through
the activation of NLRP3.

3.2.2 OT Reduces Inflammatory Cytokine Gene
Expression in Lung Tissues of VILI Mice
We use real-time quantitative PCR (qPCR) to determine cytokine
expression in the lung tissues. Higher levels of NLRP3, IL-18, IL-
6, ASC, IL-1β, GSDMD, and caspase-1 mRNAs were detected in
the VILI group than in the control group (Figure 9). However,
OT administration alleviated the levels of the NLRP3, ASC, IL-18,
IL-6, IL-1β, GSDMD, and Caspase-1 mRNAs in the VILI group.
Compared with expression in the OT group or control group,
VILI treated with OT plus nigericin showed increased expression
levels of GSDMD. Therefore, our results indicate that NLRP3
partially mediates the anti-pyroptotic effect of OT.

3.2.3 Effects of OT on theConcentration of IL-1β, IL-18,
IL-6 in BALF in VILI Mice Treated With and Without
Nigericin
The levels of inflammatory cytokines including IL-1β, IL-6, and
IL-18 in the BALF, were detected using ELISA kits. As shown in
Figure 10, increased levels IL-1β, IL-6, and IL-18 were observed

FIGURE 4 | Oxytocin attenuates inflammatory cytokine gene expression in the lung tissues of ventilation-induced lung injury.Effects of OT on the expression of the
IL-1β (A), IL-6 (B), and IL-18 (C)mRNAs in lung tissues are presented as the means ± SD (n � 4). *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the Control and
Control + OT groups; #p < 0.05, ##p < 0.01, and ###p < 0.001 compared with the VILI group. +p < 0.05, ++p < 0.01, and +++p < 0.001 compared with the OT + VILI group.
OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung injury.

FIGURE 5 | Effects of oxytocin on the expression of OTR protein.OT reduces the expression of OTR protein in the mouse VILI model. Western blot was performed
to evaluate the protein expression of OTR in lung tissue (A). The levels of OTR protein expression were quantified by measuring band intensities and displayed as fold
increase relative to ACTIN (B). The values are presented as means ± SD (n � 5). ***p < 0.001 compared with the Control and Control + OT groups, ###p < 0.001
compared with the VILI group, and +++p < 0.001 compared with the OT + VILI group. OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung injury.
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FIGURE 6 | Effects of oxytocin on the expression of TLR4, My-D88, and NF-κB protein.OT administration inhibited TLR4-mediatedMy-D88/NF-κB activation in the
mouse VILI model. Western blot was performed to evaluate the protein expression of TLR4, My-D88, and NF-κB in lung tissue exposed tomechanical ventilation (A). The
levels of TLR4 (B), My-D88 (C), NF-κB (D) protein expression were quantified by measuring band intensities and displayed as fold increase relative to ACTIN. The values
presented are the means ± SD (n � 5). **p < 0.01 and ***p < 0.001 compared with the Control and Control + OT groups, ##p < 0.01 and p < 0.001 compared with
the VILI group, and ++p < 0.01 and +++p < 0.001 compared with the OT + VILI group. OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung injury.

FIGURE 7 | Effects of oxytocin on the expression of NLRP3 and Caspase-1.OT administration inhibited NLRP3 and Caspase-1 expression in the mouse VILI
model. Western blot was performed to evaluate the protein expression of NLRP3 and Caspase-1 in lung tissue exposed to mechanical ventilation (A). The levels of
NLRP3 (B) and Caspase-1 (C) protein expression were quantified by measuring band intensities and displayed as fold increase relative to ACTIN. The values presented
are the means ± SD (n � 5). *p < 0.05 and **p < 0.01 compared with the Control and Control + OT groups, #p < 0.05 and ##p < 0.01 compared with the VILI group,
and +p < 0.05 and +++p < 0.01 compared with the OT + VILI group. OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung injury.
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FIGURE 8 | Effects of oxytocin on the expression of NLRP3, Caspase-1, GSDMD, and IL-1β in lung tissues from VILI mice treated with and without Nigericin. (A)
Immunohistochemistry (IHC) staining of NLRP3 of different groups: 1) Control group, 2) VILI group, 3) VILI + OT group, 4) OT + nigericin + VILI group, and (B)Western blot
analysis of NLRP3, Caspase-1, GSDMD and IL-1β levels were quantified. The levels of NLRP3 (C), Caspase-1 (D), GSDMD (E), and IL-1β (F) protein expression were
quantified bymeasuring band intensities and displayed as fold increase relative to ACTIN. The values presented are the means ± SD (n � 5). *p < 0.05 and **p < 0.01
compared with the control group and ##p < 0.05 and ##p < 0.01 compared with the VILI group. OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung injury.

FIGURE 9 | Effects of oxytocin on the expression of NLRP3, IL-18, IL-6, ASC, IL-1β, GSDMD, and Caspase-1 in lung tissues from VILI mice treated with or without
Nigericin.RT-qPCR is performed to evaluate the expression of the NLRP3 (A), IL-18 (B), IL-6 (C), ASC (D), IL-1β (E), GSDMD (F), and Caspase-1 (G) mRNAs in lung
tissues from mice exposed to mechanical ventilation in the presence or absence of Nigericin. Data are presented as the means ± SD (n � 5). *p < 0.05, and **p < 0.01
compared with the Control group; #p < 0.05 and ##p < 0.01 compared with the VILI group. OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung
injury.
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in the mouse VILI model compared with the control group.
However, the expression level of these cytokines was markedly
decreased in the OT-treated group compared with the VILI
group, while this effect was partly reversed by nigericin (p <
0.05). Previous studies indicated that NLRP3 activation mediated
the process of pro-IL-18 and pro-IL-1β into their mature form.
Therefore, our results indicate that NLRP3 could partially
mediates the release of IL-1β and IL-18 in the VILI mice model.

4 DISCUSSION

OT, a naturally occurring 9-amino acid neuropeptide hormone,
exerts anti-ovarian tumor effects both in vivo and in vitro due to
its antiproliferative properties (Morita et al., 2004; Mankarious
et al., 2016; Ji et al., 2018). Moreover, it has been shown to reduce
inflammation in multiple preclinical disease models (Jankowski
et al., 2010; Yeniel et al., 2014; Xiaomei et al., 2017). As shown in
our previous study, oxytocin protected against LPS-induced lung
injury by blocking the activation of the TLR4/NLRP3/NF-κB
signaling pathway. Inflammation plays a crucial role in and
contributes to the initiation and progression of VILI; however,
the effect of OT on VILI has not been explored, and the direct
downstream pathway of NLRP3 has not been elucidated yet (An
et al., 2019). In the present study, we identified that TLR4-and
NLRP3/GSDMD-mediated pyroptosis signaling were activated in
VILI mice. Our data also indicated that GSDMD, the critical
factor in the process of pyroptosis, was closely correlated with
VILI. In addition, NLRP3 signaling might be involved in the
mechanism of GSDMD-related pyroptosis in VILI. In summary,
the significant finding in our study revealed the protective effect
of OT on modulating the TLR4-and NLRP3/GSDMD-mediated
inflammatory pathway in a mouse VILI model.

After activation, the NLRP3 inflammasome recognizes many
types of dangerous molecules and pathogens and participates in
the immune response, ultimately causing various immune or
metabolic diseases. Nigericin, uric acid crystals, or LPS cause

NLRP3 to bind to the adaptor protein ASC, which oligomerizes to
recruit procaspase-1 in caspase-1(Wu et al., 2013; Humayun
et al., 2019). Eventually, pro-IL-18 and pro-IL-1β are
processed into their mature form, resulting in lung injury. In
our present study, MV markedly upregulated the expression of
TLR4/My-D88/NF-κB and NLRP3/caspase-1, suggesting that
TLR4-and the NLRP3-mediated pathways played essential
roles in VILI. Moreover, OT administration significantly
attenuated the MV-induced upregulation of TLR4/My-D88/
NF-κB and NLRP3/caspase-1. Meanwhile, our study also
indicated that OT partially reduced VILI by inhibiting the
activation of the TLR4 and the NLRP3 mediated
inflammasome pathways (Duque-Wilckens et al., 2018; Gamer
and Bü chel, 2012).

Recent studies indicated that GSDMD was one of the crucial
proteins involved in caspase-1-mediated pyroptosis and
controlled the release of IL-1β in the bone marrow
macrophages of the mouse (He et al., 2015; Shi et al., 2015).
In addition, pyroptosis was triggered by cleaving of GSDMD to
generate an N-terminal cleavage product (GSDMD-NT).
However, whether GSDMD also contributed to the
development of pyroptosis in VILI has seldom been reported.
Our data indicated the increased expression of GSDMD in VILI
lung tissues. The OT administration significantly decreased the
expression of GSDMD, accompanied by the inhibition of
pyroptosis and the release of IL-18, IL-1β, and IL-6 in the
VILI model. Moreover, the NLRP3 agonist nigericin partially
reversed the protective effect of OT on VILI, indicating that OT
potentially protected against VILI through NLRP3-mediated
inflammatory pathway. In summary, our results show that
GSDMD, which plays a crucial role in inducing pyroptosis,
maybe a potential candidate for developing novel targeted
therapies in VILI.

Inflammation is the major response to injuries or infections.
However, prolongation and uncontrolled inflammation, which is
characterize as cytokine production, may lead to tissue damage
(Chanez et al., 2007; Ji et al., 2018). Previous studies indicated that

FIGURE 10 | Effects of oxytocin on cytokine concentrations of IL-18, IL-6, and IL-1β in the BALF from VILI mice treated with or without Nigericin.The expression of
the IL-1β (A), IL-6 (B), and IL-18 (C) in the BALF from mice VILI model. The data are presented as the means ± SD (n � 5). *p < 0.05, and **p < 0.01 compared with the
Control group; #p < 0.05 and ##p < 0.01 compared with the VILI group. OT, oxytocin; SD, standard deviation; VILI, ventilation-induced lung injury.
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MV may activate maturation and release of inflammatory
cytokines production such as IL-1β, IL-18, or IL-6. Our results
also indicated that MV markedly increased the production of IL-
1β, IL-18, and IL-6 in BALF and the expression of IL-1β, IL-6, and
IL-18 in lung tissues of VILI mice. Previous studies showed that
OT modulated the OTR expression (Morita et al., 2004;
Mankarious et al., 2016; An et al., 2019.). In addition, our
previous work indicated that OT reduced lung injuries and the
production of inflammatory cytokines in LPS-induced lung
injury (An et al., 2019). Moreover, previous studies indicated
that both MV and nigericin could induce the maturation and
release of IL-1β and IL-18 through the activation NLRP3
inflammasome (Jankowski et al., 2010; Xiaomei et al., 2017).
In the present study, the OT administration significantly
decreased the expression of IL-1β and IL-18 at both the
protein and mRNA levels. Thus, it was indicated by our
findings that OT exerts potential anti-inflammatory effects as
a treatment for VILI by inhibiting the production of IL-1β, IL-18,
which is mediated by NLRP3.

5 CONCLUSION

In summary, our report provides the first evidence of a protective
effect of OT on VILI through the TLR4-and NLRP3/GSDMD-
mediated signaling pathways in vivo. Our findings will facilitate
further investigations of a potential target for the treatment of
VILI and other inflammatory diseases.
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