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Early diagnosis and monitoring of rheumatoid arthritis (RA) progress are critical for effective
treatment. In clinic, the detection of rheumatoid factor (RF) and anti-citrullinated protein
antibodies (ACPA) are usually combined to diagnose early RA. However, the poor
specificity of RF and high heterogeneity of ACPA make the early diagnosis of RA still
challenging. Bioinformatics analysis based on high-throughput omics is an emerging
method to identify novel and effective biomarkers, which has been widely used in many
diseases. Herein, utilizing an integrated strategy based on expression correlation analysis
and weighted gene coexpression network analysis (WGCNA), we identified 76 RA-trait
different expression genes (DEGs). Combined with protein-protein interaction (PPI)
network construction and clustering, new hub genes associated in RA synovia, CD3D,
GZMK, and KLRB1, were identified. We verified the specificity of these genes in the
synovium of RA patients through three external datasets. We also observed high sensitivity
and specificity of them for ACPA-negative patients. CD3D, GZMK, and KLRB1 are
potentially key mediators of RA pathogenesis and markers for RA diagnosis.
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INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation
in the synovium tissue of joints (McInnes and Schett, 2011; Gibofsky, 2014; Malmstrom et al., 2017;
Smolen et al., 2018). A variety of immune cells and cytokines are involved in synovial inflammation,
which ultimately leads to the destruction of soft tissues, cartilage, and bones around the joints (Zhang
et al., 2019). Early RA clearly begins months to years when autoimmune response persists and is
seronegative before it becomes a manifest polyarthritis and this is known as “preclinical RA.” The
treatment of RA is usually only effective in the early stage, and many patients gradually lose their
drug response as the disease progresses (Guo et al., 2018). Thus, early diagnosis is pivotal to optimal
therapeutic success. Some serum biomarkers like rheumatoid factor (RF) (MacGregor et al., 2000;
Onuora, 2012), anti-citrullinated protein antibody (ACPA) (Padyukov et al., 2011; Stahl et al., 2012),
anti-cyclic citrullinated peptide (anti-CCP) antibody (Zendman et al., 2006), C-reactive protein
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(CRP) (Lee et al., 2016), and erythrocyte sedimentation rate (ESR)
(Orr et al., 2018) have good performance to discriminate part of
typical early RA patients, but approximately 30% of patients
remain seronegative using current immunoassays. Other
biomarkers, such as miRNA (Cunningham et al., 2021),
calprotectin (Jarlborg et al., 2020), anti-RA33 (Syed Mohamed
Suhail et al., 2019), and anti-carbamylated protein (anti-CarP)
antibodies (Lamacchia et al., 2021), may be effective in the
diagnosis of early RA, but these markers are not widely
accepted in clinical application, and their prognostic
significance remains controversial owing to the lower
sensitivity and specificity of supplementary diagnosis
compared with RF and ACPA. Exploring hub genes and their
expression status in the inflamed synovium is a critical step in
defining new targets for the diagnosis or treatment of RA,
especially for the ACPA-negative RA patients whose condition
could not be well managed at the developing stage due to negative
index of clinical symptoms and serologic testing.

Application of transcriptomic or microarray analysis to whole
synovial tissue has already identified specific genes associated
with RA (Lewis et al., 2019). However, in most studies, there are
many shortcomings such as small sample size, high sample
heterogeneity, and only using a single technology platform and
other drawbacks exist in most studies. By effectively integrating
new high-throughput data, especially gene expression and
proteomic-profiling data, bioinformatics analysis is expected to
deliver novel clinical diagnostic insights and therapeutic options
at high resolution in an unbiased fashion (Sirota and Butte, 2011;
Okada et al., 2014; Stephenson et al., 2018). This strategy has
already been used to discover distinct transcriptomic features of
synovial fibroblasts and found that MTF1 and RUNX1 may be
crucial future targets for RA therapy (Tsuchiya et al., 2020).
Bioinformatics analysis also defined anti-PTX3 and anti-DUSP11
autoantibodies as newly identified biomarkers for ACPA-
negative RA diagnosis (Li et al., 2021).

Herein, aiming to investigate some new and effective
biomarkers for improving the management of early diagnosis of
RA, especially for ACPA-negative patients, we integrated multiple
databases from different GEO platforms to deeply analyze the
characteristic genes of synovial tissue for RA patients. Combining
differential expression analysis and weighted gene coexpression
network analysis (WGCNA), we screen out 76 RA-trait different
expression genes (DEGs). Followed by protein-protein interaction
(PPI) network construction and hub genes selection, we identified
CD3D, GZMK, and KLRB1 as three novel hub genes with RA
characteristics. Independent dataset verification indicated that
CD3D, GZMK, and KLRB1 can well distinguish RA patients
from normal and osteoarthritis (OA) patients and has high
sensitivity and specificity for ACPA-negative RA patients.

MATERIALS AND METHODS

Microarray Data Preparation
Gene expression profiling datasets were obtained from the NCBI-
GEO database (https://www.ncbi.nlm.nih.gov/gds). Datasets
GSE55235 and GSE55457 originating from GEO platform 96

(GPL96) were combined with GSE77298 and GSE153015 datasets
originating from GEO platform 570 (GPL570) for subsequent
analysis. The four datasets contained 100 joint synovial tissue
samples, including 27 normal joint synovial samples, 24 OA joint
synovial samples, and 49 RA joint synovial samples. Additionally,
three datasets were chosen for verification, which included
GSE39340 dataset originated from GPL10558, GSE55584
dataset originated from GPL96, and GSE89408 dataset
originating from GPL11154. These three datasets contained
202 joint synovial tissue samples, of which 28 are normal, 22
OA, and 152 RA synovial tissues (Table 1).

Integration and Normalization of Microarray
Data
The raw data were downloaded and preprocessed before analysis.
Background correction, prosummarization, and missing values
supplement for the matrix data of each GEO dataset were
performed systematically by the “affy” package and the
“impute” package in R/Bioconductor software (version 4.0.3).
The combat function of “sva” package was used to correct the
batch effects between different datasets. Principal component
analysis (PCA) construction via “factoextra” package was
performed to discover whether the batch effect was eliminated.

Identification and Analysis of DEGs
Based on the comparison of gene expression values from the RA
vs normal groups and the RA vs OA groups, the “limma” package
in R was used to identify DEGs. The overlapped DEGs were
outlined as RA-trait DEGs when adjusted p < 0.05 and |logFC|>1
were used as the filter criteria. Furthermore, the DEG expression
levels were visualized in heatmaps and volcano plots by the
“pheatmap” and “RColorBrewer” packages in R.

Construction of WGCNA
The merged gene matrix was loaded and checked to exclude
abnormal samples which might be escape from sample clustering.
The merged dataset contains 100 samples and 12,412 genes for
further WGCNA analysis. After selecting an appropriate
threshold, adjacency and topological overlap matrix (TOM)
were established to be a nearly no-scale network. Then,
different modules were recognized through dynamically tree
cutting with the calculation of cluster dendrogram. According
to the significance of the gene coexpression network, gene
significance (GS) and module membership (MM) were
obtained to investigate specific modules highly related to
clinical traits of RA. Finally, according to the threshold values
|GS| > 0.5 and |MM| > 0.7, significant RA-correlated genes were
selected as RA-trait module genes.

Identification of RA-Trait DEGs and Gene
Ontology/Kyoto Encyclopedia of Genes and
Genomes (GO/KEGG) Enrichment Analyses
The overlapped genes calculated by TBtools (version 1.089)
between RA-related DEGs and RA-trait module genes were
featured as RA-trait DEGs. GO and KEGG pathway analyses
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were performed via “clusterProfiler” package in R to acquire the
enriched cellular component (CC), biological process (BP),
molecular function (MF) categories, and functional pathways.
The significant enriched functions and pathways were filtered
with adjusted p < 0.05 and visualized in bubble plots executed by
the “ggplot2” package in R.

Construction of PPI Network and Key
Genes Analysis
The PPI network was constructed via the online tool STRING
(https://string-db.org/) based on the RA-trait DEGs. Cytoscape
(version 3.8.2) was applied for the better presentation and
visualization of the whole interaction information. The most
important cluster in the PPI network was identified by
Minimal Common Oncology Data Elements (MCODE), and
the key genes were further screened by cytoHubba (Cytoscape
plugin), which provide 12 different algorithms to rank the
importance or core degree of genes.

Box Plot Drawing and Statistical Methods
Gene expression box plots in different data sets were drawn
through “ggplot2” package. Wilcoxon test was used between two
variables, and the Kruskal–Wallis test was used between multiple
variables.

Analysis of Hub Genes Expression and
Drawing Receiver Operating Characteristic
(ROC) Curve in External Databases
The “ggplot2” and “ggpubr” packages in R were applied for genes
expression analysis via drawing boxplots according to the
expression values in different validation datasets. The “pROC”
package was used to draw ROC curves.

RESULTS

Quality Control of Gene Expression
Datasets
We determined the targeted analysis dataset integrating four
independent GEO datasets originating from two GEO platforms,
each employing RA, OA, and/or normal joint synovial tissue samples
(Table 1). Among the GSE55235, GSE55457, GSE77298, and

GSE153015 datasets for which the background correction, missing
values supplement, and mean expression value calculation were
performed, the batch effect was clearly observed (Figure 1A).
Multivariate PCA showed that when classified according to the
sample type, the integrated dataset was staggered with poor
discrimination (Figure 1B). Then, the batch-effect correction was
performed by the “sva” package using R, and the final data showed
lower heterogeneity (Figure 1C). PCA analysis spanned 100
individuals of normal (n � 27), OA (n � 24), and RA (n � 49), of
which three groups were clearly separated (Figure 1D). Subsequent
analysis follows the principles of Supplementary Figure S1.

Identification of DEGs in RA vsOA andRA vs
Normal, Respectively
Next, we explored DEGs of the RA vs normal group (49 RA vs 27
normal) and the RA vs OA group (49 RA vs 24 OA). Using a
p-value filter under 0.05 with a difference of twofold or more, we
identified 287 DEGs between the RA and normal groups, of
which 203 were upregulated and 84 were downregulated genes in
the RA group (Figure 2A and Supplementary Table SA). In
addition, we also identified 1,564 DEGs between RA and OA
group, which contained 792 upregulated genes and 772
downregulated genes in the RA group (Figure 2D and
Supplementary Table SB). As expected, these samples could
be distinguished in an unsupervised cluster analysis based on the
overall expression trend of DEGs (Figures 2B,E). GO enrichment
analyses revealed that theMF of DEGs among the RA and normal
groups were primarily related to amide binding, immune receptor
activity, and peptide binding, whereas the main BP involved
immune response-activating cell surface receptor signaling
pathway, immune response-activating signal transduction, and
T-cell activation. As for the CC term in the GO analysis, DEGs
were mainly localized in the external side of the plasma
membrane, collagen-containing extracellular matrix, and
endocytic vesicle (Figure 2C and Supplementary Figures
S2A,B). For the DEGs between the RA and OA groups, the
MF were highly related to chemokine activity, chemokine
receptor binding, and CXCR chemokine receptor binding,
whereas the main BP contained leukocyte chemotaxis, myeloid
leukocyte migration, and granulocyte migration. In CC analysis,
DEGs were mainly localized in lipoprotein particle, plasma
lipoprotein particle, and intraciliary transport particle
(Figure 2F and Supplementary Figures S2C,D).

TABLE 1 | Selected GEO datasets for bioinformatics analysis.

GEO datasets Platform Samples Data category Application

Normal OA RA

GSE55235 GPL96 10 10 10 Expression profiling by array Analysis
GSE55457 GPL96 10 10 13 Expression profiling by array Analysis
GSE77298 GPL570 7 0 16 Expression profiling by array Analysis
GSE153015 GPL570 0 4 10 Expression profiling by array Analysis
GSE39340 GPL10558 0 7 10 Expression profiling by array Verification
GSE55584 GPL96 0 6 10 Expression profiling by array Verification
GSE89408 GPL11154 28 22 152 Expression profiling by high-throughput sequencing Verification
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WGCNA Identifies Critical Modules
Correlating With RA
To further investigate the changed genes in the RA group, we
performed an unbiased gene expression analysis to identify
coexpressed genes and modules in our dataset. WGCNA is a
systems biology method used to decipher coexpression
patterns among genes across different samples (Langfelder
and Horvath, 2008). In our WGCNA analysis, the
integrated dataset was firstly clustered to screen out
whether there were any outliers, and the sample clustering
heatmap revealed that no sample was excluded (Figure 3A).
The soft-thresholding power β was selected as 7, which could
make the scale-free network evaluation coefficient R2 equal to
0.85 (Figure 3B). Then, we identified 5 gene coexpression
modules except the grey module which incorporated
uncategorized modular genes through TOM matrix
hierarchical clustering and dynamic tree cut (Figures
3C,D). Moreover, the blue module (R2 � 0.82; P � 1e-25),
the yellow module (R2 � −0.61; P � 1e-11), and the brown
module (R2 � −0.58; P � 3e-10) were highly associated with
RA. In addition, the values of GS and MM in three modules
were calculated and presented with a scatter diagram
(Figure 3E). Finally, by setting the threshold |GS| > 0.5 and
|MM| > 0.7, we screened out 397 RA-trait module genes for
further study (Supplementary Table SC).

DEGs Correlating With RA-Trait Module
Genes for Hub Gene Selection
To eliminate those invalid genes which have no expression change
among the RA-traitmodule genes, we overlapped theDEGs andRA-
trait module genes by TBtools (Chen et al., 2020) (Figure 4A). 76
target genes were obtained and displayed by an unsupervised
clustering analysis (Figure 4B). Go and KEGG analyses indicated
that these RA-trait genes were closely related to T lymphocyte
activation and regulation (Supplementary Figures S3A,B and
Supplementary Tables SD, SE). The PPI network of these genes
was acquired by STRING (Szklarczyk et al., 2021) and further
visualized and analyzed through Cytoscape (Agg et al., 2019). As
shown in Figure 4C, the PPI network in Cytoscape included 58
nodes and 287 edges (p-value < 1.0e-16). Then, three significant
clusters were predicted through plugin MCODE (degree cutoff � 2,
node score cutoff � 0.2, K-core � 2, and max. depth � 100). We
observed themost significant cluster (score: 12.8) including 16 nodes
and 96 edges (Figure 4D).

To sift hub genes that play a pivotal role in the related
pathways, we sorted out 8 kinds of algorithms including
cytoHubba, namely, BottleNeck, Closeness, Degree,
EcCentricity, EPC, MCC, MNC, and Radiality to analyze the
most significant cluster. The top 10 genes of each algorithm were
shown in Supplementary Table SF. We observed enrichment of 6
genes including GZMB, KLRB1, CD2, CD3D, CD8A, and GZMK

FIGURE 1 | Batch-effect correction of the integrated dataset. (A) PCA analysis of the original integrated dataset grouped by four individual datasets. (B) PCA
analysis of the original integrated dataset grouped by normal, OA, and RA sample types. (C) PCA analysis of the correcting integrated dataset grouped by four individual
datasets. (D) PCA analysis of the correcting integrated dataset grouped by normal, OA, and RA sample types.
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in all 8 algorithms, where CD2 (Raychaudhuri et al., 2009), CD8A
(Carvalheiro et al., 2015; Souto-Carneiro et al., 2020), and GZMB
(Bao et al., 2018) had already been reported as important genes
involved in the progression of RA (Figure 4E). Finally, the
three novel hub genes, CD3D, GZMK, and KLRB1 uniquely
exhibited RA associations in our dimensionality reduction
analysis.

External Dataset Verification Uncovers
Specifically High Expression of CD3D,
GZMK, and KLRB1 in the Synovium of RA
Patients
We queried three additional datasets to validate the RA
associations of CD3D, GZMK, and KLRB1. Datasets

GSE39340 (GPL10558) contained 10 RA and 7 OA
synovial tissue samples and another dataset GSE55584
(GPL96) contained 10 RA and 6 OA synovial tissue
samples. These two gene profiling datasets both
demonstrated that the three hub genes showed obvious
statistical significance between RA and OA samples
(Figures 5A,B). The third GSE89408 (GPL11154) dataset
was a high-throughput expression profiling which
contained 28 normal, 22 OA, 57 early RA, and 95
established RA synovial tissue samples. To our surprise,
CD3D, GZMK, and KLRB1 not only were highly expressed
in the synovial tissue of RA patients but also showed the same
trend in early RA patients (Figures 5C–E).

Based on verification results, we hypothesized that CD3D,
GZMK, and KLRB1 might be involved in the early evolution of

FIGURE 2 | Different expression gene (DEG) analysis of the integrated dataset. (A) Volcano plot of the 287 DEGs between normal and RA patients. Up:
upregulated; Down: downregulated; Not: no change. (B) Unsupervised clustering heatmap of the DEGs between normal and RA patients, top 40 were shown. (C) MF
enrichment of GO analysis for DEGs between normal and RA patients. MF: molecular function. (D) Volcano plot of the 1,564 DEGs between RA and OA patients. (E)
Unsupervised clustering heatmap of the DEGs between RA and OA patients, top 40 were shown. (F)MF enrichment of GO analysis for DEGs between RA and OA
patients.
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RA and could become potential diagnostic markers. ROC
curves were performed to assess the utility of CD3D,
GZMK, and KLRB1 to differentiate between OA, early RA,

and established RA. As shown in Figures 5F–H, the significant
clinical correlation was only presented in early RA and
established RA patients (p < 0.001), which indicated that

FIGURE 3 | WGCNA of the integrated dataset. (A) Sample dendrogram and trait map. (B) Selection of the soft-thresholding power β. The left panel showed the
scale-free fit index versus soft-thresholding power β. The right panel displayed the mean connectivity versus soft-thresholding power β. The soft-thresholding power β
was selected as 7 to make the fit index curve flat (R2 > 0.85). (C) Gene dendrogram obtained by average linkage hierarchical clustering. The color row below the
dendrogram shows the module assignment determined by the dynamic tree cut. (D)Model-trait relationships. Each row and column in the heatmap correspond to
one module (labeled by blue, turquoise, yellow, brown, green, and grey). Besides, the green color in the heatmap represents the negative correlation, and the red color
represents the positive correlation. (E) The scatter diagram of GS versus MM in blue, brown, and yellow modules. The gene closer to the upper right corner is more
related to RA.
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these three hub genes specifically correlated with RA. The area
under the curve (AUC) of the ROC curve is an indicator
combining sensitivity and specificity, which could
demonstrate the intrinsic effectiveness of diagnostic tests.
The AUC of CD3D, GZMK, and KLRB1 levels for early RA
was 0.869, 0.875, and 0.899, respectively. These three hub
genes showed significantly greater predictive power for RA

patients than OA patients but failed to distinguish between
early RA and established RA patients.

Performance of CD3D, GZMK, andKLRB1 in
ACPA-Negative RA Patients
Clinically, ACPA-negative RA poses a great challenge for early
diagnosis (Ohmura et al., 2010; Daha and Toes, 2011; Li et al.,

FIGURE 4 | Hub genes of RA-trait DEGs selection. (A) Venn diagram showing gene overlap between DEGs and RA-trait module genes. 76 RA-trait DEGs were
selected. (B) Heatmap showing unsupervised clustering analysis of RA-trait DEGs. (C) PPI network analysis of RA-trait DEGs. Red color represents the upregulated
genes, and green color represents the downregulated genes. The yellow color represents the additional genes introduced by Cytoscape analysis. The size of the bubble
is proportional to the change of expression. (D). The most significant cluster containing 16 genes. (E) The hub genes were sorted out by 8 algorithms.
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2021). Thus, we reintegrated across the GSE89408 dataset to evaluate
the performance of the CD3D, GZMK, and KLRB1 in the diagnosis
of ACPA-negative RA. The RA samples in GSE89408 dataset were
divided into ACPA-negative (n � 96) and ACPA-positive RA (n �
43) subgroups for further verification. Surprisingly, similar to the
ACPA-positive RA group, the expression levels of CD3D, GZMK,
andKLRB1 in theACPA-negative RAgroupwere significantly higher
than those in the normal and OA groups (Figures 6A–C). The AUC

of CD3D, GZMK, and KLRB1 expression levels was 0.909, 0.916, and
0.886, respectively (Figures 6D–F).

DISCUSSION

Bioinformatics analysis methods are widely used in many studies
for various diseases (Kanehisa and Bork, 2003). In this study, we

FIGURE 5 | Association of CD3D, GZMK, and KLRB1 with RA. (A) CD3D, GZMK, and KLRB1 distribution for patients with OA and RA in GSE39340 dataset. (B)
CD3D, GZMK, and KLRB1 distribution for patients with OA and RA in GSE55584 dataset. (C–E) CD3D, GZMK, and KLRB1 distribution for normal, OA, early RA, and
established RA in the GSE89408 dataset. (F–H) Prediction of CD3D, GZMK, and KLRB1 for patients with early RA, established RA, and OA in the GSE89408 dataset.
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performed WGCNA and differential expression analysis to
obtain RA-trait DEGs. GO and KEGG analyses revealed the
pathological mechanism of these genes involved in the
pathogenesis of RA. Six hub genes, named CD2, CD3D,
CD8A, GZMB, GZMK, and KLRB1, were acquired through 8
algorithms. ROC curve revealed the diagnostic and prognostic
significance of those hub genes in this study. By reviewing
previous studies, GZMB, CD8A, and CD2 had been proven to
have potential diagnosis and application value in RA. The other
three hub genes, CD3D, GZMK, and KLRB1, were currently
found to be lack of attention in RA. They were further verified in
independent GEO datasets and the statistically significant
difference was only presented in RA samples when compared
with normal and OA samples. Meanwhile, clinical correlation
analysis and ROC curve drawing were carried out and it was
found that these three hub genes were not only meaningful for the
early diagnosis of RA but also have guiding significance for the
diagnosis of ACPA-negative patients.

Previous studies have shown that CD3D encodes the δ
subunit of transmembrane CD3 antigen complex and
forms the T-cell receptor/CD3 complex (TCR/CD3
complex) with the other four CD3 subunits for T-cell
development and signal transduction (Gil et al., 2011). The

deficiency of CD3D could cause damage to immunity (Dadi
et al., 2003). Additionally, studies have reported that CD3D is
a molecular diagnostic marker for immunodeficiency in early
infancy (Kwan et al., 2014). Moreover, CD3D has been
confirmed to actually participate in the abnormal
activation of T lymphocyte immune-related pathways
based on epigenetic and genomic analysis (Limbach et al.,
2016; Deng et al., 2019). Coincidentally, these pathways were
observed to be enriched in the present study (Supplementary
Figure S4A).

GZMK is a member of the serine-proteases family, which is
mainly expressed by T lymphocytes (Supplementary Figure
S4B). In addition to the cytotoxicity of this family, it also has
the effect of promoting proinflammatory cytokines release
(Joeckel et al., 2011). Moreover, in human infectious
diseases, GZMK has been found to activate protease-
activated receptor-1 (PAR-1) in endothelial and fibroblast
cells and induce the production of inflammatory cytokines,
such as TNF-α, IL1, IL-6, and MCP-1 (Sharma et al., 2016;
Herich et al., 2019). All these cytokines could cause
inflammation cascades, leading to more inflammatory cells
infiltration. Besides, its protease effect can promote the
degradation of the extracellular matrix, resulting in

FIGURE 6 | Correlations between CD3D, GZMK, KLRB1, and ACPA-negative RA diagnosis. (A–C) CD3D, GZMK, and KLRB1 distribution for RA patients with
ACPA-positive and ACPA-negative. Normal and OA groups served as control. (D–F) Prediction of diagnosis value for ACPA-negative RA patients according to CD3D,
GZMK,and KLRB1 expression. ACPA-_RA: ACPA-negative RA.
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inflammatory cell infiltration and tissue destruction (Turner
et al., 2019). These studies suggest that GZMK may trigger the
continuous inflammation amplification of RA.

The protein NKRP1A encoded by KLRB1 was a member of the
NKRP1 family, and it was mainly expressed on T lymphocytes
and natural killer (NK) cells (Supplementary Figure S4C).
NKRP1A plays an inhibitory role in NK cell cytotoxicity
(Kurioka et al., 2018). In addition, activation of NKRP1A on
T cells had been found to be associated with IL17, IFN-γ, and
TNF production (Billerbeck et al., 2010) and is involved in the
process of inflammation and the pathogenesis of autoimmune
diseases. The signal transduction mechanism of KLRB1 might be
related to the activation of PI3 kinase/AKT and ERK1/2 pathways
in NK cells and the PI3 kinase/AKT and STAT3 pathways in
T cells (Pozo et al., 2006; Bai et al., 2014). Consistently, the
activation of these signaling pathways is closely related to the
pathogenesis of RA.

The study is the first to directly link the expression change of
three genes with RA through unbiased and independent
bioinformatics analysis, and we defined these three genes as
RA-trait DEGs. We observed heterogeneity of CD3D, KZMK,
and KLRB1 detectable in normal, OA, and RA synovial tissues.
The gene expression of these RA-trait DEGs can distinguish early
RA from OA patients. Lack of effective biomarkers in ACPA-
negative RA patients impedes early diagnosis and treatment.
Statistically, about one-third of RA patients are ACPA-
negative, and the clinical characteristics of ACPA-negative RA
are different from those of ACPA-positive RA. Our ROC curves
analysis suggested that the identified RA-trait DEGs might be
potential markers for ACPA-negative RA diagnosis. However,
this study has several limitations. First, the specificity of this gene
expression in other inflammatory or immune diseases, such as
psoriasis, SLE, and multiple sclerosis, has not been investigated.
Second, the sample size of our study was still limited, and it is
essential to interrogate the gene expression in synovium by
further experiment. Third, it is necessary to explore the
possibility of checking these three genes or corresponding
proteins through blood or joint fluid. In conclusion, our study
could provide a theoretical basis for better management of early
diagnosis of RA.
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