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Pteridophytes, represented by ferns and allies, are an important phytogenetic bridge
between lower and higher plants. Ferns have evolved independently of any other species in
the plant kingdom being its secondary metabolism a reservoir of phytochemicals
characteristic of this taxon. The study of the potential uses of Polypodium vulgare L.
(Polypodiaceae) as medicinal plant has increased in recent years particularly when in 2008
the European Medicines Agency published a monograph about the rhizome of this
species. Our objective is to provide scientific knowledge on the polar constituents
extracted from the fronds of P. vulgare, one of the main ferns of European distribution,
to contribute to the validation of certain traditional uses. Specifically, we have characterized
the methanolic extract of P. vulgare fronds (PVM) by HPLC-DAD and investigated its
potential cytotoxicity, phototoxicity, ROS production and protective effects against
oxidative stress by using in vitro methods. The 3T3, HaCaT, HeLa, HepG2, MCF-7
and A549 were the cell lines used to evaluate the possible cytotoxic behaviour of the PVM.
HPLC-DAD was utilized to validate the polyphenolic profile of the extract. H2O2 and UVA
were the prooxidant agents to induce oxidative stress by different conditions in 3T3 and
HaCaT cell lines. Antioxidant activity of in vitro PVM in 3T3 and HaCaT cell lines was
evaluated by ROS assay. Our results demonstrate that PVM contains significant amounts
of shikimic acid together with caffeoylquinic acid derivatives and flavonoids such as
epicatechin and catechin; PVM is not cytotoxic at physiological concentrations against
the different cell lines, showing cytoprotective and cellular repair activity in 3T3 fibroblast
cells. This biological activity could be attributed to the high content of polyphenolic
compounds. The fronds of the P. vulgare are a source of polyphenolic compounds,
which can be responsible for certain traditional uses like wound healing properties. In the
present work, fronds of the common polypody are positioned as a candidate for
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pharmaceutical applications based on traditional medicine uses but also as potential food
ingredients due to lack of toxicity at physiological concentrations.
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INTRODUCTION

Oxidative stress is characterized by an imbalance between pro-
oxidant agents and the antioxidant defence system. According to
its origin, this antioxidant system is classified as endogenous or
exogenous (Addor, 2017). The inability to maintain an adequate
redox state, either due to excess production of free radicals or an
alteration of the antioxidant system, triggers oxidative damage
that affects fundamental biological structures (Willcox et al.,
2004). In this sense, studies have associated oxidative stress
with the development of different metabolic diseases (Cásedas
et al., 2016; He et al., 2017). Nowadays, antioxidant is defined as
“any substance that delays, prevents, or removes oxidative damage
to a target molecule” (Burton and Ingold, 2015).

Numerous investigations have also established the link
between sun exposure and skin alterations (Evans and
Johnson, 2010; Kimlin and Guo, 2012). Today it is well
documented that ultraviolet radiation affects animals in
different causes, among which oxidative stress, inflammation,
erythema, breakdown of the extracellular matrix, wrinkling and
skin cancer. But themain effect of this ultraviolet irradiation is the
increase in oxidative stress caused by the increase in ROS, which
can lead to an imbalance in the endogenous antioxidant system
(Gegotek et al., 2020). Ultraviolet irradiation is also the main
etiologic factor in the development of skin cancers (Rundle et al.,
2020). Phytochemicals can modulate the behaviour of tumour
cells by acting on different pathways of molecular signalling such
as exogenous antioxidant system. As examples of these pathways
are the topoisomerase inhibition (genistein), kinase inhibition
(apigenin) and modulation of multidrug resistance (2′,4′,6′-
triOH-chalcone), among others (Ren et al., 2003). The
doxorubicin, paclitaxel, vinblastine, etoposide, irinotecan,
gemcitabine, and methotrexate are medically successful in
anticancer therapy, for their security and efficacy, which are
part of the list of anticancer agents provided or inspired by
nature in recent years (Newman and Cragg, 2012; Silva et al.,
2019). In addition, polyphenols, as flavonoids for their safety and
accessibility, can also be key dietary molecules for cancer
treatment and prevention respectively (Asensi et al., 2011;
Shukla et al., 2014; Alvarado-Sansininea et al., 2018).

Ethnopharmacological investigations on traditional Chinese
medicine have reported the therapeutic uses of ferns in current
medicine. For that purpose, different bioassays were performed as
for example antioxidant (Dryoathyrium boryanum (Willd.)
Ching (Athyriaceae family) (Cao et al., 2013)),
acetycholinesterase inhibition (Stenochlaena palustres (Burm.
f.) Bedd. (Blechnaceae family) (Chear et al., 2016)), tyrosinase
inhibition (Asplenium adiantum-nigrum L. (Aspleniaceae family)
(Farràs et al., 2019)) and anti-tumour activity (Davallia cylindrica
Ching (Davalliaceae family) (Cao et al., 2014)) attributed to
some ferns.

On the other hand, investigations of ferns in recent years have
put forward the idea of these species as a potential source of
bioactive compounds with food interest. In certain Eastern
cultures of the European continent fronds of ferns are used as
a food source (Langhansova et al., 2021). The young fronds of
ferns (named fiddleheads), which generally exhibit a higher total
phenol content than the corresponding mature fronds, are a
source of nutrients and phytochemicals with a high potential to
reduce oxidative stress of diseases associated with ageing
(Dvorakova et al., 2021).

Polypodium vulgare L. (The Plant List, 2021), commonly known
as polypody in English or as polipodio in Spain for the shape of its
fronds as feet (poly:many and podos: foot), as represented in Image
1, is a fern of the leptosporangiate class belonging to the
Polypodiaceae family (Bolòs and Vigo, 1984; Khare, 2007; Quer,
2016). P. vulgare has been used as medicinal plant in Europe since
ancient times. As example, in the middle of the last century the use
of P. vulgare rhizome infusion as expectorant or diuretic in
traditional Polish medicine is reported (Glensk et al., 2019b).
Moreover, the fronds of P. vulgare have an ethnoveterinary use
for treatment variolous, jaundice and parasitic diseases in Spain
(Bonet and Vallès, 2007). The use of P. vulgare as food is restricted
as sweetener in the case of its rhizome (Glensk et al., 2019a). Since
2008, the rhizome of P. vulgare has been accepted by European
Medicines Agency (EMA) for its use as expectorant herbal
medicine in cough and cold and in cases of occasional
constipation (EMA, 2008).

In the present study we want to highlight the insufficient
number of studies dealing with ferns in comparison with
angiosperms to support their potential uses (Chen and Kong,
2005; Cao et al., 2014). Hopefully, these studies will be a turning
point for the promotion of traditional and local uses of ferns in
Europe and particularly in Spain (Villar and Bonet, 2018).

MATERIALS AND METHODS

Chemicals and Reagents Equations
All reagents were of analytical grade. Trypan blue (0.4%) dye,
hydrogen peroxide (H2O2) 30% w/w, 2,5-diphenyl-3-(4,5-
dimethyl-2-thiazolyl) tetrazolium bromide (MTT),
dimethylsulfoxide (DMSO), 2,7-dichlorodihydrofluorescein
diacetate (DCF) and chlorpromazine hydrochloride (CPZ, CAS
No. 69–09-0) were supplied from Sigma-Aldrich (Madrid, Spain).
Dulbecco’s modified Eagle’s medium (DMEM) with and without
phenol red, fetal bovine serum (FBS), phosphate buffered saline
(PBS), L-glutamine solution (200 mM), trypsin-
ethylenediaminetetraacetic acid (EDTA) solution (170,000 U/L
trypsin and 0.2 g/L EDTA) and penicillin-streptomycin solution
(10,000 U/mL penicillin and 10 mg/mL streptomycin) were
acquired from Lonza (Verviers, Belgium). All analytical
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standards used for liquid chromatography analysis shikimic acid,
gallic acid, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid,
(+)-catechin hydrate, (−)-epicatechin, rutin, hyperoside,
naringin, quercitrin, 3,5-di-O-caffeoylquinic acid, rosmarinic
acid, cinnamic acid, eugenol and trans-cinnamaldheyde were
purchased from Sigma-Aldrich (Milan, Italy). The 75 cm2

culture flasks and 96-well plates were obtained from TPP
(Trasadingen, Switzerland). HyClone fetal bovine serum (FBS)
was purchased from Thermo Scientific (Northumberland,
United Kingdom).

Plant Material
The fronds of Polypodium vulgare L. were collected from the
Prades mountains 41°17′34″N 1°02′42″E geographical
coordinates (Tarragona, Spain). Previously we verified that this
species was reported in the selected area by Banco de Datos de
Biodiversidad de Cataluña (BDBC, 2015). When the fronds were
dried, a sample voucher was stored at Herbarium of Universidad
San Jorge (Zaragoza, Spain), Polypodium vulgare L.: voucher no.
003-2016.

Preparation of Methanolic Extract With the
Fronds of Polypodium vulgare L.
Powdered fronds of the plant material were macerated with
methanol for 24 h. After this, the methanolic extract was
filtered using a Whatman no. 4 filter paper and to evaporate
the solvent, a rotatory evaporator with a thermostatic bath at 30°C
was used. This process was repeated three times to obtain the
correspondence exhaustion extract as described by ourselves
(Farràs et al., 2019). Finally, extracts were conserved at −20°C
until we need. Homogenization of the plant extract with the
corresponding culture medium was obtained by sonication.

Phytochemical Characterization by Liquid
Chromatography With Diode-Array
Detection (HPLC-DAD)
HPLC-DAD studies were performed using a Hewlett-Packard
HP-1090 Series II (Palo Alto, CA, United States), equipped with a
vacuum degasser, a binary pump, an autosampler and a model
1046AHP photodiode array detector (DAD) following a previous
developed method with some modifications (Caprioli et al.,
2016). The chromatographic separation was accomplished on
a Synergi Polar-RP C18 (4.6 mm × 250 mm, 4 µm) analytical
column from Phenomenex (Chesire, United Kingdom). The
column was preceded by a security cartridge. The mobile
phase for HPLC-DAD (diode array detector) analyses was a
mixture of (A) water with 0.1% formic acid (v/v) and (B)
acetonitrile with 0.1% formic acid, flowing at 0.8 mL/min in
gradient conditions: 0 min, 20% B; 0–15 min, 60% B;
15–20 min, 60% B; 20–25 min, 20% B, 25–30 min, 20% B. The
column temperature was set at 30°C and the injection volume was
5 µL. UV spectra were recorded in the range 230–350 nm, where
230 nm was used for quantification of shikimic acid, 256 nm for
rutin and hyperoside, 272 nm for gallic acid, 280 nm for
(+)-catechin hydrate and (−)-epicatechin, 325 nm for 3-O-

caffeoylquinic acid, 5-O-caffeoylquinic acid and 3,5-di-O-
caffeoylquinic acid.

Calibration curves of the analysed compounds (Supplementary
Material S1) were constructed injecting standard solutions at six
different concentrations, i.e., 0.5, 1, 5, 10, 50 and 100 mg/mL, in
HPLC-DAD. All the calibration curves of the analysed compounds
showed a correlation coefficient greater than 0.9930. The limits of
detection and the limits of quantification of the analyzed
compounds, expressed in µg/mL were estimated on the basis of
3:1 and 10:1 S/Ns (signal to noise ratio). LODs and LOQs were in
the range of 0.03–0.15 and 0.1–0.5 μg/mL, respectively. Retention
time stability was utilized to demonstrate the specificity of the
method. Reproducibility of the chromatographic retention time for
each compound in was examined five times per day over a 5-day
period (n � 25). The retention times using this method were stable
with a percent RSD value of ≤1.33%.

Cell Culture
The mouse fibroblast cell line, NIH 3T3, and the spontaneously
immortalized human keratinocyte cell line, HaCaT, were used in
all in vitro experiments. In the case of cytotoxic assay, cell viability
also was evaluated by the cervical cancer cell line HeLa, the liver
cancer cell line HepG2, the breast cancer cell lineMCF-7 and lung
cancer cell line A549. 3T3 and A549 were purchased from Sigma-
Aldrich as a worldwide provider of European Collection of
Authenticated Cell Cultures (ECACC), whereas HaCaT, HeLa
and MCF-7 were obtained from Eucellbank (Celltec-Universitat
de Barcelona, Spain). HepG2 cell line was kindly donated by Dr.
Borràs of Experimental Toxicology and Ecotoxicology Platform
(UTOX-CERETOX) of Parc Científic of Universitat de Barcelona.

Cell maintenance and culture were performed in Dulbecco’s
Modified Eagle’s medium (DMEM) supplemented with 10%
heat-inactivated fetal bovine serum (FBS), 2 mM L-glutamine
and 100 U/mL:100 U/mL streptomycin-penicillin mixture (10%
FBS-DMEM) at 37°C in a 5% carbon dioxide (CO2)-humidified
incubator. Cells were routinely subcultured in 75 cm2

flasks.
Experimental treatments were performed when cells reached

80% of confluence, culture medium was removed, cells were
rinsed with PBS and then detached by trypsinization (trypsin-
EDTA). From the cellular suspension obtained and after
adjusting cell density at 1 x 105 cells/mL, 100 were seeded in
96 well microplates and incubated overnight (37°C and 5% CO2).
Cell density was adjusted by counting the number of viable cells
with the trypan blue (0.4%) dye exclusion.

Cytotoxicity Activity of Methanolic Extract
of Polypodium vulgare L. in Non-Tumoral
and Tumoral Cells Lines
Non-tumoral (3T3 and HaCaT) and tumoral cells lines (HeLa,
HepG2, MCF-7 and A549) were treated for 24 h (37°C and 5%
CO2) with increasing concentrations of methanolic extract 0.01,
0.1, 1 and 2 mg/mL P. vulgare in 5% FBS-DMEM. For each
independent experiment and plate, untreated cells (maintained
with culture medium) were included as negative controls.
Cytotoxicity of PVM was determined by the NRU and MTT
assays.
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Determination of Cell Viability by Neutral Red Uptake
and 2,5-Diphenyl-3-(4,5-Dimethyl-2-Thiazolyl)
Tetrazolium Bromide Assays
Cell viability were determined by the NRU and MTT methods
after treatments.

The Borenfreund and Puerner protocol for the determination of
cell viability by NRU has been followed with some described
adaptations (Borenfreund and Puerner, 1985). Once the
incubation time of the cells with the treatments had elapsed, the
supernatant was extracted from each well and 100 μl of NR solution
was applied (0.05mg/mL in serum-free DMEM without phenol
red). After 3 hours, the supernatant was removed by inversion from
the plate and 100 µl of the developer NR solution was added. In the
developer solution, the formaldehyde was replaced by an acidic
ethanol solution (Riddell et al., 1986). The quantification of the
remnant NR, which corresponds to the NRU bound to the
lysosomes, is proportional to the viable cells (Weyermann et al.,
2005). After 5–10min of shaking the plate, the absorbance was
obtained at 550 nm, by means of the Tecan Sunrise microplate
reader (Männedorf, Switzerland).

The MTT assay based on the experimental protocol of Mosmann
(Mosmann, 1983) was used with the some previous adaptations
(Zanette et al., 2011); 100 µL of an MTT solution (0.5mg/mL in
serum-free DMEM without phenol red) was added in each well
following incubation of the plates for at least 3 h in cell culture
incubation conditions (37°C and 5% CO2). At the end of incubation,
supernatant was removed and 100 µL of the organic dissolvent
dimethyl sulfoxide (DMSO) was added to each well to dissolve the
formazan crystals (Präbst, 2017). The amount of soluble formazan is
proportional to the number of cells with optimal mitochondrial
activity (Fotakis and Timbrell, 2006). Absorbance was measured at
550 nm using a Tecan Sunrise microplate reader (Männedorf,
Switzerland), previous homogenization of the well content by
gently shaking each microplate during 5min at 100 rpm/min.

Cell viability for NRU and MTT assays were calculated using
the following equation:

Cell viability (%) � (Acontrol − Asample

Acontrol
) x 100

where Acontrol and Asample are the absorbance of the control and
each sample, respectively.

Cytoprotective Activity in 3T3 and
HaCaT Cell Lines
Potential protective effect of the extract was then explored in the
non-tumoral cell lines against oxidative stress induced by
hydrogen peroxide (Cásedas et al., 2020). Cells were pre-
treated with 0.01, 0.1, 1 and 2 mg/mL PVM (100 μL) dissolved
by 5% FBS-DMEM for 24 h following addition of H2O2 (in 5%
FBS-DMEM) at a final concentration 2 mM for 2.5 h. Finally, cell
viability was determined by NRU and MTT assay. In each
microplate negative and positive controls were included. In
this case, positive controls consist of cells treated by H2O2 at
2 mM during 2.5 h without previous pre-treatment with the
extracts.

Cytoprotective activity was calculated as follows:

Cytoprotective activity (%) � (CVPVM−H2O2 − CVH2O2

CVPVM−H2O2
) x 100

where CV is the cell viability for each condition described in the
formula.

Cellular Repair Activity in 3T3 Cells
Cellular repair properties were evaluated using 100 μL H2O2 at
2 mM during 2.5 h before applying PVM at different
concentrations (0.01, 0.1, 1 and 2 mg/mL). Cell viability was
assessed by NRU and MTT assays 24 h after incubation with the
treatments.

Cellular repair activity was calculated as follows:

Cellular repair activity (%) � (CVPVM−H2O2 − CVH2O2

CVPVM−H2O2
) x 100

where CV is the cell viability for each condition described in the
formula.

Phototoxicity Activity of Methanolic Extract
of Polypodium vulgare L. in 3T3 and
HaCaT Cell Lines
In parallel with the study of the potential cytoprotective protection of
the extract, we have explored the potential phototoxic activity of
PVM. For this purpose we followed the Organization for Economic
Cooperation and Development (OECD) TG 432 (2019) (OECD,
2019) with some adaptions.

Briefly, 3T3 and HaCaT cells were plated at a density of 1 x 105

cells/mL (100 μL) in a 96 well microplate in 10% FBS-DMEM for
24 h. Cells were treated with PVM samples and incubated for 1 h
(37°C, 5%CO2) before being irradiatedwith 1.8 J/cm

2 of ultraviolet A
(UVA) light. To avoid as much as possible protein interferences with
protein and light absorbing components, PVM samples were
solubilized in serum-free DMEM without phenol red. Moreover,
for comparative purposes and to correctly interpret the data, negative
controls consisted in non-treated cells whereas positive controls
consisted in cells treated with the well-known phototoxic
chemical chloropromazine.

After irradiation, cell media was replaced for 100 μL of fresh
medium (10% FBS-DMEM) and cell viability was determined after
24 h of incubation by the NRU and MTT colorimetric assays.

Light exposure was performed in a photostability UV chamber
(58 × 34 × 28 cm) equipped with three UVA lamps Actinic BL
TL/TL-D/T5 (Philips, 43 V, 352 nm, 15W) as described by our
research group (Martínez et al., 2013). Dosage and time
exposition of cells to UVA light was regularly settled thanks to
a photoradiometer Delta OHM provided with a UVA probe
(HD2302 - Italy). We followed the equation:

E ( J
cm2

) � t (s) x P ( W
cm2

)
where E stands for ultraviolet dose, t represents the time
expressed in seconds and, finally, P is the lamp potency.
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Intracellular Reactive Oxygen Species
(ROS) Induced by H2O2 of Methanolic
Extract of Polypodium vulgare L. in 3T3 and
HaCaT Cell Lines
ROS production was tested accordingly (Ferreira et al., 2018).
After the incubation of the cells with the different concentrations
of the extract for 24 h as reported in previous sections for in vitro
assays, cells were washed twice with PBS and DCF (100 µM) was
applied to each well for 45 min (37°C and 5% CO2). DCF that has
not penetrated cells was removed by washing twice with cell
culture medium and then H2O2 (1 and 2 mM) was added to
induce oxidative stress. The fluorescence intensity of the oxidized
product of DCF was registered (λexcitation 480 nm; λemision

530 nm) at 0, 1, 2 and 3 h by a plate reader ThermoFisher
SCIENTIFIC VARIOSKAN LUX (ThermoFisher SCIENTIFIC,
Waltham, Massachusetts, United States). Results were expressed
as Fluorescence Intensity (FI) which have adimensional units. The
FIz h Vs 0 h were calculated as follows:

Fluorescence Intensityz h Vs 0 h (FIz h Vs 0 h)

� (FIz h − FI0 h

FIz h
) x 100

where FIz h is the intensity fluorescence at z h (z as 1, 2 or 3 h) of
incubation and FI0 h the amount fluorescence intensity at 0 h.

The FI for each specific time was calculated using this formula:

FI � Fluorence480 nm (excitation)
Fluorence530 nm (emision)

The ΔROS, which have adimensional units for FI, was
obtained using the following formula:

ΔROSH2O2 � ΔROSPVM with DCF−H2O2 − ΔROSDCF−H2O2

Statistical Analysis
All experiments were carried out in triplicates and almost three
independent experiments were assayed, on different days, except for
the cytoprotection PVM HaCaT against 2mM H2O2 (2.5 h) MTT for
which the results correspond to n � 2 experiments. Statistical significance
for MTT cell viability and fluorescence intensity was analysed by using
GraphPad Prism version 7, San Diego, CA, United States. Data are
presented asmean ± standard error. Activities have been compared using
a two-way analysis of variance (ANOVA) by Bonferroni. Statistical
differences were considered as follows: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤
0.001 (***) and p ≤ 0.0001 (****).

RESULTS

Phytochemical Characterization by Liquid
Chromatography With Diode-Array
Detection (HPLC-DAD)
Different types of polyphenols were monitored in the extract. The
extract proved to contain different types of phenolic acids and

flavonoids, as observed in Table 1 (77,823.7 mg/kg). However,
naringin, quercitrin, rosmarinic acid, cinnamic acid, eugenol and
trans-cinnamaldheyde were not detected.

The major constituents in the extract, as seen in Figure 1, were
3-O-caffeoylquinic acid (58,778.3 mg/kg), epicatechin
(7,158.5 mg/kg), shikimic acid (5,339.3 mg/kg) and catechin
(3,879.8 mg/kg) which were phenol acids. The peculiar
secondary metabolites found were hyperoside and 3,5-di-O-
caffeoylquinic acid, with low concentrations (91.3 and
106.0 mg/kg respectively).

Cytotoxic Activity in Non-Tumoral and
Tumoral Cell Lines
A set of cytotoxic assays was carried out to determine the
cytotoxic potential; however, data on NRU method were
not shown.

Figure 2 shows cell viability obtained by theMTT assay for the
different cell lines described here. First, we evaluated the cytotoxic
activity of the PVM in 3T3 and HaCaT as a representation of
non-tumoral cell lines. In both cell lines a marked increase in
cytotoxicity was observed, at concentrations of 1 and 2 mg/mL
PVM compared to 0.01 and 0.1 mg/mL PVM but with a slightly
higher cytotoxicity activity of PVM in HaCaT (35.3%) than in
3T3 (46.4%) at 1 mg/mL PVM.

The cytotoxicity study was extended to tumoral cells such us
HeLa, HepG2, MCF-7 and A549 cells. As we can observe in
Figure 2, PVM on HeLa and HepG2 cells presents a similar
cytotoxic behaviour, presenting a significant decrease in cell
viability at the highest concentration assessed, being this
decrease slightly higher in HepG2 (44.2%) than HeLa (49.0%).
No cytotoxic effects have been determined at 0.01 and 0.1 mg/mL
of the extract.

For MCF-7 and A549 cells (Figure 2) no statistical
differences among cell viability is observed at the different
concentrations studied of PVM, although values show a slight
decrease to 72.5% in MCF-7 at 2 mg/mL and 77.3% in A549 at
0.1 mg/mL.

The present results exhibited that, cytotoxicity effects only
appear at 1 and 2 mg/mL PVM in 3T3, HaCaT, HeLa and HepG2.

TABLE 1 | Quantitative determination of metabolites in the methanolic extract
Polypodium vulgare L. by HPLC-DAD reported at 272 nm.

No. Phytochemicals Quantity (mg/kg extract)a,b

1 Shikimic acid 5,339.3 ± 70.6
2 Gallic acid 1791.3 ± 38.3
3 5-O-caffeoylquinic acid 256.5 ± 12.1
4 3-O-caffeoylquinic acid 58,778.3 ± 417.7
5 (+)-Catechin hydrate 3,879.8 ± 153.3
6 (−)-Epicatechin 7,158.5 ± 88.8
7 Rutin 422.7 ± 30.4
8 Hyperoside 91.3 ± 11.7
9 3,5-di-O-caffeoylquinic acid 106.0 ± 15.5

Total content 77,823.7 ± 838.4

aResults are expressed in mg/kg dry extract, n � 3.
bCinnamic acid, eugenol, naringin, quercitrin, rosmarinic acid and trans-cinnamaldehyde
were not detected.
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Cytoprotective Activity in 3T3 and
HaCaT Cell Lines
Before the potential cytoprotective activity were studied, the
deleterious effects of H2O2 in the cells were initially
determined. From this previous assay (data not shown), we
have established that cell viability obtained at 2 mM of H2O2

for 2.5 h (30.5 and 41.0% for 3T3 and HaCaT respectively) allows
us to evaluate potential beneficial effects of PVM.

As observed in Figure 3, cell viability in 3T3 increases mainly
in parallel to PVM concentrations indicating some cytoprotective
effect although not statistically significant, being this
cytoprotective activity of 18.9 and 26.5% at 0.1 and 2 mg/mL,
respectively. In the case of HaCaT, no cytoprotective effect has
been observed in any of the concentrations tested.

Cellular Repair Activity in 3T3 Cells
In the cellular repair assay, we have used the same conditions of
H2O2 as in cytoprotection assay (2 mM H2O2 for 2.5 h). As we
can observe in Figure 4, there is an increase in cell viability as
PVM concentration rises; however, this discrete reparation effect
is proportional to the concentration of the extract.

Phototoxicity Activity of Methanolic Extract
of Polypodium vulgare L. in 3T3 and
HaCaT Cell Lines
The validity of the assay has been determined by calculating
the ratio of cell viability in irradiated respect to non-irradiated
conditions of both negative and positive control cells. Doses of
1.8 J/cm2 of UVA light affects the viability of non-treated cells
that decrease in both cell lines. In the phototoxicity assay is
important to consider that cell viability of control cells not
treated but irradiated present a cell viability of about 63.3 and
75.0% respect from the non-irradiated ones for 3T3 and
HaCaT respectively. Indicating that 3T3 are much sensitive
to light than HaCaT and that interpretation of data should be
interpreted carefully, as seen in Figure 5. However, the effect
of the photosensitizer CPZ in 3T3 and HaCaT is confirmed by
the important drop of cell viability when exposed to UVA
respect not exposed to UVA in both cell lines, 26.9 and 13.7%
cell viability respectively. Considering these ratios, the viability
obtained when cells were exposed to UVA in the presence of
PVM is considered.

FIGURE 1 | HPLC-DAD chromatograms reported only at 272 nm for sake of clarity and corresponding to (A) standard mixture solution (B) extract of methanolic
fronds extract of Polypodium vulgare L. List of compounds: 1 � shikimic acid, 2 � gallic acid, 3 � 5-O-caffeoylquinic acid, 4 � 3-O-caffeoylquinic acid, 5 � catechin, 6 �
epicatechin, 7 � rutin, 8 � hyperoside, 9 � 3,5-di-O-caffeoylquinic acid.
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FIGURE 2 | Cytotoxicity activity of PVM in 3T3, HaCaT, HeLa, HepG2, MCF-7 and A549 cell lines by MTT assay and expressed as percentage of cell viability
respect to control cells. Results are expressed asmean ± standard error of n � 3. Control cells were maintained only with culture medium. A two-way analysis of variance
(ANOVA) and a Bonferroni post hoc assay have been performed. Statistical differences were considered as follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001
compared with no treated cells (negative control).
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In general, PVM did not show phototoxic behaviour in the
assayed conditions, except at 0.1 mg/mL. At this concentration,
there is a decrease in viability when cells are exposed to light.

Intracellular Reactive Oxygen Species
(ROS) Induced by H2O2 of Methanolic
Extract of Polypodium vulgare L. in 3T3 and
HaCaT Cell Lines
The production of ROS was explored by the fluorescence
intensity with the DCF probe. As shown in Figure 6, for each

cell line was obtained the same tendency of ROS production at
2 h, with similar pattern recorded at 1 and 3 h (data not shown).

The production of ROS in the conditions tested here are
significantly different for both cell lines. In the case of 3T3,
positive controls show similar values of ROS production at the
two concentrations of H2O2 but higher than those obtained in the
case of HaCaT. This observation suggests that keratinocytes are
less sensitive than 3T3.

In the case of 3T3 there is a peak of intracellular ROS
production in the presence of PVM at 0.1 mg/mL, which is
more pronounced in cells treated with 2 mM H2O2, followed
by an important reduction at 1 mg/mL and, finally, reverted at
2 mg/mL. This pattern is independent of the final concentration
of H2O2. In contrast, the production of ROS is dose dependent in
the case of HaCaT, except at 2 mg/mL PVM at 1 mM H2O2. One
explanation to this different behavior between the two cell lines
can be attributed to the presence of different protective
antioxidant systems and that can also explain the ROS
production showed by the positive controls.

DISCUSSION

Despite the significant biological activities attributed to the
Polypodiaceae family reported in various studies, such as
antidiabetic (Phymatopteris triloba (Houtt.) Pic. Serm.) (Chai
et al., 2013), anticancer (Polypodium leucotomos) (Gonzalez et al.,
2010) and anti-inflammatory activities (Polypodium leucotomos)
(Choudhry et al., 2014), there are many other Polypodiaceae ferns
not yet characterized or studied specifically for their potential
food or medical uses. This is the case of Polypodium vulgare L.
Probably, the most studied Polypodiaceae fern is Polypodium
leucotomos because of the commercialization of its standardized
aqueous extract fronds (PLE) (known as Fernblock and
formulated in cosmetic products and food supplements used
to protect from sun exposition) (Palomino, 2015) and its
standardized ethanolic dry extract rhizome (known as the oral
medicine Difur for skin inflammatory disorders) (AEMPS, 2013).

FIGURE 3 | Cytoprotective activity of PVM in 3T3 and HaCaT cell lines for 2 mM H2O2 during 2.5 h by MTT assay and expressed as percentage of cell viability
respect to untreated cells control. H2O2 cell viability was used as positive control. Results are expressed as mean ± standard error of n � 3 and n � 2 respectively. A two-
way analysis of variance (ANOVA) and a Bonferroni post hoc assay have been performed. No statistically significant differences were found.

FIGURE 4 | Cellular repair activity of PVM in 3T3 cell line for 2 mM H2O2

during 2.5 h by MTT assay and expressed as percentage of cell viability
respect to untreated cells control. H2O2 cell viability was used as positive
control. Results are expressed as mean ± standard error of n � 3. A two-
way analysis of variance (ANOVA) and a Bonferroni post hoc assay have been
performed. Statistical differences were considered as follows: ***p ≤ 0.001
and ****p ≤ 0.0001 compared with positive control.
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In addition, the aqueous extract fronds of P. leucotomos has been
reported as a natural product for the treatment of skin alterations
such as photodermatosis, adjunctive treatment of melasma (as

chemopreventive), vitiligo, psoriasis vulgaris and atopic
dermatitis, among others (Choudhry et al., 2014; Parrado
et al., 2018; Thompson and Kim, 2020).

FIGURE 5 | Phototoxicity activity of PVM in 3T3 and HaCaT cell lines by MTT assay and expressed as percentage of cell viability respect to the correspondent control
cells. Chloropromazine cell viability was used as positive control. Gray columns correspond to cells non exposed toUVA light andwhite columns correspond to cells exposed
to 1.8 J/cm2 of UVA light. Results are expressed as mean ± standard error of n � 3. A two-way analysis of variance (ANOVA) and a Bonferroni post hoc assay have been
performed. Statistical differences were considered as follows: **p ≤ 0.01 and ****p ≤ 0.0001 compared with correspondence no irradiated/irradiated positive control.

FIGURE 6 | Intracellular ROS induced by 1 and 2 mMH2O2 for 2 h treatment with PVM in 3T3 and HaCaT cells. H2O2: positive control. White columns correspond
to 1 mM H2O2 and gray columns correspond to 2 mM H2O2. Results are expressed as mean ± standard error of n � 3. A two-way analysis of variance (ANOVA) and a
Bonferroni post hoc assay have been performed. Statistical differences were considered as follows: *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001 compared with the
correspondent positive control.

IMAGE 1 | Photography of the face fronds (A) and underside frond (B) of fresh Polypodium vulgare L. (Polypodiaceae). Pictures were taken by Adrià Farràs at
Prades mountains. The euro coin reflects the dimension of the frond (image 1B).
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As stated by Messeguer (Messeguer et al., 1998), the two
major drugs used of P. vulgare are rhizomes and fronds as
reported for other species of Polypodium (Liu et al., 1998). In the
present study we have obtained a methanol extract from the
fronds of the fern. Some studies reported the isolated
phytochemical composition of the rhizome, describing the
different types of phytochemicals namely flavonoids as
flavan-3-ol derivatives (Glensk et al., 2019a), triterpenoids
hydrocarbons, triterpenoids alcohols of the cycloartane
group, saponin glycosides (Arai et al., 1989; Arai et al.,
1991), phytoecdysteroids (Messeguer et al., 1998) and others
(Dar et al., 2012). However, to date no published work or study
has dealt with the composition of the fronds of P. vulgare except
for the one of Messeguer describing the presence of some
phytoecdysteroids (Messeguer et al., 1998). Among the few
articles reporting the composition and bioactivity of this fern,
Sofiane et al. (2015) describes antioxidant, antimicrobial and
anti-inflammatory activities attributing these activities to
different groups of phytochemicals but unspecifying the part
of the plant used (drug plant). Also, Glensk et al. (2019b) reports
the antimicrobial activity of the rhizome attributed to osladin. It
is widely known that the production of secondary metabolites is
a response to environmental conditions (environmental stress,
period of the year, among other variables) to which the plant is
exposed (Wu et al., 2017). To eliminate this variable, the fronds
from which the extract was obtained in the present study were
collected at the same time of the year (November 2016). Using
HPLC-DAD, we have determined a high number of phenolic
related compounds and a small fraction of flavonoids (less than
15% of the total polyphenolic species) represented by
(+)-catechin hydrate, (−)-epicatechin, rutin and hyperoside.
This observation agrees with our previous study using thin
layer chromatography (TLC) (Farràs et al., 2019). It is well
known that flavonoids, due to their radical scavenging ability
provided by its chemical structure described elsewhere (Rice-
Evans et al., 1996; Prochazkova et al., 2011; Wen et al., 2014),
have a greater antioxidant capacity than certain phenolic acids
(Leopoldini et al., 2011); however, flavonoids are residual
components of our extract. Other phenolics such as
p-coumaric, ferulic, caffeic, vanillic and chlorogenic acids,
were reported as the major polyphenol phytochemicals in P.
leucotomos (Gombau et al., 2006; García et al., 2006). Another
important aspect to consider is the synergy that the different
phytochemicals present in an extract against the oxidative
damage (Yen et al., 2013; Naik and Sellappan, 2020).

In the Asian continent, a variety of ferns have been used as
remedies as the case of the Gusuibu ferns (Chang et al., 2007).
Nevertheless, other fern species, such as Pteridium aquilinum (L.)
Kuhn (Dennstaedtiaceae family), contain ptaquiloside, a toxic
compound that can cause cancer (da Costa et al., 2012; O’Connor
et al., 2019). For this reason, the objective of the present work is to
study the bioactivity of the polar constituents of P. vulgare
including its cytotoxic potential in non-tumoral (3T3 and
HaCaT) and tumoral cells (HeLa, HepG2, MCF-7 and A549).
The protective activity of the extract against oxidative stress is
also studied by different assays. Four concentrations of the extract
(0.01, 0.1, 1 and 2 mg/mL) were selected in the present study

considering physiological and non physiological concentrations
for a better understanding.

There are many viability assays used to evaluate cytotoxic
activity of different substances and products. NRU has been
proven to be a sensitive assay to study the cytotoxic activity
and potential protection of procyanidin fractions from grape and
pine against the H2O2 insult (Ugartondo et al., 2007; Mitjans
et al., 2011). In addition, MTT is regarded as a gold standard of
cytotoxicity assays as it is highly sensitive and a high-throughput
screening assay. However, recently Karakas have described an
interfering effect of the methanolic extract of different Turkish’s
plant extracts resulting in false-positive viability (Karakas et al.,
2017). In this sense, potential interferences of our fern extracts
with the MTT assay were performed previously to study their
cytotoxic activity. Taken together these aspects, we considered
studying the biological activity of our extracts by these two assays.
In our case, NRU failed to be sensitive according to our MTT
data. However, our results can indicate that mechanism of
cytotoxic behaviour of PVM does not include lysosomal damage.

The potential use of ferns to prevent or treat tumoral
processes, as the case of some Asiatic fern species, has been
demonstrated by the cytotoxic, pro-apoptotic or cell cycle-
arresting effects of non-characterized plant extracts (Tomsik,
2014). In our case, no relevant cytotoxic effects have been
reported for the extract in the different cell lines, except in the
case of the HaCaT cells, but only at the very high concentrations.
The phytochemical characterization by HPLC-DAD indicates
that epicatechin is the second major compound of the
flavonoid components of the extract. Moreover (Cao et al.,
2014), a strong cytotoxic behaviour of an ethanol extract of
the whole fern Davallia cylindrica Ching in A549 cells has
been described and attributed to the high content of quercitrin
and some of its derivatives. Using HPLC-DAD we failed to detect
quercitrin (a glycosylated derivative of quercetin), which can
explain the absence of relevant cytotoxicity (Farràs et al.,
2019). Results obtained with 3T3 and HaCaT cell lines open
the possibility to validate the traditional use of this species in the
Sobrarbe region as disinfectant and wound healing (Huesca)
(Villar and Bonet, 2018), mostly considering that fibroblasts,
the most common cells in connective tissue, play a critical role
in wound healing and keratinocytes form epidermis, which is a
biological and physical barrier against injuries. These results are
in line with the fact that the pteridophytes presents an antibiotic
properties (Banerjee and Sen, 1980).

The protective effect of the extract was assessed in this study
against hydrogen peroxide in 3T3 and HaCaT cells. Our results
show that H2O2 causes slightly higher mortality in 3T3 (30.5%
cell viability) than in HaCaT (41.0% cell viability), which can be
explained by a higher antioxidant defence system on
keratinocytes than fibroblasts (Pérez et al., 1995). This minor
mortality in HaCaT can justify that the extract failed to present
cytoprotective capacity in such cell line. We have observed a
discrete cytoprotective effect of PVM in the 3T3 cells being the
first report that deals with this kind of assays using a fern extract
from the Polypodiaceae family. However, Gomes et al. (2001) and
Gombau et al. (2006) have described the potential antioxidant
activity of P. leucotomos, by different in vitro methods.
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H2O2 is recognized as a pleiotropic compound in the induction
of oxidative stress (Sies and Jones, 2020). However, its effect on the
induction of oxidative stress differs in whether a pre-treatment
(cytoprotective activity), co-treatment or post-treatment (cellular
repair activity) trial is performed (Siddiqui et al., 2011). In the post-
treatment test, as result of an oxidative stress that triggers severe
cellular damage, cells are sometimes unable to regain redox
homeostasis despite being subsequently treated with an
antioxidant agent. Considering our results of cytoprotection, the
cellular repair test was only performed in the 3T3 cell line. This
assay showed that there is a significant increase in cellular viability
directly proportional to PVM concentration suggesting the
capacity of the extract to induce cellular repair mechanisms.

Other authors have reported that P. leucotomoswas able to protect
human fibroblast from cytoskeletal disarrangements induced byUVA
light (1 J/cm2) (Alonso-Lebrero et al., 2003). Moreover, Philips et al.
(2003) reported that a concentration lower than 0.1% improves
cellular membrane integrity and inhibits MMP-1 on fibroblast and
keratinocytes thus suggesting its potential use in prevention on skin
photoaging. However, before studying the potential photoprotective
activity of the extract, we should discard any phototoxic reactions. In
the present study, the determination of phototoxicity is based on the
OECD TG 432 (OECD, 2019), where the BALB/c 3T3 cell line has
been replaced by NIH 3T3 and we included the HaCaT cell line and
the determination of cell viability by MTT as previously reported
(Baccarin et al., 2015). In general, we can conclude that PVM is not
phototoxic although the decrease in cell viability at 0.1mg/mL in both
cell lines needs to be clarified. One interpretation could arise from the
direct toxic effects of UVA light over the cells that can be reverted by
the presence of the extract at high concentrations but not at moderate
ones as 0.1 mg/mL PVM. Further investigation should be conducted
to explore the cellular mechanisms that are activated. Contact time of
the extract also should be considered, thus in this phototoxicity test is
1 h plus the time of UVA exposition, whereas in the rest of assays the
extract remains approximately 24 h in contact with cells.

It is known that UV damages mitochondrial DNA (Hseu et al.,
2015), for this reason it would be interesting to also evaluate the
potential phototoxic or photoprotective activity of the PVM by other
assays such as the comet assay in a similar way as previously described
for pomegranate seed oil nanoemulsion in HaCaT (Baccarin et al.,
2015). Currently, the mechanisms by which P. leucotomos protects
against UV-induced DNA damage, such as overexpression of the p53
gene, have already been described (Parrado et al., 2020).

Hydrogen peroxide is an oxidative agent that promote the
endogenous generation of ROS in diverse cell lines (Uguz et al.,
2016). If high ROS concentrations trigger cell death, the loss of
mitochondrial functionality begins with the consequent apoptosis
(Moloney and Cotter, 2018). In our case, there is an increase of
ROS production in both cell lines except at 2 mg/mL. This
increase of ROS production observed here and, particularly in
HaCaT cells apart from the lowest concentration extract tested
(0.01 mg/mL PVM), may be explained by the pro-oxidant effect
of polyphenols (Santos et al., 2018). The mechanism why this
ROS can diminish cell viability needs to be clarified and further
explored in other tumoral cell lines as a first step to better
characterize the chemotherapeutic potential of PVM (Skibola
and Smith, 2000).

Additionally, in recent years, phenolic compounds are
positioning themselves as the reference antioxidant substances
of natural origin (Virgili andMarino, 2008; Piccolella et al., 2019).
Thus, certain foods and plant extracts with high antioxidant
properties are positioned as a powerful adjuvant treatment to
counteract the adverse drug reactions (ADR) associated with the
chemotherapy (Oyenihi and Smith, 2019).

CONCLUSION

The absence of cytotoxicity at physiological concentrations
determined in the six cell lines of the present study, together
with the high concentration of phenolics in the fronds of P.
vulgare, is decisive to confirm this fern as a source of bioactive and
antioxidant compounds with pharmaceutical applications. Some
traditional uses of P. vulgare, such as the wound healing benefits,
have still not been proved but this is the first time that the fronds
are positioned as potential bioactive agents. This article could also
be an inflexion point to justify further research of the fronds of P.
vulgare.
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GLOSSARY

3T3 = NIH 3T3 mouse fibroblast cell line

A549 lung cancer cell line

ADR Adverse Drug Reactions

CO2 carbon dioxide

CV Cell Viability

CPZ chlorpromazine hydrochloride

E ultraviolet dose

EMA European Medicines Agency

DCF 2,7-dichlorodihydrofluorescein diacetate

DMEM Dulbecco’s Modified Eagle’s Medium

DMSO dimethyl sulfoxide

EDTA ethylenediaminetetraacetic acid

ECACC European Collection of Authenticated Cell Cultures

FBS Fetal Bovine Serum

FI Fluorescence Intensity

HaCaT spontaneously immortalized human keratinocyte cell line

HeLa cervical cancer cell line

HepG2 liver cancer cell line

HPLC-DAD liquid chromatography with diode-array detection

H2O2 hydrogen peroxide

MCF-7 breast cancer cell line

MTT 2,5-diphenyl-3-(4,5-dimethyl-2-thiazolyl) tetrazolium bromide

NR Neutral Red

NRU Neutral Red Uptake

OECD Organisation for Economic Cooperation and Development

PBS Phosphate Buffered Saline

PL Polypodium leucotomos

PLE aqueous extract of Polypodium leucotomos

PVM methanolic extract of Polypodium vulgare L. fronds

ROS Reactive Oxygen Species

RNS Reactive Nitrogen Species

TLC Thin Layer Chromatography

UV ultraviolet

UVA ultraviolet A
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