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An optimized support vector machine model was used to construct a lung cancer
diagnosis model based on serological indicators, and a molecular regulation model of
Wogonin, a component of Scutellaria baicalensis, was established. Serological indexes
of patients were collected, the grid search method was used to identify the optimal
penalty coefficient C and parameter g of the support vector machine model, and the
benign and malignant auxiliary diagnosis model of isolated pulmonary nodules based on
serological indicators was established. The regulatory network and key targets of
Wogonin in lung cancer were analyzed by network pharmacology, and key targets
were detected by western blot. The relationship between serological susceptibility genes
and key targets of Wogonin was established, and the signaling pathway of Wogonin
regulating lung cancer was constructed. After support vector machine parameter
optimization (C � 90.597, g � 32), the accuracy of the model was 90.8333%, with
nine false positives and two false negative cases. Ontology functional analysis of 67
common genes between Wogonin targets and lung cancer–related genes showed that
the targets were associated with biological processes involved in peptidye-serine
modification and regulation of protein kinase B signaling; cell components in the
membrane raft and chromosomal region; and molecular function in protein serine/
threonine kinase activity and heme binding. Kyoto Encyclopedia of Genes and
Genomes analysis showed that the regulation pathways involved the PI3K-Akt
signaling pathway, ERBB signaling pathway, and EGFR tyrosine kinase inhibitor
resistance. In vitro analyses using lung cancer cells showed that Wogonin led to
significantly increased levels of cleaved caspase-3 and Bad and significantly
decreased Bcl-2 expression in a concentration-dependent manner. ErbB4
expression also significantly decreased in lung cancer cells after treatment with
Wogonin. A regulatory network of Wogonin regulating lung cancer cell apoptosis was
constructed, including the participation of serological susceptibility genes. There is a
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certain regulatory effect between the serological indexes that can be used in the
diagnosis of lung cancer and the key targets of Chinese herbal medicine treatment of
lung cancer, which provides a new idea for the diagnosis, treatment and prognosis of
clinical lung cancer.

Keywords: lung cancer, wogonin, serum index, SVM, network pharmacology, key targets

1 INTRODUCTION

Lung cancer has the highest mortality rate among all cancers
worldwide (Schwartz and Cote, 2016). China has the largest
number of lung cancer patients in the world, and the incidence
rate continues to rise. Lung cancer thus represents a serious threat to
the health of Chinese citizens (Nasim et al., 2019). Early diagnosis of
lung cancer can significantly improve the 5-years survival rate of
patients (Weller, 2021). Many methods for the diagnosis of lung
cancer are currently available, such as imaging, bronchial ultrasound
examination and exhaled air examination (ArMeNteros et al., 2019),
but these are not widely used for the early screening of lung cancer.
Several tumor markers for lung cancer have been identified and
applied in the clinical diagnosis of lung cancer, such as neuron-
specific enolase (NSE), glycoprotein antigen 153 (CA153), cytokeratin
19 fragment (CYFRA21-1) and glycoprotein antigen 125 (CA125)
(Wang J. et al., 2018; Kang et al., 2019). However, an effective index to
independently detect lung cancer at early stages has not been found.

The main treatment for lung cancer is chemotherapy, but the
success rate is not high (Hirsch et al., 2017; Jones and Baldwin,
2018). Therefore, more effective treatments for lung cancer are
required. Chinese herbal medicine is characterized as containing
multiple components with multiple therapeutic objectives and a
comprehensive regulation for treatment. The application of Chinese
herbal medicine in the treatment of lung cancer has certain
advantages in stabilizing lesions, extending patient life, and
improving patient quality of life (Liao et al., 2017; Xiang et al.,
2017; Tang et al., 2019). The Chinese herbal medicine Scutellaria
baicalensis is the dry root of the herb Scutellaria labiatae. According
to Shennong’s Herbal scripture in historical records, S. baicalensis
has the functions of being bitter, cold, hot and wet, detoxifying fire
and stopping bleeding (Wang Z. L. et al., 2018; Zhao et al., 2019).
Recent pharmacological studies on S. baicalensis have shown that it
has antibacterial, anti-pathogen, antioxidant, immunologic
regulation, anti-tumor, antipyretic, sedative, and analgesic
activities (Chen et al., 2016; Dinda et al., 2017; Cheng et al.,
2018). Wogonin, a natural flavonoid, is a volatile component of
S. baicalensis with a variety of pharmacological activities, such as
anti-inflammatory, antiviral, and antioxidant activities. In recent
years, its anti-tumor and immunomodulatory effects have been
widely reported (Wang et al., 2021). Several studies have investigated
the treatment of lung cancer with S. baicalensis components,
including Wogonin, Baicalin, Baicalein and total scutellaria
flavone (Chen et al., 2013; Yang and Sun, 2016; Xu et al., 2017).
However, overall systematic research on the treatment of lung
cancer by the volatile components of S. baicalensis is still lacking.

Support vector machine (SVM) is a machine learning
algorithm based on the principle of structural risk
minimization that can predict the results of a small sample of

data (Parseei and Stashuk, 2012; Chang et al., 2013). SVM has
thus been widely studied and applied in the medical field.
Identifying optimized parameters leads to more accurate
simulations. In the construction of a SVM classifier, the most
important step is finding the appropriate penalty coefficient C
and parameter g. The function of penalty parameter C is to adjust
the misclassification tolerance; g is an important parameter of
RBF(radial basis function) kernel function. The different choice
of g will directly lead to the change of SVM classification
accuracy. Both penalty parameter C and RBF kernel function
g directly affect the classification effect of SVM.

The aim of our investigation was to provide a theoretical basis for
the treatment of lung cancer with volatile extractives of S. baicalensis.
Combined with the serological indicators of lung cancer patients, we
established a diagnostic model of benign and malignant pulmonary
nodules through the SVMmodel and optimized the SVM parameters
C and g using the grid search method to improve the accuracy of the
model. Combined with network pharmacology, the key targets and
regulatory pathways of theWogonin in the intervention of lung cancer
were analyzed. We also conducted in vitro experiments to explore the
mainmechanisms of the action of the key volatile components on lung
cancer. The correlation between Wogonin target and lung cancer
serological indicators was analyzed, and the regulatory network of the
interactions was constructed. Our findings provide new research ideas
for the diagnosis and treatment of clinical lung cancer.

2 MATERIALS AND METHODS

2.1 General Information
A total of 600 patients, including 300 patients with lung cancer
and 300 patients with benign pulmonary nodules, were enrolled
from July 2017 to December 2020. Among the 300 patients with
lung cancer, there were 162 males and 138 females; the average
patient age was 60.4 ± 9.8 years. Among the 300 patients with
benign pulmonary nodules, there were 200 males and 100
females; the average patient age was 56.3 ± 13.2 years. All
patient cases were confirmed by pathology.

2.2 Detection of Serum Tumor Markers
Venous blood (2ml) was taken fromall subjects on an empty stomach
at 8:00 am. The samples were left standing for 1 h and centrifuged at
2000 rpm for 5min. The serum was then removed for analysis. Four
serological markers were detected in each serum sample: CA153,
CYFRA21-1, CA125 andNSE. Radioimmunoassay was used to detect
NSE, ELISA was used to detect CYFRA21-1, and Roche
immunoanalyzer was used to detect CA153 and CA125. All the
tests were conducted in strict accordance with the kit instructions.
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2.3 SVM Model
The 600 patients were divided into two groups: the training set
consisted of 480 patients (240 lung cancer cases and 240 benign
cases) and the test set consisted of 120 patients (60 lung cancer
cases and 60 benign cases). MATLAB R 2016A was used to build
the SVM model, and the kernel function was set as RBF kernel
function; Eq. 1 is shown below.

K(xi, xj) � exp( − g
����xi − xj

����2) (1)

We used the grid search method to identify the optimal
penalty factor C and parameter g. The grid search method is
an exhaustive search method for specifying parameter values. It
obtains the optimal learning algorithm by optimizing the
parameters of the estimated function through cross validation.
The grid search method is used to determine the optimal
parameters of the kernel function. The test steps are as follows:

Begin.
1) Set the range of c and g values and search step size of grid

search. Here, we set it as g � 2−8–28 and the step size is 0.5;
c � 2−8–28, step size 0.5.

2) Divide the data set into 10 subsets of the same size (5 subsets
for both positive and negative samples). The current values of
c and g were used for cross-effective calculation, and the
accuracy of the cross-effective prediction was recorded.

3) Repeat step 2 until the grid search is completed.
4) Draw the contour map of prediction accuracy, and select the

optimal parameter value accordingly. Finally, the accuracy
contour chart is obtained.
End.

2.4 Mining of Susceptibility Genes
Corresponding to Serological Indicators
The four serological indexes CA153, CYFRA21-1, CA125 and
NSE were screened for susceptibility genes by literature retrieval
and mining techniques.

2.5 Network Pharmacological Analysis
2.5.1 Screening and Identifying the Volatile Active
Components of S. Baicalensis
The volatile components of S. baicalensis were extracted by gas
chromatography–mass spectrometry (GC-MS) (Zhu et al., 2021).
Volatile components of S. baicalensis were screened using the
Traditional Chinese Medicine Systems Pharmacology (TCMSP)
database under conditions of an oral bioavailability score ≥30%
and druggability score ≥0.18. We downloaded the chemical
structure files corresponding to the active components.

2.5.2 Target Prediction of the Active Ingredients of S.
Baicalensis and Lung Cancer
We determined the specific chemical information for Wogonin
using the PubChem database. We predicted the target genes
using BATMAN-TCM combined with the web-based
SwissTargetPrediction tool.

We searched the NCBI gene and GeneCards databases using
the keyword “lung cancer” and obtained target gene–related data

for lung cancer regulation. We used the UniProt databases to
improve the target’s UniProt ID and gene name.

The overlapping targets of TCM and disease targets were
screened by Venn diagram.

2.5.3 Enrichment Analysis and Protein-Protein
Interaction Analysis
We entered the overlapping target genes into the Cytoscape
software and used GO and KEGG in the ClueGo plug-in for
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis of the Chinese herbal
medicine volatile extractives acting on lung cancer–related
targets. The parameters were set as ClueGo:Function, GO and
KEGG and Use GO Term Fusion (p ≤ 0.05).

The overlapping genes were considered as hub genes and analyzed
using online STRING (https://www.string-db.org/) to obtain the PPI,
with the species limited to “Homo sapiens” and a confidence score
>0.990. The TSV format file, which was downloaded from the
STRING database, was imported into Cytoscape3.7.1 for analysis.
Cytoscape 3.7.1, which is widely applied in network pharmacology
research, was used to construct and visualize the PPI network.

2.6 Experimental Verification
2.6.1 Cell Culture and Treatments
The human lung cancer cell line A549 was maintained in special
medium at 37°C under an atmosphere of 5% CO2. Cells were
treated with 0, 5, 15, or 20 μmol/L Wogonin for 24 h and then
subjected to experimental analyses; the concentrations of
Wogonin were established based on a previous study (Wang
and Cui, 2019).

2.6.2 Western Blot
Cells were lysed and protein quantification was performed using a
kit (Wanleibio Co., Ltd., Shenyang, China). Protein lysates
(20 μg) were separated by SDS-PAGE and transferred to a
polyvinylidene fluoride membrane (Millipore, Bedford, MA,
United States). The membrane was washed in Tris buffered
saline with 0.5% Tween 20 (TBST) for 5 min and then blocked
for 1 h in 5% skimmedmilk. Themembranes were incubated with
antibodies against caspase-3, cleaved caspase-3, BAD, Bcl-2, and
β-actin (1:2000 dilution; Wanleibio Co., Ltd.) overnight at 4°C.
The membranes were washed three times with TBST for 5 min
each and then incubated for 1 h at 37°C with rabbit HRP-
conjugated anti-mouse antibody (1:1,000) (Wanleibio Co.,
Ltd.), followed by three washes with TBST for 5 min each.
Protein bands were visualized using electrochemiluminescence
reagent (Wanleibio Co., Ltd.). β-actin served as an internal
control to normalize the band density.

2.7 Statistical Analyses
All experimental data were tested for homogeneity and
normality and are expressed as mean ± standard deviation.
Analyses were performed using SPSS23.0 software. For
measurement of data, t-test was used for comparison
between two groups. p < 0.05 was considered as statistically
significant.
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3 RESULTS

3.1 Pathological Sections of Benign and
Malignant Lung Cancer
Figure 1 shows the pathological sections of benign and malignant
lung cancers, in which A, B, C and D represent the pathological
sections of benign nodules, squamous cell carcinoma of the lung,

adenocarcinoma of the lung, and small cell lung cancer,
respectively.

3.2 Differential Analysis of Serum Markers
Serum concentrations of lung cancer markers NSE, CYFRA21-1,
CA125, and CA153 were all significantly higher in patients with
lung cancer than those in the benign group (Table 1).

FIGURE 1 | Pathological section of benign and malignant lung cancer. (A) benign nodules, (B) squamous cell carcinoma of the lung, (C) adenocarcinoma of the
lung, and (D) small cell lung cancer; A1,B1,C1,D1) 40× under the microscope, A2,B2,C2,D2)100× under the microscope, A3,B3,C3,D3) 400× under the microscope.

TABLE 1 | Concentrations of four serum tumor markers.

Serum tumor markers Benign SPNs group
(n = 300)

Malignant SPNs group
(n = 300)

Z p

NSE (ng/ml) 12.11 (11.49, 12.59) 14.83 (12.56, 16.17) −9.896 <0.001
CYFRA21-1 (ng/ml) 2.16 (1.99, 2.30) 6.77 (4.75, 7.84) −17.627 <0.001
CA125 (U/mL) 18.42 (14.95, 21.08) 46.30 (36.05, 54.05) −16.653 <0.001
CA153 (U/mL) 10.37 (9.39, 11.33) 17.77 (14.49, 19.64) −13.258 <0.001
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3.3 Training and Test Results of the SVM
Model
The four serological indexes NSE, CYFRA21-1, CA125 and CA153
were modeled under the default parameters (C � 1, g � 0.5); the
accuracy of the test set was 87.5%, with 13 false positives and 2
false negatives. The results are shown in Figure 2.

Searching for the optimal parameters using grid search method
led to the following parameters: C � 90.597, g � 32. Under these
parameters, the accuracy of test set was 90.8333%; the number of
false positives was 9 and the number of false negatives was 2. C, g
step size is 0.5. The results are shown in Figure 3.

3.4 Mining of Susceptibility Genes
Associated With Four Lung Cancer Serum
Markers
Through literature retrieval and mining technology, we obtained
susceptibility genes corresponding to the four serological indexes

associated with lung cancer as follows: NSE, LATS1; CA153,
BCAR4; CYFRA21-1, YAP; and CA125, PVT1.

3.5 Results of Network Pharmacological
Analysis
3.5.1 Identification of Volatile Components of S.
Baicalensis
We performed GC-MS to extract the volatile components of S.
baicalensis, and the ion flow results are shown in Figure 4 (In
Figure 4A, the peak value of 36.616 isWogonin, In Figure 4B, the
peak values of 35.553 and 36.629 indicate Wogonin, In
Figure 4C, the peak value of 35.726 is Wogonin). The TCMSP
database was used to identify the volatile components, which are
listed in Table 2. The effective components of S. baicalensis were
also screened by OB and DL screening conditions. The peak area
and the percentage of the peak area of GC-MS detection results
were used as parameters and the 31 active components were
recalculated. The proportion of Wogonin in the total 31 effective
volatile components was 49.38%. Wogonin was thus selected for
subsequent study.

3.5.2 Prediction of the Targets of Wogonin in Lung
Cancer
The targets of Wogonin were predicted using
SwissTargetPrediction and BATMAN-TCM databases, and the
results identified 114 potential targets. We also used GeneCards
and NCBI-Gene databases to investigate potential disease-related
genes in lung cancer, and 3,118 genes related to lung cancer were
retrieved. Venn diagram results, shown in Figure 5, revealed 67
common genes between the Wogonin targets and lung
cancer–related genes.

3.5.3 GO and KEGG Enrichment Analysis
GO functional annotation analysis revealed that the 67 common
genes were involved in biological processes involving peptidye-
serine modification and regulation of protein kinase B signaling;
cell components including the membrane raft and chromosomal

FIGURE 2 | SVM test results with default parameters.

FIGURE 3 | Diagram of optimization results using the grid search method and SVM test results using the four indicators. (A) Optimization result graph of the grid
searching method; for the 3D view, the group C and g with the highest accuracy was selected as the optimal C and g; (B) graph of SVM test results under optimal
parameters.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7289375

Wang et al. Diagnosis and Treatment of Lung Cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 4 | Ion flow diagram of the three extraction methods of S. baicalensis detected by GC-MS. (A) Determination of ion flow chart by GC-MS for S. baicalensis
extracted by ethanol; (B) GC-MS detection of ion flow diagram of S. baicalensis extracted by methanol; (C) GC-MS detection of ion flow diagram of S. baicalensis
extracted by benzene-alcohol method.
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region; and molecular function involving protein serine/
threonine kinase activity and heme binding (Figure 6).

KEGG analysis showed that the genes were involved in
pathways such as the PI3K-Akt signaling pathway, ERBB
signaling pathway, and EGFR tyrosine kinase inhibitor
resistance (Figure 7).

3.5.4 PPI Analysis
The STRING database was used to retrieve the interaction network of
Wogonin on lung cancer target genes, and the non-interacting proteins
were deleted. The data were imported into Cytoscape software for
network analysis, and the results are shown in Figure 8. Each dot
represents a single gene; a larger dot indicates a greater degree of
explanation, indicating that the gene ismore important in the network.
From these results, we selected the apoptotic factor Bad, Bcl-2,
apoptotic initiation factor caspase-3/cleaved caspase-3, and ErbB4
protein for subsequent experimental verification.

3.6 Wogonin Participates in the Regulation
of Proteins and Factors in Lung Cancer
Weperformedwestern blot analysis to evaluate the expressions of key
apoptotic factors Bad, Bcl-2, and caspase-3/cleaved caspase-3 in lung
cancer cells treated with Wogonin. As shown in Figure 9 and
Table 3, the expression levels of cleaved caspase-3 and Bad
proteins were significantly higher in lung cancer cells treated with
Wogonin compared with control cells (p < 0.05). The level of Bcl-2
protein significantly decreased after Wogonin treatment (p < 0.05).
All changes in protein expression showed dose-dependent
responses to Wogonin treatment.

We also examined ErbB4, which functions in the ERBB
signaling pathway. As shown in Figure 10 and Table 3, ErbB4

TABLE 2 | Volatile components of S. baicalensis.

Molecule name CAS OB (%) DL

cis-5,8,11,14,17-Eicosapentaenoic acid 10417-94-4 45.66 0.21
1-Heptatriacotanol 105794-58-9 9.83 0.39
Hexadecanoic acid, methyl ester 112-39-0 18.09 0.12
.delta.-Tocopherol 119-13-1 16.36 0.48
3-tert-Butyl-4-hydroxyanisole 121-00-6 66.46 0.05
Ginsenoyne E 126146-63-2 36.53 0.13
Tributyl phosphate 126-73-8 27.76 0.06
1-Penten-3-one 1629-58-9 69.46 0
Dihydrooroxylin A 18956-18-8 38.72 0.23
Lactose 63-42-3 1.43 0.2
4-Mercaptophenol 637-89-8 60.34 0.01
5-Hydroxymethylfurfural 67-47-0 45.07 0.02
Panaxydol 72800-72-7 61.67 0.13
Cedrol 77-53-2 16.23 0.12
2-Methoxy-4-vinylphenol 7786-61-0 38.39 0.03
.beta.-Guaiene 88-84-6 19.91 0.07
4-Cyclopentene-1,3-dione 930-60-9 49.25 0.01
Benzoic acid, ethyl ester 93-89-0 27.58 0.03
Acetophenone 98-86-2 48.19 0.02
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- 28564-83-2 37.8 0.03
1H-3a,7-Methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-, [3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]- 469-61-4 55.56 0.1
3-Furaldehyde 498-60-2 50.96 0.01
Orcinol 504-15-4 48.14 0.02
Di-epi-.alpha.-cedrene 50894-66-1 52.87 0.1
(1S,2S)-(+)-N-Methylpseudoephedrine 51018-28-1 37.12 0.04
n-Hexadecanoic acid 57-10-3 19.3 0.1
2,5-Octadecadiynoic acid, methyl ester 57156-91-9 6.88 0.17
9,12-Octadecadienoic acid (Z,Z)- 60-33-3 41.9 0.14
2-Furancarboxaldehyde, 5-methyl- 620-02-0 43.92 0.01
Hexadecanoic acid, ethyl ester 628-97-7 18.99 0.14
Wogonin 632-85-9 30.68 0.23

FIGURE 5 | Analysis of common genes among Wogonin targets and
lung cancer–related genes.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7289377

Wang et al. Diagnosis and Treatment of Lung Cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


expression in lung cancer cells was significantly decreased upon
treatment with Wogonin in a dose-dependent manner (p < 0.05).

3.7 The Regulatory Pathway of Wogonin in
Lung Cancer Cells
Combining the susceptibility genes associated with serological
indicators, KEGG enrichment results and experimental

verification results, we constructed the regulatory pathway of
Wogonin in lung cancer cells, as shown in Figure 11. Our results
suggest that Wogonin may induce the apoptosis of lung cancer
cells by inhibiting the PIK-3 signaling pathway, inducing the
expression of the pro-apoptotic factor Bad and activating cleaved
caspase-3, as well as inhibiting the expression of the anti-
apoptotic factor Bcl-2. Wogonin may also inhibit the
expression of ErbB4, thus affecting the downstream signaling
pathway and inhibiting the invasion andmetastasis of lung cancer
cells. In addition, the lung cancer serological indicator NSE
susceptibility gene product LATS1 may interfere with
apoptosis of tumor cells by regulating the CYFRA21-1
susceptibility gene product YAP. The CA153 susceptibility
gene product BCAR4 may interfere with the ERBB4 signaling
pathway, and the CA125 susceptibility gene product PVT1 may
participate in the regulation of the PIK-3 signaling pathway.

4 DISCUSSION

Traditional doctor in the clinical diagnosis, often through judging
tumor form to do, there is strong subjectivity, In addition, the
medical expertise varies among doctors, and misdiagnosis can
sometimes occur. Doctors need to deal with extremely large
amounts of data, artificial problems such as medical resources
stress, low efficiency. The same kind of treatment method is often
used in many diseases cannot achieve targeted, individual
treatment.

FIGURE 6 | GO annotation of Wogonin targets related to lung cancer.

FIGURE 7 | KEGG pathway analysis of Wogonin targets related to lung
cancer.
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The continuous development of technology has enabled
researchers to conduct comprehensive and accurate analyses of
tumors. An increasing number of studies have applied artificial
intelligence algorithms to the field of tumor diagnosis (Pang et al.,
2019; Yang et al., 2019). Mining medical data may improve the
efficiency of disease diagnosis and reduce the cost of disease
discovery. How to establish an effective and accurate tumor
diagnosis model to assist doctors in clinical diagnosis and
treatment is a key problem and one of the focuses of this
study. Several artificial intelligence algorithm models are
widely used, including the BP Neural Network model, SVM
model, and Linear Regression model. In recent years, research
has been focused on SVM, which is an excellent classifier with
strong generalization ability and relatively high accuracy (Liu
et al., 2014). Zhang et al. used a comprehensive GEO database and
SVM to detect breast cancer biomarkers to distinguish between
normal samples and cancer samples; the discriminant model
using cross validation to the accuracy, at the same time using
cross-validation score as evaluation standard, and the SVM
algorithm and other algorithms are compared. The recursive
SVM algorithm with the highest classification accuracy was
obtained, and 15 biomarkers of breast cancer were found.

Yousef et al. applied an algorithm combining a SVM
algorithm and gene expression network to select tumor
biomarkers and classify tumors (Yousef et al., 2009). Multiple
gene expression networks were input into the SVM classification
model for training; the accuracy of the results was fed back to the
model, and the gene expression networks were constantly cross-
exchanged. Until you choose the model with the highest
classification accuracy.

NSE, CYFRA21-1, CA125 and CA153 are commonly used
serum indicators for the clinical diagnosis of lung cancer. In this
study, combined with the four serological indicators, the SVM
parameters were optimized by the grid search method for
modeling. The optimal parameters were found by grid search
method as follows: c � 90.597, and g � 32. Under these
parameters, the accuracy of the test set was 90.8333%, and the
number of false positives and false negatives was 9 and 2,
respectively; c, g step size is 0.5. In this study, we successfully
constructed an SVM model based on tumor markers that can be
used as a reference for the auxiliary diagnosis of lung cancer.
Susceptibility genes can regulate the expression level of
serological indicators in the body, and the expression level of
serological indicators can also influence or reflect the related

FIGURE 8 | Target interaction regulatory network of Wogonin in lung cancer.
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genes. The expression levels of NSE, CYFRA21-1, CA125 and
CA153 in patient serum may have a certain regulatory effect on
key genes of lung cancer, and this requires further study. We
obtained susceptibility genes corresponding to the four
serological indexes associated with lung cancer as follows:
NSE, LATS1; CA153, BCAR4; CYFRA21-1, YAP; and
CA125, PVT1.

Chinese herbal medicine, with a variety of targets and low side
effects, is a promising treatment strategy for lung cancer.
However, the ingredients of Chinese herbal medicine are
complex. In addition, the study of the mechanism of action is
challenging because of the many pharmacological effects of
Chinese herbal medicines and the extensive time required for
animal studies. Therefore, network pharmacologic approaches
are very useful because unlike traditional drug research, they have
the ability to address multiple proteins or networks involved in

FIGURE 9 |Wogonin regulates the expression of Cleaved caspase-3(B), caspase-3(C), BAD(D), Bcl-2(E) in lung cancer cells. compared with the control group,
*p < 0.05, **p < 0.01, ***p < 0.001; compared with the 5 mM Wogonin (WOG) group, #p < 0.05, ##p < 0.01, ###p < 0.001. compared with the 15 mM WOG group,
&p < 0.05, &&p < 0.01, &&&p < 0.001.

TABLE 3 | Gray value of protein.

Name Gray value

Control 5 μM WOG 15 μM WOG 20 μM WOG

Cleaved caspase-3 1.00 0.99 0.94 0.95
caspase-3 1.00 0.99 0.94 0.95
Bad 1.00 0.93 1.20 2.32
Bcl-2 1.00 1.01 0.26 0.26

FIGURE 10 | Wogonin induces the decrease of ErbB4 protein in lung
cancer cells. (A)Gel result, (B)Gray value analysis. *p < 0.05, **p < 0.01, ***p <
0.001 compared with the control group. compared with the control group,
*p < 0.05, **p < 0.01; compared with the 5 mMWogonin (WOG) group,
#p < 0.05, ##p < 0.01. compared with the 15 mM WOG group, &p < 0.05.
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drug-targeted diseases (Malik et al., 2017). Network pharmacology
has previously analyzed themechanism of action of Chinese herbal
compounds or a single Chinese herbal medicine on tumors
(Pacheco et al., 2019). However, few reports have used network
pharmacology to explore the potential effects of volatile extractives
from Chinese herbal medicine on tumors. Poornima P. et al.
examined the mechanism of β-elemene (a volatile oil
component in Chinese herbal medicines such as ginseng)
against peritoneal effuse in patients with advanced pancreatic
cancer using a network pharmacology method and performed
preliminary verification using molecular experiments (Poornima
et al., 2016). This study established a role for network
pharmacology research in exploring the constituents of volatile
oil from Chinese herbal medicine.

A variety of chemical components, including flavonoids,
phenolic acids, amino acids, sterols, essential oils, and trace
elements, have been discovered in S. baicalensis (Wang Z. L.
et al., 2018). S. baicalensis contains rich volatile oil, which has
antibacterial, anti-inflammatory and anti-tumor activities
(Junqiu et al., 2019). To further analyze the volatile extractives
of S. baicalensis and the mechanisms of action against lung
cancer, we examined the volatile extractives of S. baicalensis
and screened the components related to lung cancer. Our
findings identified Wogonin as a volatile component of S.
baicalensis that is associated with lung cancer. Studies have
shown that Wogonin has cytotoxic effects on lung cancer cells
and is associated with the activation of apoptosis and the
production of reactive oxygen species (Pant et al., 2012).
Another study showed that by inducing TIMP-2 expression
and decreasing TGF-1, Wogonin inhibited the activity of
MMP-2, APN and EGFR-TPK, activated caspase 3, and played
an important role in the metastasis and apoptosis of lung cancer
A549 cells (Chengyang and Chuangcheng, 2019). Using network
pharmacology, we analyzed the potential targets and molecular
mechanisms of Wogonin in lung cancer. Functional enrichment
and pathway enrichment analyses were performed on the 67
common genes retrieved from four databases using KEGG and
GO analysis. The results showed that Wogonin may act on lung
cancer through inhibition of EGFR tyrosine kinase by the PI3K-
Akt signaling pathway and the ERBB signaling pathway.

Further analysis revealed that the targets of Wogonin were
distributed in the PI3K-Akt signaling pathway, which is an
important pathway involved in tumor cell proliferation (Qu
et al., 2017; Curigliano and Shah, 2019). The Bcl-2 protein is
the core regulator of mitochondrial apoptosis and a
recognized anticancer target (Alzahrani, 2019). The
downstream factor Bad regulates cell apoptosis and survival
and is a pro-apoptotic factor. One study showed that targeting
anti-apoptotic Bcl-2 protein kills lung cancer cells by
activating the mitochondrial cell death program (Sun et al.,
2017). Our study showed that Wogonin inhibited the
expression of Bcl-2 and promoted the expression of Bad
and the activation of caspase-3/cleaved caspase-3, thereby
inducing the apoptosis of lung cancer cells.

The EGFR family is the most studied receptor protein-tyrosine
kinase group and has an important role in signal transduction
and tumorigenesis (Akane et al., 2017). The family comprises
ERBB1–4 (Liu et al., 2017), and ERBB4 is unique because it is the
only member that has growth-inhibiting properties (Robert,
2019). In recent years, information on the role of ERBB4 in
many tumors has emerged, and most studies have focused on the
tumor suppressor function of ERBB4 (Segers et al., 2020).
However, there are some conflicting studies that merit re-
examination of this conclusion. Our results showed that
Wogonin resulted in reduced expression of ERBB4, thus
preventing the invasion and metastasis of ERBB4-mediated
lung cancer cells.

Combined with the serological index susceptibility genes of
lung cancer queried above, we found them through literature
search, Studies have shown that lncRNA PVT1 (the CA125
susceptibility gene) is involved in the regulation of immune
checkpoints in a variety of tumors, including ovarian cancer,
thereby promoting tumor progression (Mattick and Lee, 2009;
Chen et al., 2018). Up-regulation of BCAR4 (the CA153
susceptibility gene) in the human breast cancer ZR-75-1 cell
line promotes the phosphorylation of ERBB2 and ERBB3,
enhances the estrogen-dependent effect of tumor cells, and
stimulates the proliferation of tumor cells (Ge and Wang,
2017). LATS1 (the NSE susceptibility gene) is a member of the
DBF2-related nucleoprotein kinase family, and together with

FIGURE 11 | Regulatory network of Wogonin in apoptosis in lung cancer.
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MST1 constitutes a pathway in the Hippo signaling pathway that
inhibits excessive cell proliferation. In vitro experiments showed
that overexpression of LATS1 inhibits the expression of YAP (the
CYFRA21-1 susceptibility gene), thereby inducing G1 phase
arrest, inhibiting cell proliferation and promoting tumor cell
apoptosis (Luo et al., 2014). We constructed the signal
pathway by which Wogonin regulates key targets in lung
cancer, including the serum index susceptibility genes. The
expression level of lung cancer serological indicators was
previously associated with the key targets of lung cancer,
which may be used for prognosis judgment in the treatment
of lung cancer. Further in-depth studies are needed.

In conclusion, we used an optimized SVM algorithm to
construct a serology-based lung cancer diagnosis model and
explored volatile constituents in S. baicalensis as potential
treatments for lung cancer. We comprehensively analyzed the
potential targets and molecular mechanisms of Wogonin in
regulating lung cancer through network pharmacology. The
validity of our network pharmacology analysis was confirmed
by in vitro studies investigating the key targets. In addition, in
combination with the susceptibility genes of serological
indicators, the signaling pathway of Wogonin regulating lung
cancer was constructed. Our results provide a promising
approach to uncover the scientific basis and therapeutic
mechanism of Chinese herbal medicine in disease treatment.
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