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Urothelial cancer (UC) is one of the common refractory tumors and chemotherapy is the
primary treatment for it. The advent of immune checkpoint inhibitors (ICI) has facilitated the
development of treatment strategies for UC patients. To screen out UC patients sensitive
to ICI, researchers have proposed that PD-L1, tumor mutation burden and TCGA
molecular subtypes can be used as predictors of ICI efficacy. However, the
performance of these predictors needs further validation. We need to identify novel
biomarkers to screen out UC patients sensitive to ICI. In our study, we collected the
data of two clinical cohorts: the ICI cohort and the TCGA cohort. The result of the
multivariate Cox regression analysis showed that glycogen metabolism score (GMS) (HR �
1.26, p � 0.017) was the negative predictor of prognosis for UC patients receiving ICI
treatment. Low-GMS patients had a higher proportion of patients achieving complete
response or partial response to ICI. After the comparison of gene mutation status between
high-GMS and low-GMS patients, we identified six genes with significant differences in
mutation frequencies, which may provide new directions for potential drug targets.
Moreover, we analyzed the immune infiltration status and immune-related genes
expression between high-GMS and low-GMS patients. A reduced proportion of tumor-
associated fibroblasts and elevated proportion of CD8+ T cells can be observed in low-
GMS patients while several immunosuppressive molecules were elevated in the high-GMS
patients. Using the sequencing data of the GSE164042 dataset, we also found that
myeloid-derived suppressor cell and neutrophil related signature scores were lower in
α-glucosidase knockout bladder carcinoma cells when compared to the control group. In
addition, angiogenesis, classic carcinogenic pathways, immunosuppressive cells related
pathways and immunosuppressive cytokine secretion were mainly enriched in high-GMS
patients and cell samples from the control group. Finally, we suspected that the
combination treatment of ICI and histone deacetylase inhibitors may achieve better
clinical responses in UC patients based on the analysis of drug sensitivity data. In
conclusion, our study revealed the predictive value of GMS for ICI efficacy of UC
patients, providing a novel perspective for the exploration of new drug targets and
potential treatment strategies.
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INTRODUCTION

Urothelial cancer (UC) is one of the most common refractory
tumors of the genitourinary system. It is comprised of a group of
tumors occurring in several regions like the renal pelvis, ureter,
bladder, and urethra. Notably, bladder urothelial cancer accounts
for over 90% of UC cases annually (Milojevic et al., 2015).
According to GLOBOCAN 2020 statistics released by the
International Agency for Research on Cancer, there were
approximately 573,000 new cases of bladder cancer globally in
2020 (Sung et al., 2021). These cases accounted for 3% of new
cancer cases worldwide and 2,13,000 deaths resulting from
bladder cancer (Sung et al., 2021). Among them, patients with
metastatic urothelial cancer (mUC) have the worst prognosis,
with a median overall survival (OS) after receiving chemotherapy
of about 15 months (Mollica et al., 2020). The 5 year survival rate
of mUC patients is only 6.4%, and while that of patients with
carcinoma in situ is 96% (SEER*Explore, 2021).

Over the last 30 years, the treatment of urothelial cancer has
remained unchanged, with platinum-based combined
chemotherapy being largely considered the cornerstone of the
treatment of UC patients (Mollica et al., 2020). However, since its
advent in 2016, immunotherapy has revolutionized the treatment
of UC patients. Five immune checkpoint inhibitors (ICI) have
been approved by the US Food and Drug Administration (FDA)
for application in UC patients (Mollica et al., 2020). KEYNOTE-
045 (Bellmunt et al., 2017), IMvigor211 (Powles et al., 2018), and
IMvigor130 (Galsky et al., 2020) trials have shown that compared
with chemotherapy, ICI monotherapy can achieve durable
remission for UC patients with an improved OS of about
3 months. In addition, IMvigor130 trial also explored the use
of atezolizumab in combination with chemotherapy, with results
suggesting a significant prolongation of median OS in UC
patients receiving combination therapy when compared to
patients who received chemotherapy (Galsky et al., 2020).

Currently, ICIs have been used as the first-line treatment for
PD-L1 positive and cisplatin-ineligible UC patients (Mollica et al.,
2020). However, durable responses only occurred in 20–30% of
UC patients (Nadal and Bellmunt, 2019). The realization of an
accurate prediction of patients sensitive to ICI is a common
research challenge. In addition to the expression of immune
checkpoint molecules, the exploration of biomarkers for ICI
treatment has focused on tumor mutation burden (TMB)
(Rosenberg et al., 2016; Powles et al., 2018), microsatellite
instability (MSI) (Lin et al., 2020a), gender (Lin et al., 2020b),
age (Lin et al., 2020b), gene mutations (Lin et al., 2019; Lin et al.,
2020b; Huang et al., 2020; Niu et al., 2020; Yi et al., 2020; Zhang
et al., 2021) and alterations of the immune microenvironment
(Lin et al., 2020a). Some proposed biomarkers for the prediction
of the ICI efficacy in patients with mUC include PD-L1
(Rosenberg et al., 2016; Balar et al., 2017; Powles et al., 2017;
Sharma et al., 2017), TMB (Rosenberg et al., 2016; Powles et al.,
2018), TCGAmolecular subtypes (Rosenberg et al., 2016; Sharma
et al., 2017), and the expression of immune-related genes such as
IFN-γ (Sharma et al., 2017). However, it is still difficult to achieve
accurate predictions for these indicators. In the IMvigor210 and
CheckMate-275 trials, the study on PD-L1’s predictive effect on

the efficacy of the ICI did not obtain statistically significant results
(Rosenberg et al., 2016; Sharma et al., 2017). Similarly, the
outcomes of the JAVELIN Solid Tumor clinical trial did not
conclude that TMB was related to the efficacy of ICI in UC
patients (Patel et al., 2018). The IMvigor210 trial concluded that
patients with TCGA luminal cluster II subtype had the highest
objective response rate (Rosenberg et al., 2016). In contrast, the
results of the CheckMate-275 trial suggested that patients with
basal I subtype exhibited the most favorable prognosis (Sharma
et al., 2017). Therefore, identifying new and specific biomarkers
to screen out patients with better ICI responses has become an
urgent problem to be solved in the treatment of urothelial
carcinoma.

In the tumor microenvironment (TME), glycogen metabolism
profoundly affects tumor cell proliferation and migration and has
a significant regulatory effect on immune cells. Dendritic cell
activation, as well as macrophage function and CD8+ T cell
survival also depend on glycogen metabolism (Khan et al.,
2020). There is competition for glucose uptake between tumor
and immune cells. In addition, studies have shown that reducing
the glycogen branching enzyme could promote CD8+ T cell
infiltration and increase PD-L1 expression (Li et al., 2019).
Inhibition of glycogen synthase kinase (GSK) three can
promote NK cell maturation and enhance their anti-tumor
activity (Cichocki et al., 2017). GSK3 is also a key upstream
kinase that regulates PD-1 transcription in T cells (Sahin et al.,
2019). The role of glycogen metabolism in tumor and immune
cells suggests that it plays a critical role in the immunotherapy of
UC patients.

In this study, we explored the effect of glycogenmetabolism on
immunotherapy efficacy in mUC patients using the ICI cohort’s
data. We also investigated the impact of glycogen metabolism on
the tumor immune microenvironment from the aspects of
immune-related cell content, immune gene activation, tumor
immune depletion indicators, and abnormal pathway
activation. To further clarify the impact of glycogen
metabolism on the immune infiltration landscape, we also
quantified alterations in the TME-related signatures using
GEO dataset containing sequencing data for bladder
carcinoma cells accepting different intervention on glucose
metabolism. Finally, we use the drug sensitivity data in public
databases to predict the activity of various drugs in UC patients,
which facilitates further exploration for potential treatment
strategies.

MATERIALS AND METHODS

Clinical Cohorts
In this study, we collected data on two clinical cohorts and the
GSE164042 dataset from the GEO database to explore the impact
of glycogenmetabolism on the immunemicroenvironment of UC
patients. One of the two clinical cohorts is the ICI cohort
published by Mariathasan et al. (Mariathasan et al., 2018),
which is comprised of 348 mUC patients treated with
atezolizumab. The other clinical cohort is comprised of 408
bladder cancer patients collected from the TCGA database.
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RNA sequencing (RNA-seq) data, somatic mutation data,
TMB data, tumor neoantigen load (TNB) data, and
corresponding clinical data are available for both clinical

cohorts. The processed ICI cohort data can be obtained from
the R package “IMvigor210CoreBiologies” (Mariathasan et al.,
2018), available at http://research-pub.gene.com/

FIGURE 1 | (A) Establishment of the ICI cohort. The ICI cohort published by Mariathasan et al. included 348 UC patients who received the treatment of
atezolizumab. (B) The establishment of the TCGA cohort. The TCGA cohort contained 408 bladder cancer patients collected from the TCGA database. The RNA-seq
count data, somatic mutation data, and corresponding clinical data of the two cohorts were then used to evaluate the prognostic value of GMS, explore the landscape of
gene mutation and immune infiltration, GSEA analysis, and drug sensitivity prediction. (C) The collection of the high throughput sequencing data of GSE164042.
This dataset contained six samples from the UMUC3 bladder carcinoma cell line. The RNA-seq data and corresponding grouping information of the samples were used
to construct the GMS scores and tumor microenvironment related signature scores and perform GSEA analysis.
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IMvigor210CoreBiologies. The TCGA cohort’s data were
downloaded from the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/). TMB refers to the total
number of mutations per megabase in the exon coding region
of tumor genome. The prediction methods for TNB have been
described in the corresponding literatures (Mariathasan et al.,
2018; Thorsson et al., 2018).

In addition, the RNA expression level of the same patient is
represented by the mean of the RNA expression levels in multiple
samples. The RNA-seq read counts were then normalized in the
two cohorts, and transcripts per kilobase of exon model per
million mapped reads (TPM) were used to quantify the RNA
expression level. The detailed analysis workflow is shown in
Figure 1.

The GSE164042 dataset contains high-throughput sequencing
data of six UMUC3 bladder carcinoma cell samples, three from
the control group (GEO-control) and three from the
α-glucosidase II knockout group (GEO-KO). The RNA-seq
count data and normalized TPM data can be downloaded
from the GEO database, and the detailed analysis workflow is
shown in Figure 1.

The Predictive value of the Glycogen
Metabolism Pathway
In this study, we used a single sample gene set enrichment
analysis (ssGSEA) algorithm (Barbie et al., 2009) to evaluate
each patient’s glycogen metabolism pathway enrichment scores
(WP_GLYCOGEN_SYNTHESIS_AND_DEGRADATION), and
UC patients were divided into two groups, high glycogen
metabolism and low glycogen metabolism, according to their
median scores. In addition, we also evaluated the glycogen
metabolic pathway scores of 6 cell samples using RNA-seq
data from the GSE164042 dataset.

To evaluate the predictive value of the glycogen metabolism
enrichment score, we incorporated the ICI cohort’s clinical
information in the univariate COX regression model. The
indicators with potential predictive significance for the UC
patients’ ICI efficacy were also included in the analysis. The
statistically significant indicators (p < 0.05) were included in
the multivariate COX regression model. After excluding two
patients with unqualified survival data in the TCGA cohort, we
used Kaplan-Meier analysis and log-rank test to evaluate the
survival differences of patients in the two glycogen metabolism
groups.

Evaluation of Immune Cell Infiltration and
the Expression of Immune-Related Genes
EPIC is a deconvolution algorithm that can obtain the
proportions of the cell types by analyzing the expression levels
of the marker genes of different immune cells (Racle and Gfeller,
2020). In addition, this algorithm’s principle, performance, and
workflow have been described in the literature. In this study, we
used standardized TPM expression data as our input, and this
algorithm was used to quantify each patient’s immune
infiltration. p < 0.05 was considered statistically significant.

The R package which executes this algorithm can be found at
https://github.com/GfellerLab/EPICobtain.

The list of immune-related genes of the TCGA cohort was
published by Thorsson et al. (2018). R package “edgeR” was
utilized to calculate the logFC and p-value of gene differential
expression (Robinson et al., 2010). According to the list of
immune-related genes and their functional classification, we
extracted their logFC and p-value for visualization.

Since the EPIC algorithm cannot be used to assess the degree
of immune infiltration in cell lines, we used the PCA algorithm to
assess the scores of 119 TME-related signatures provided by
“IOBR” package for UC patients and cell samples (Zeng et al.,
2021). R package “IOBR” is available at https://github.com/IOBR/
IOBR.

Functional and Pathway Enrichment
Analysis
The R package “edgeR” was used to standardize the RNA-seq
count data and perform gene differential expression analyses
(Robinson et al., 2010). The genes were sorted in decreasing order
of logFC derived from differential analyses. The R package,
“clusterProfiler” (Yu et al., 2012), was employed for gene set
enrichment analysis (GSEA), using the sorted gene lists and gene
sets collected from the Molecular Signatures Database (MSigDB)
of Broad Institute (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp) (Subramanian et al., 2005). Gene sets used were as
follows: C2 curated gene sets, C5 ontology gene sets, C6
oncogenic signature gene sets, and C7 immunologic signature
gene sets.

Prediction of Drug Sensitivity
The CLUE database primarily contains gene expression profiles
and corresponding drug sensitivity information after different
perturbagens (small molecule treatment, gene overexpression, or
gene knockout) on different cell lines, accessible through https://
clue.io/. We uploaded the differentially expressed genes between
patients with high and low glycogen metabolism. Then, we
analyzed and obtained the degree of similarity between the
expression profiles of our clinical cohorts and that of cell lines
receiving different drug treatments. The similarity was quantified
with a score of −100 to 100, where a positive value represents a
similar trend, and a negative value represents an opposite trend.
Additionally, the higher absolute value of the score represents a
more obvious trend. We screened out the drugs with absolute
scores above 60 for follow-up evaluation. Their mechanism of
action can be obtained in the Touchstone module of the CLUE
database.

The Cancer Therapeutics Response Portal (CTRP, v2 version)
database contains the drug sensitivity data of 481 compounds in
860 cancer cell lines, which can be accessed at https://portals.
broadinstitute.org/ctrp.v2.1/. The CTRP database uses the area
under the dose-response curve (area under the curve, AUC) to
measure drug sensitivity. Observation revealed that lower AUC
values correlated with a higher sensitivity to the drug.

The Cancer Cell Line Encyclopedia (CCLE) database contains
data on genetic mutations, RNA splicing, DNA methylation,
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histone modification, miRNA expression, and protein expression
data of 1,457 cell lines, which can be accessed at https://portals.
broadinstitute.org/ccle/(Ghandi et al., 2019).

Using drug sensitivity data from the CTRP database and the
CCLE database’s cancer cell line expression profiles, we employed
the R package “pRRophetic” to predict the drug sensitivity of this
study’s clinical cohorts (Geeleher et al., 2014). We excluded the
data of hematological tumors and compounds with more than
20% missing data before prediction and used k-nearest neighbor
(k-NN) imputation to fill in missing AUC values. Finally, we
analyzed the differences in the AUC values between patients with
high and low glycogen metabolism and calculate the correlation
between AUC values and the glycogen metabolism scores. The
drugs with p < 0.05 and the absolute value of the correlation
coefficient >0.4 were screened out.

Statistical Analysis
Univariate and multivariate Cox regression models were used to
evaluate the predictive value of the ICI cohort’s potential
biomarkers. Fisher’s exact test was used to evaluate the
differences in the proportion of patients achieving complete
response (CR)/partial response (PR) and progressive disease
(PD)/stable disease (SD) between groups. The differences in
gene mutation rates between groups were also evaluated by
Fisher’s exact test. Wilcoxon’s test was employed to evaluate
the differences in glycogen metabolism scores, immune cell
proportions, TME-related signature scores, drug sensitivity
between groups. Normally distributed data were tested using
the unpaired t-test. Correlation analysis was used to evaluate the
degree of correlation between the glycogen metabolism score and
cell proliferation, wound healing, TGF-β response, TMB, TNB,
and the proportion of immune cells. GSEA analysis was used to
calculate the enrichment score and p-value of each pathway
(Subramanian et al., 2005). The above analysis used R4.0.2
software for the statistical analyses and for compiling the figures.

RESULTS

Glycogen Metabolism Scores Can be Used
as an Independent Predictor of the
Immunotherapy Efficacy in Urothelial
Cancer patients.
As shown in Figure 1, our study contains two clinical cohorts: the
ICI cohort published by Mariathasan et al., and the other is the
TCGA cohort. To quantify the level of glycogen metabolism of
UC patients, the ssGSEA algorithm was utilized to construct a
glycogen metabolism score (GMS) based on the transcriptome
data of the two cohorts. The ICI cohort data was used to explore
the correlation between glycogen metabolism level and the ICI
efficacy, while the data of both cohorts were prepared for
subsequent exploration of the underlying mechanism.

In the previous literature search, we found that the PD-L1
expression level (Rosenberg et al., 2016; Balar et al., 2017; Powles
et al., 2017; Sharma et al., 2017), TMB (Rosenberg et al., 2016;
Powles et al., 2018), TNB (Huang et al., 2018a; Chen et al., 2019;

Raimondi et al., 2020), and TCGA subtypes (Rosenberg et al.,
2016; Sharma et al., 2017) were potential biomarkers for
predicting the ICI efficacy in UC patients. Considering the
impact of the patients’ other treatments on the ICI efficacy, we
integrated several factors into the analysis using the univariate
COX regression model. These included the potential prognostic
indicators, the other treatments patients received, and the clinical
information of the ICI cohort (Figure 2A). Simultaneously, the
statistically significant biomarkers (p < 0.05) were incorporated
into the multivariate Cox regression analysis (Figure 2B). Two
metrics quantify the expression level of PD-L1. One is the
expression level of PD-L1 on tumor cells (TC), and the other
is the expression level of PD-L1 on immune cells (IC).

The results of the multivariate Cox regression analysis showed
that GMS [HR � 1.26 (95% CI 1.04–1.52), p � 0.017] and IC level
[HR � 0.74 (95% CI 0.6–0.92), p � 0.006] were the independent
predictors of prognosis for UC patients receiving ICI treatment
(Figure 1B). The higher the GMS score, the worse the prognosis
of immunotherapy for UC patients. Consistent with the results of
the IMvigor210 trial, the IC level was a positive predictor of ICI
efficacy (HR <1); i.e., the higher the IC level, the better the
survival of UC patients after receiving immunotherapy.

To clarify the relationship between GMS and the efficacy of
immunotherapy in UC patients, we divided the patients into
high-GMS and low-GMS groups based on their median GMS.
Then we compared the proportion of patients with different ICI
responses between the two groups. In the ICI cohort, we found
that, compared to low-GMS patients, the high-GMS patient
group had a lower proportion of patients with CR and PR and
a higher proportion of patients with PD and SD to ICI (two-tailed
Fisher’s exact test, p � 0.019, Figure 2C). The GMS of the CR/PR
cluster was also lower than that of the SD/PD cluster (Wilcoxon
test, p � 0.0196, Figure 2D). Moreover, the results of the KM
survival analysis of the ICI cohort showed that high-GMS
patients exhibited a shorter OS compared to low-GMS patients
(log-rank test, HR � 1.66 [95% CI:1.28–2.15], p < 0.001,
Figure 2E). Although the result of KM survival analysis of the
TCGA cohort had the same trend, the p-value was not significant
[HR � 1.26 (95% CI: 0.94–1.69), p � 0.117, Supplementary
Figure S1A], indicating that GMS may reflect the prognosis of
patients treated with ICI. In addition, we found that GMS was
positively correlated with proliferation (p � 0.019, r � 0.12,
Supplementary Figure S1B) and wound healing (p < 0.001,
r � 0.21, Supplementary Figure S1C) in the TCGA cohort,
suggesting tumor malignancy and the possibility of a worse
prognosis.

Analysis of Genomics
Changes in disease phenotypes are attributed to changes in
genomics. In order to explore the related underlying
mechanisms of glycogen metabolism and ICI efficacy, we
compared the gene mutation rates between high-GMS and
low-GMS patients (Figure 3). The gene mutation landscape
showed the alteration types and frequencies of the top 20
driver genes in ICI and TCGA cohorts. We obtained a total of
six genes with significant differences in mutation frequencies
among high-GMS and low-GMS patients (Figure 3), which were
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RB1 (12 vs 21%), KDM6A (11 vs 29%), ERBB3 (3 vs 10%) in the
ICI cohort; and PIK3CA (28 vs 18%), EP300 (21 vs 13%), ELF3 (9
vs 18%) in the TCGA cohort. The complete results of
comparisons of the gene mutation frequencies between high-
GMS and low-GMS patients are provided in Supplementary
Table S1.

To further explore the role of gene mutations in the effect of
glycogen metabolism on ICI efficacy, we divided UC patients into
mutant and wild-type groups based on the mutation status of the
six genes screened and compared the differences of GMS and ICI
efficacy between groups. In the ICI cohort, KDM6A-mutant
(Wilcoxon test, p � 0.00057, Supplementary Figure S2B) and
ERBB3-mutant (Wilcoxon test, p � 0.0085, Supplementary
Figure S2C) patients had lower GMS than wild-type patients,
while PIK3CA-mutant (Wilcoxon test, p � 0.04, Supplementary
Figure S2D) and EP300-mutant patients (Wilcoxon test, p �
0.018, Supplementary Figure S2E) had opposite results (results
for the ELF3 gene were not shown because ELF3was absent in the
sequencing data of the ICI cohort). The result for RB1 gene was
not significant (Wilcoxon test, p � 0.12, Supplementary Figure

S2A) in the ICI cohort. Subsequently, we compared the
differences in ICI efficacy between patients with mutant and
wild-type genes. The results for RB1, ERBB3 and PIK3CA genes
were non-significant (two-tailed Fisher’s exact test, p > 0.05,
Supplementary Figure S2F), while the proportion of patients
achieving CR/PR was higher in KDM6A-mutant (two-tailed
Fisher’s exact test, p � 0.028, Supplementary Figure S2F) and
EP300-mutant (two-tailed Fisher’s exact test, p � 0.046,
Supplementary Figure S2F) patients when compared to wild-
type patients. Similarly, in the TCGA cohort, we also explored the
differences in GMS, with results suggesting non-significant
differences for RB1, ERBB3 and EP300 (Wilcoxon test, p >
0.05, Supplementary Figures S2G,I,K), lower GMS in patients
with KDM6A (Wilcoxon test, p � 0.008, Supplemntary Figure
S2H) and ELF3 (Wilcoxon test, p � 0.016, Supplementary Figure
S2L) mutations than in wild-type patients, and opposite results
for PIK3CA (Wilcoxon test, p � 0.0089, Supplementary Figure
S2J) genes.

In addition to gene mutation frequency, the distribution of
various UC patients’ clinical information between high-GMS and

FIGURE 2 | The predictive value of glycogen metabolism for the efficacy of ICI in UC patients. (A) The Forest plot shows the result of univariate Cox regression
analysis. The indicators with p < 0.05 were GMS, IC level, TMB, TNB and platinum treatment. (B) The Forest plot visualizes the results of multivariate Cox regression
analysis. Results showed that GMS and IC level were independent predictors of ICI in UC patients. The main portion of the plot depicts the hazard ratio (HR) and 95%
confidence interval (95% CI). The statistically significant indicators (p < 0.05) are marked with asterisks after their name, and HR indicates whether the indicator
portends a favorable prognosis (HR < 1) or a poor prognosis (HR > 1). (C) Differences in the proportion of UC patients with different response to ICI between high-GMS
and low-GMS patients in the ICI cohort. CR: complete response; PR: partial response; PD: progressive disease; SD: stable disease. (D)Differences in GMS between CR/
PR and SD/PD patients. The asterisk above the box plot indicates the range of p values. “.”: p < 0.1; “*”: p < 0.05; “**”: p < 0.01; “***”: p < 0.001. (E) Kaplan-Meier survival
curves for OS in high-GMS (n � 174) and low-GMS (n � 174) patients of ICI cohort.
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low-GMS groups can also be observed. Results suggested no
significant correlation between GMS and TMB or TNB in
both cohorts (Figure 3, Supplementary Figures S1D–G).
Although smoking is a risk factor for bladder cancer (Saginala
et al., 2020), smoking or not smoking had no prognostic value in
the univariate Cox regression analysis [HR � 0.91 (95% CI
0.7–1.2), p � 0.522, Figure 2A]. GMS distribution was also
not statistically significant between smokers and non-smokers
(Wilcoxon test, p � 0.39, Supplementary Figure S1H). Among
the four molecular TCGA subtypes, TCGA subtype III had the
highest GMS, while TCGA subtype II had the lowest GMS
(Supplementary Figure S1I).

Immune Infiltration Landscape
Like tumor cells, immune cells and stromal cells also play an
important role in the tumor immune microenvironment.
Through its association with energy metabolism, glycogen
metabolism is important for tumor cells and has an essential
impact on immune cells. Using the EPIC algorithm, we analyzed

the differences in the proportions of immune and stromal cells
between high-GMS and low-GMS patients. An elevated
proportion of tumor-associated fibroblasts (CAFs) and a
reduced proportion of CD8+ T cells can be observed in high-
GMS patients (Figures 4A,B). Consistent with the results above,
correlation analysis also revealed a positive correlation between
the proportion of CAFs and GMS (ICI cohort: p < 0.001, r � 0.21;
TCGA cohort: p � 0.003, r � 0.15, Figures 4C,D). In contrast, the
proportion of CD8+ T cells was negatively correlated with GMS
(ICI cohort: p < 0.001, r � −0.23; TCGA cohort: p � 0.107, r �
−0.08, Figures 4E,F).

To further reveal the relationship between glycogen
metabolism and the immune microenvironment at the
genomic level, we analyzed the differences in the expression of
immune-related genes and immune exhaustion biomarkers
between high-GMS and low-GMS patients. In both cohorts,
we found that TGFβ, CXCL10, PD-L1 (CD274), and other
immunosuppressive molecules, including HAVCR2 and IDO1,
were elevated in high-GMS patients (Figure 3G). In addition, we

FIGURE 3 |Clinical information and genemutation landscape of UC patients in the ICI cohort (A) and TCGA cohort (B). Themain portion of the figure shows the top
20 driver genes’ alteration types with the highest mutation rates, and the left bar plot indicates the mutation rate of each driver gene. Genesmutated significantly between
high-GMS and low-GMS patients are marked with asterisks after their name. The upper bar plot shows GMS subgroups, OS, TMB, TNB, and other clinical information of
UC patients, and the color codes and annotations are shown in the legend.
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FIGURE 4 | (A) Box plot visualizes the proportion of 7 cell types in the tumor microenvironment between high-GMS and low-GMS patients in the ICI cohort. (B) Box
plot visualizes the proportion of 7 cell types in the tumor microenvironment between high-GMS and low-GMS patients in the TCGA cohort. (C) The correlation between
GMS and the proportion of CAFs in the ICI cohort. (D) The correlation between GMS and CAFs proportion in the TCGA cohort. (E) The correlation between GMS and the
proportion of CD8+ T cells in the ICI cohort. (F) The correlation between GMS and the proportion of CD8+ T cells in the TCGA cohort. (G) The Heatmap shows the
expression levels of immune-related genes and immune exhaustion biomarkers between patients with high-GMS and low-GMS. The color in the first column of the
heatmap represents the classification of the molecules according to their immune functions, and the meaning of the colors is shown in the legend. The second and third
columns exhibit the logFC and p-value of the analysis of the gene differential expression analysis. The color represents the size of logFC shown in the middle of the
rectangles, while gray represents non-significant p-values. In the calculation of logFC, high-GMS patients were used as the control group. LogFC >0 means that the
genes were highly expressed in low-GMS patients, while logFC <0 is the opposite. The last four columns of the heatmap show the average gene expression levels, which
were standardized by z-score.
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FIGURE 5 | C2 (A–C), C5 (D–F), C6 (G–I) and C7 (J–L) gene set enrichment analysis in ICI cohort, TCGA cohort and GSE164042 samples. High-GMS patients
and GEO-control group served as the control group. ES >0 means that the corresponding pathway is significantly enriched in low-GMS patients or GEO-KO samples,
while ES <0 is the opposite.
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explored TGF-β′s effect on the ICI efficacy in our TCGA cohort;
we also found that TGF-β was positively correlated with GMS
(TCGA cohort: p < 0.001, r � 0.38, Supplementary Figure S1J).

To further clarify the effect of glycogen metabolism on the
immune microenvironment, we compared the changes in the
TME-related signatures between GEO-control and GEO-KO
samples. As a resident enzyme of the endoplasmic reticulum,
glucosidase II plays an important role in glucose metabolism and
glycoprotein quality control (Kuribara et al., 2020). As shown in
Supplementary Figure S3A,B, the GMS of the GEO-KO samples
were significantly lower than those of GEO-control samples
(t-test, p � 0.041, Supplementary Figure S3A,B). Based on
the median GMS of the six samples, we classified three
samples from the control group into the high-GMS group and
three samples from the GEO-KO group into the low-GMS group.
Among the 119 TME-related signatures, we found that signatures
related to myeloid-derived suppressor cell (MDSC) and
neutrophils demonstrated a consistent trend across three
datasets. High-GMS patients and GEO-control samples had
higher MDSC (ICI cohort: Wilcoxon test, p < 0.01; TCGA
cohort: Wilcoxon test, p < 0.01; GSE164042: Wilcoxon test,
p � 0.018, Supplementary Figure S3C–E) and neutrophil (ICI
cohort: Wilcoxon test, p < 0.01; TCGA cohort: Wilcoxon test, p <
0.01; GSE164042: Wilcoxon test, p � 0.012, Supplementary
Figure S3F–H) signature scores compared to low-GMS
patients and GEO-KO samples.

Gene Set Enrichment Analysis
The GSEA algorithm can help determine whether glycogen
metabolism crosstalks with the immune microenvironment
through some abnormally activated signaling pathways.
Hypoxia as well as histone deacetylase (HDAC) related
pathways were mainly enriched in high-GMS patients and
GEO-control samples (Figures 5A–C). Consistent with the
results above, monocyte and neutrophil recruitment, Treg-
related pathways, immune-depleted CD8+ T cells, and
immunosuppressive cytokines (such as IL-1 and IL-8) were
predominantly enriched in high-GMS patients and GEO-
control samples (Figures 5C–E,J–L). In contrast, T cells and
B cells signaling pathways associated with immune activation
were mainly enriched in low-GMS patients and GEO-KO
samples (Figures 5D–F,K,L). In addition, angiogenesis and
classical carcinogenic pathways (such as AKT, EGFR, KRAS
signaling pathways) were also enriched in high-GMS patients
and GEO-control samples (Figures 5E,G–I). The statistically
significant results of GSEA analysis are available in the
Supplementary Table S2.

Prediction of Drug Sensitivity
Predicting drug sensitivity helps us promote the translation from
research discovery to clinical application and provides a new
perspective for potential treatment strategies. We predicted the
sensitivity of UC patients to various drugs based on the public
data of CLUE, CTRP, CCLE databases, and the RNA expression
profiles of our clinical cohorts. Mode-of-action (MoA) analysis
helps us to summarize the mechanism of action of the
screened drugs.

Figure 6A showed 32 drugs with a score greater than 60 in the
result of the CLUE database analysis. After the treatment of these
drugs, the RNA expression profiles of the cell lines were similar to
that of low-GMS patients, implying that these drugs may reverse
the low susceptibility of high-GMS patients to ICI. MoA analysis
of the 32 compounds revealed 26 mechanisms of action.
Figure 6B showed the analysis results of the CTRP database,
and 16 drugs were screened out. The 16 drugs were statistically
significant in the Wilcoxon test (p < 0.05), and their correlation
coefficients with GMS were greater than 0.4, suggesting that low-
GMS patients were more sensitive to these drugs. MoA analysis of
the 16 drugs revealed their 19 mechanisms of action. Among the
drugs mentioned above, we noticed that there were 11 HDAC
inhibitors totally (dacinostat, droxinostat, HC-toxin, ISOX,
NCH-51, pyroxamide, scriptaid, THM-I-94, trichostatin-a,
vorinostat, and apicidin, respectively, Figures 6A,B).
Researchers have revealed the potential anti-tumor activity of
dacinostat (Ganai, 2015), droxinostat (Huang et al., 2018b), HC-
toxin (Zhou et al., 2016), NCH-51 (Sanda et al., 2007),
pyroxamide (Butler et al., 2001), scriptaid (Takai et al., 2006),
trichostatin-a (Vigushin et al., 2001), vorinostat (Gray et al., 2019;
Rodriguez et al., 2020) and apicidin (Ueda et al., 2007), indicating
that the combination treatment of immunotherapy and HDAC
inhibitors in UC patients may achieve better clinical outcomes.

Finally, we identified 32 drugs with a score less than -60 due to
the CLUE database analysis (Supplementary Figure S2A). After
the treatment with these drugs, the RNA expression profiles of the
cell lines were similar to that of high-GMS patients. The four
MoA mechanisms that contain the most screened drugs include
the adrenergic receptor antagonist, glucocorticoid receptor
antagonist, prostanoid receptor antagonist, and tubulin
inhibitor, which may be detrimental to the response of UC
patients to immunotherapy. Under the constraints of p < 0.05
(Wilcoxon test) and correlation coefficient < −0.4, we screened
out five drugs in the analysis of the CTRP database
(Supplementary Figure S2B). The results suggested that high-
GMS patients were more sensitive to these drugs when compared
to low-GMS patients. MoA analysis of the five drugs also revealed
their 11 mechanisms of action. We observed that some of these
five drugs targeted apoptosis, PI3K, and RAF signaling pathways,
which provided novel insight into the treatment of high-GMS
patients. In particular, betulinic-acid impacts multiple signaling
pathways as a topoisomerase inhibitor, showing its prospect for
further investigation.

DISCUSSION

Since immunotherapy resolved the treatment dilemma of
urothelial cancer over the past 30 years, ICI has brought new
sight into the treatment of UC patients. In order to promote the
development of precision medicine, we need to screen for more
potential biomarkers to identify ICI-sensitive UC patients. Our
results showed that glycogen metabolism could be used as an
independent predictor of UC patients’ prognosis. Low-GMS
patients responded better to ICI treatment, with a lower
proportion of CAFs cells and a higher proportion of CD8+
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FIGURE 6 | (A) The degree of similarity between the expression profiles of UCpatients and that of cell lines treatedwith different drugs. In the analysis of theCLUEdatabase, high-
GMSpatientswere used as the control group, and a positive value represents a similar trendwhile a negative value represents an opposite trend. The similarity is quantifiedwith a score of
−100 to 100. The higher the absolute value of the score, themore obvious the trend. The figure shows drugswith scores above 60. (B) The predicted sensitivity of UC patients to various
drugs using data from the CTRP and CCLE databases while the drug sensitivity is quantified with AUC. The lower the AUC value, the higher the sensitivity to the drug. The figure
shows the drugs whose AUC values were significantly different between high-GMS and low-GMS patients (Wilcoxon’s test, p < 0.05). In addition, the correlation coefficients of the drugs
abovewithGMSweregreater than0.4,which indicated that thesedrugsweremoresensitive inpatientswith low-GMS. In themainportionof thefigure, columns representdrugs, and rows
represent themechanisms of action. The black dots in the corresponding rectangles indicate that the drugs have the correspondingmechanisms of action. The bar plots on the top and
right of the figure reflect the frequency of black dots of the corresponding columns/rows.
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T cells. The GSEA analysis result suggested that
immunosuppressive cells related pathways, along with the
secretion of immunosuppressive cytokines, were mainly
enriched in high-GMS patients. Based on analysis of the drug
sensitivity data, we speculated that the combination of HDAC
inhibitor and ICI might improve the efficacy of immunotherapy
in UC patients. High-GMS patients may choose drugs targeting
apoptosis, such as topoisomerase inhibitors, as potential
therapeutic approaches.

Among the top 20 driver genes exhibiting the most frequent
mutation rates in our clinical cohorts, we found six genes with
significant differences between high and low GMS patients
(Figure 3). Compared to high-GMS patients, RB1, KDM6A,
ERBB3, and ELF3 had higher mutation rates in low-GMS
patients, while PIK3CA and EP300 had lower rates. EP300 was
identified as a co-activator of hypoxia-inducible factor 1α
(HIF1A), which plays a vital role in activating hypoxic
responses (Wei et al., 2018). Due to the use of anti-angiogenic
drugs or the fast tumor growth rate, hypoxia is an important
feature of the tumor microenvironment (Samanta and Semenza,
2018); it contributes to the increase of synthesis of hypoxia-
inducible factor (HIF). Under the induction of HIF, glycogen
synthesis and catabolism enzymes are elevated, contributing to
the survival and metastasis of tumor cells under nutrient
deprivation (Samanta and Semenza, 2018). Consistent with
these investigations, our results showed that EP300 mutated
most frequently in high-GMS patients. This trend suggests
that the hypoxic microenvironment may affect the level of
tumor cell glycogen metabolism through EP300 mutation in
UC patients. Our GSEA results also showed that hypoxia-
related pathways mainly enriched in high-GMS patients and
GEO-control samples (Figures 5A–C). Reports indicate that
the oncogenes, ERBB3 (Sithanandam et al., 2003; Sithanandam
et al., 2005), ELF3 (Wang et al., 2018; Zhao et al., 2018; Zhang
et al., 2020), and PIK3CA (German et al., 2013), activate the PI3K-
AKT pathway either directly or indirectly. Also, the activation of
the PI3K-AKT pathway can negatively regulate GSK3β
(Sithanandam et al., 2003); thus, its activation inhibits the
activity of glycogen synthase and reduces glycogen synthesis
(Khan et al., 2020). However, the distributions of the mutation
status of ERBB3, ELF3, and PIK3CA between high-GMS and low-
GMS patients were not consistent, indicating that multiple
biological processes regulated the level of glycogen
metabolism, and the underlying mechanisms need further
exploration at a genetic level.

The immune microenvironment, consisting of tumor cells,
immune cells, stromal cells, vasculature, cytokines, and
chemokines, has always focused on immunotherapy research.
During immunotherapy, the competition between tumor cells
and other cells determines the treatment’s efficacy in UC patients.
We found that levels of CAFs were higher in high-GMS patients
through the EPIC algorithm. Studies have shown that TGF-β
released by tumor cells activated the p38-MAPK pathway in
CAFs, increasing the levels of chemokines such as CXCL10, IL-6,
and IL-8, thereby inducing glycogen catabolism in tumor cells
(Coller, 2019). Notably, this trend is consistent with the
expression of immune-related genes and the result of GSEA

analysis in our study. IL-1 related pathways, which were
enriched in high-GMS patients in the GSEA analysis, help to
maintain the phenotype of CAFs and enhance their function
(Chen and Song, 2019). IL-6 and IL-8 secreted by CAFs can
promote the differentiation of myeloid cells into MDSCs or M2
macrophages to assist tumor immune escape (Kim et al., 2012).
CAFs also express the FAS ligand (FASL), which induces
apoptosis in FAS-expressing CD8+ T cells (Lakins et al., 2018).
Our research also suggested that the proportion of CD8+ T cells in
high-GMS patients was significantly lower than that of low-GMS
patients (Figures 4A,B). In addition, CAFs are also the major
source of proangiogenic factors, supporting angiogenesis in the
tumor microenvironment (Unterleuthner et al., 2020; Du et al.,
2017). In addition to CAFs, GSEA analysis also revealed that the
recruitment of monocytes and neutrophils and Treg related
pathways were also enriched in high-GMS patients (Figures
5E,J–L). Numerous studies have shown that monocytes may
undergo differentiation and become M2 macrophages (Cho
et al., 2018), and neutrophils could differentiate into MDSCs
in the tumor microenvironment (Giese et al., 2019). M2
macrophages (Wen et al., 2018; Zhu et al., 2020) and
neutrophils (Zhao et al., 2020) play an immunosuppressive
role in the elimination of tumor cells. After comparing the
differences in TME-related signature scores, we also found
that MDSC and neutrophil signature scores of GEO-KO
samples were lower than those of GEO-control samples
(Supplementary Figures S3C–H).

The application of ICI has profoundly changed the strategies
of treatment for urothelial carcinoma. However, only 20–30% of
UC patients respond to immunotherapy, and some still have the
problem of primary or secondary resistance. In addition, to
identify patients sensitive to immunotherapy, the development
of novel drug combinations may help us enhance the efficacy of
immunotherapy. By analyzing the drug sensitivity data, we
speculated that HDAC inhibitors might enhance ICI efficacy
and even reverse the poor response of low-GMS patients to ICI
treatment, which was consistent with our GSEA results (Figures
5A–C). Some studies have reported HDAC inhibitors’ potential
in enhancing the efficacy of immunotherapy and even reverse the
insensitivity to ICI (Ugurel et al., 2019) by enhancing the anti-
tumor activity of CD8+ T cells (Que et al., 2021) and NK cells
(Hicks et al., 2018; Kim et al., 2020), reducing the number of M2
macrophages (Knox et al., 2019; Kim et al., 2020), impairing the
immunosuppressive function of MDSCs (Kim et al., 2020; Que
et al., 2021) and increasing the expression of PD-L1 on tumor
cells (Hicks et al., 2018; Que et al., 2021). Two clinical studies
investigated the efficacy of HDAC inhibitor vorinostat, combined
with immunotherapy, demonstrating preliminary antitumor
activity (Gray et al., 2019; Rodriguez et al., 2020). In addition,
we also screened out five drugs with high sensitivity in high-GMS
patients, which target apoptosis, PI3K, and RAF signaling
pathways. The results obtained from the genomic analysis
indicated that multiple significantly mutated genes have
regulatory effects on the PI3K signaling pathway;
consequently, the exploration of drugs targeting the PI3K
signaling pathway may be a new direction for the combined
treatment of UC patients. Since there are relatively few clinical
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studies on the combination of ICI and other drugs in UC patients,
we need more prospective studies to provide strong evidence for
novel drug combinations.

In this study, the bioinformatic analysis of two clinical cohorts
helped us reveal the prognostic value of glycogen metabolism on
ICI efficacy in UC patients as well as its possible underlying
mechanism. However, there are still several limitations. First,
the results of our study are based on the investigation of only
one ICI cohort and TCGA cohort; more data from other ICI
cohorts would produce more convincing, robust results. Secondly,
we utilized the RNA-seq data to construct the GMS of UC patients.
The RNA-seq data represents RNA levels of themixtures of various
cell types in the tumor microenvironment. Although GMS mainly
represented glycogen metabolism levels of tumor cells, this data is
also combined with the metabolic levels of immune cells and
stromal cells. In addition, the specific mechanism of glycogen
metabolism’s effect on the tumor microenvironment requires
more research and experimental evidence.
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