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Lipid metabolism is an essential biological process involved in nutrient adjustment,
hormone regulation, and lipid homeostasis. An irregular lifestyle and long-term nutrient
overload can cause lipid-related diseases, including atherosclerosis, myocardial infarction
(MI), obesity, and fatty liver diseases. Thus, novel tools for efficient diagnosis and treatment
of dysfunctional lipid metabolism are urgently required. Furthermore, it is known that
lncRNAs based regulation like sponging microRNAs (miRNAs) or serving as a reservoir for
microRNAs play an essential role in the progression of lipid-related diseases. Accordingly,
a better understanding of the regulatory roles of lncRNAs in lipid-related diseases would
provide the basis for identifying potential biomarkers and therapeutic targets for lipid-
related diseases. This review highlighted the latest advances on the potential biomarkers of
lncRNAs in lipid-related diseases and summarised current knowledge on dysregulated
lncRNAs and their potential molecular mechanisms. We have also provided novel insights
into the underlyingmechanisms of lncRNAswhich might serve as potential biomarkers and
therapeutic targets for lipid-related diseases. The information presented here may be
useful for designing future studies and advancing investigations of lncRNAs as biomarkers
for diagnosis, prognosis, and therapy of lipid-related diseases.
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INTRODUCTION

Lipid metabolism is an intricate and complex physiological process that is involved in the
progression of lipid-related diseases (Li et al., 2017). Importantly, since modern society is
associated with irregular lifestyle patterns and long-term nutrient overload, severe lipid
metabolism disorders and lipid accumulation have become commonplace (Liu and Ding, 2017;
Dłubek et al., 2021). Abnormal lipid metabolism is the primary feature of several refractory chronic
diseases (Yang et al., 2016), such as atherosclerotic disease (Michos et al., 2019), obesity (Wang et al.,
2014), fatty liver disease (Vernon et al., 2011), and diabetes mellitus (Garde et al., 2019). Thus,
developing novel tools and strategies for maintaining cholesterol homeostasis is urgently required to
prevent and treat these diseases.

Long non-coding RNAs (lncRNAs) are a class of RNA that do not encode proteins (Kim et al., 2009).
Instead, they are involved in complex biological processes and pathophysiological conditions, including
lipidmetabolism disorders (Zeng et al., 2018; Simion et al., 2019). Recently, numerous clinical studies have
shown that lncRNAs impair cholesterol homeostasis and play a critical role in the progression of lipid-
related diseases (Han et al., 2019; Ou et al., 2020). For example, a primate-specific lncRNA (CHROME)
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was found to be elevated in the plasma and atherosclerotic plaques of
patients with coronary heart disease (CHD) (Hennessy et al., 2019).
Similarly, highly up-regulated in liver cancer (HULC) lncRNA was
discovered to modulate the deregulation of lipid metabolism in
hepatoma cells and result in malignant development (Cui et al.,
2015). These findings suggest that lncRNAs regulate lipid
metabolism and promote the development of lipid-related
diseases. LncRNAs might also function as the miRNAs sponges
and affect lipid metabolism and related diseases (Lan et al., 2019).
Importantly, lncRNAs also play an essential in the progression of
some other diseases, such as cancer (Hahne and Valeri, 2018). Much
research has been conducted on the specific functions of lncRNAs in
these diseases.

The emerging role of lncRNAs as potential biomarkers and
therapeutic targets for lipid-related diseases has not explicitly
been summarised, and the present review aims to fill this gap in
the literature. LncRNAs have been increasingly recognized as
potential biomarkers for various human diseases, including
atherosclerosis (Simion et al., 2020), MI (Spiroski et al., 2021),
liver disease (Yang et al., 2021), and cancer (Xing et al., 2021).
Here, we mainly reviewed the recent investigations of the role of
lncRNAs as potential biomarkers and therapeutic targets in lipid-
related diseases. Findings from this review would summarize the
mechanisms by which lncRNAs act as biomarkers and
therapeutic targets for lipid-related diseases.

LNCRNAS MECHANISMS OF ACTION

Recent studies have illustrated that lncRNAs can bind to the
proteins, RNA, DNA, or a combination of them to exert their

functions (Fasolo et al., 2019; Hu Y. et al., 2019). As regulators
of gene expression, lncRNAs involve in various biological
processes (Fernandes et al., 2019; Mumtaz and Online,
2017), acting as miRNA sponge, decoys, scaffolds, guides,
and post-translation regulation (Rinn and Chang, 2012)
(Figure 1). For instance, many lncRNAs act as a miRNA
sponge to regulate miRNAs and their targets. For example,
small nucleolar RNA host gene 16 (SNHG16) facilitated the
development and progression of neuroblastoma by
upregulating homeobox A7 (HOXA7) expression via
sponging miR-128–3p (Bao et al., 2020). Decoying lncRNAs
mediated transcriptional repression by guiding chromatin
modifiers such as m6A formation and recognition to
genomic targets, such as XIST (Patil et al., 2016), HOTAIR
(Loewen et al., 2014), and GAS5 (Sun et al., 2017). LncRNAs
can be used as scaffolds to form enhancer loops or as structural
components of ribonucleoprotein complexes (Stackhouse
et al., 2020). Nuclear paraspeckle assembly transcript 1
(NEAT1) scaffolds broadly interacts with NONO/PSF and
other RNA-binding proteins (RBPs) and that globally
enhance pri-miRNA processing (Jiang et al., 2017).
Additionally, many lncRNAs exert their functions by
sequestering regulatory factors in the nucleus or cytoplasm:
for example, colon cancer-associated transcript-2 (CCAT2)
can block miR-145 maturation by inhibiting pre-miR-145
export to cytoplasm (Yu Y. et al., 2017); whereas
cytoplasmic lncRNAs, such as lincRNA-p21, interact with
RNA-binding protein HuR to recruit let-7/Ago2 to inhibit
their repression of lincRNA-p21 stability (Yoon et al., 2012).
Finally, lncRNAs can act as enhancers or co-activators of
target gene activation, such as H19 and GAS5. LncRNA may

FIGURE 1 | LncRNAmechanisms of action. (A) LncRNAs can act as a sponge to titrate miRNAs away from their mRNA targets. (B) The lncRNAs can act as miRNA
precursors. (C) LncRNA can bind to transcription factors or other proteins as a decoy and sequester them away from chromatin (lower-right). (D) LncRNA can also serve
as a scaffold to promote the assembling of chromatin remodeling complexes. (E) LncRNA can guide transcription factors to specific genomic locations for regulating
gene expression.
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TABLE 1 | Summary of the act of lncRNAs as therapeutic targets and potential biomarkers for lipid-related diseases.

LncRNAs Dys-
regulation

Human samples Targets Molecular mechanisms Diseases References

HOXC-AS1 Up Carotid
atherosclerosis

HOXC6 Facilitates HOXC6 expression Atherosclerosis Huang et al.
(2016)

GAS5 Down Atherosclerotic
plaque

— — Atherosclerosis Chen et al.
(2017)

RAPIA Up Atherosclerotic
plaque

miR-183-5p, ITGB1 Promotes ITGB1 expression by
targeting miR-183-5p

Atherosclerosis Sun et al. (2020)

MIAT Up Serum miR-149-5p, CD47 Promotes CD47 expression by
targeting miR-149-5p

Atherosclerosis Ye et al. (2019)

LncRNA-ATB Up Serum Caspase-3 Promotes the expression of
caspase-3

Atherosclerosis Yu et al. (2019)

CHROME Up Plasma miR-27b, miR-33a,
miR-33b, miR-128
and ABCA1

Regulates cholesterol efflux and
nascent HDL particle formation by
miRNAs/ABCA1 pathway

Atherosclerosis Hennessy et al.
(2019)

RP11-714G18.1 Down Atherosclerotic
plaques

LRP2BP, MMP1 Display athero-protective role via
LRP2BP/MMP1 pathway

— —

CASC11 Down Plasma IL-9 Improve atherosclerosis by
inhibiting IL-9 expression

Atherosclerosis Tao et al. (2019)

NEXN-AS1 Down Atherosclerotic
plaques, blood

NEXN Mitigates atherosclerosis by
regulating NEXN

CAD Hu et al. (2019a)

ENST00000416361 Up Plasma SREBP1, SREBP2 Promotes SREBP1 and SREBP2
expression

CAD Li et al. (2020a)

MEG3 Up Tissues miR-26a, Smad1 Promotes Smad1 expression by
targeting miR-26a

CAD Bai et al. (2019)

ANRIL Up Tissue EZR, CXCL11 or
TMEM106B

Exerts opposing effects on
endothelial cell activities associated
with coronary artery disease

CAD Cho et al. (2020)

Ang362 Up Plasma — — CHD Wang et al.
(2020a)

KCNQ1OT1 Up Serum miR-26a-5p, ATG12 Promotes cardiomyocyte
autophagy and aggravates MI by
miR-26a-5p/ATG12 axis

MI Li et al. (2021a)

LINC00261 Up Tissues miR-522-3p,
TNRC6A

Promotes MI through the miR-522-
3p/TNRC6A axis

MI Jiang et al.
(2021)

NRF Up Blood — — MI patients with HF Yan et al. (2020)
NEAT1 Up Blood miR-378a-3p,

ATG12
Promotes cardiomyocytes injury by
targeting miR-378a-3p

MI Zhao et al.
(2020)

CHAST Up Blood — — MI Wang et al.
(2020b)

MALAT1 Up Tissue miR-144-3p Promotes cardiomyocyte apoptosis
after MI via targeting miR-144-3p

MI Gong et al.
(2019)

TTTY15 Up Blood miR-455-5p, JDP2 Promotes hypoxia-induced
cardiomyocytes injury by targeting
miR-455-5p

MI Huang et al.
(2019a)

CAIF Down Tissues and serum — — MI Wu et al. (2019)
MALAT1 Up Serum miR-200a-3p,

PDCD4
Regulates cardiomyocytes
apoptosis after via modulating miR-
200a-3p/PDCD4 axis

MI Sun and Zhang,
(2019)

TUG1 Up Aortic valves miR-204-5p, Runx2 Promotes osteoblast differentiation
by miR-204-5p/Runx2 axis

CAVD Yu et al. (2018)

LncARSR Up Serum SREBP-2, HMGCR Increases SREBP-2 expression and
HMGCR.

Hypercholesterolemia Huang et al.
(2018)

HULC Up HCC tissues ASCL1, PPARA miR-9/PPARA/ACSL1/cholesterol/
RXRA/HULC signalling

Hepatocellular carcinoma Cui et al. (2015)

NEAT1 Up Serum miR-129-5p, SOCS2 Promotes liver fibrosis by miR-129-
5p/SOCS2

ASH Ye et al. (2020)

MALAT1 Up Liver biopsy miR-20b-5p, TXNIP Promotes TXNIP expression by
targeting mR-20b-5p

NAFLD Li et al. (2021b)

LeXis Up Liver biopsy — — NAFLD Park et al. (2020)
B4GALT1-AS1 Down Liver tissues hnRNPA1 Recruits hnRNPA1 to suppress

hepatic lipogenesis and
gluconeogenesis

NAFLD Wang et al.
(2018)

GAS5 Up Plasma — — NAFLD Han et al. (2020)
LncARSR Up Liver tissues Akt, SREBP-1c NAFLD

(Continued on following page)
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have more than one function, varying by subcellular
localization, stimuli, and/or cell types. With the continuous
increase of lncRNA-mediated functions, it has become clear
that they are important regulators of multiple biological and
cellular processes and can be used as candidate diagnostic and
prognostic biomarkers for human diseases.

LNCRNAS PARTICIPATE IN THE
DEVELOPMENT OF LIPID-RELATED
DISEASES
Lipid metabolism is the biosynthesis and biodegradation of lipids
in cells (Santos and Schulze, 2012). It involves the breakdown and

TABLE 1 | (Continued) Summary of the act of lncRNAs as therapeutic targets and potential biomarkers for lipid-related diseases.

LncRNAs Dys-
regulation

Human samples Targets Molecular mechanisms Diseases References

Promotes hepatic lipogenesis via
Akt/SREBP-1c pathway

Zhang et al.
(2018)

Lnc18q22.2 Up Liver tissues — — NAFLD Atanasovska
et al. (2017)

RP11-142A22.4 Up Visceral adipose
tissue

miR-587, Wnt5β Promotes adipogenesis by
sponging miR-587 to modulate
Wnt5β expression

Obesity Zhang et al.
(2020c)

LINC00473 Down Adipose tissue — — Obesity and type-2
diabetes

Tran et al. (2020)

E330013P06 Up Blood — — Breast cancer patient with
type-2 diabetes

Chen et al.
(2020)

SNHG8 Up Blood SOCS3, ICAM1 Promotes SOCS3 or ICAM1
expression by sponging miR-
411-5p

AMI Zhuo et al.
(2019)

FIGURE 2 | The functional roles of lncRNAs in lipid metabolism. LncRNAs modulate cholesterol efflux by ABCA1, ABCG1, CD36, and LDLR in the cytoplasm.
LncRNAs regulate ABCA1 expression by HDAC3 and LXRs, and lncRNAs regulate ABCG1 expression by PPAR-γ in the nucleus. LncRNAs influence lipid biosynthesis
by SREBP1c and SREBP2 in the nucleus.
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storage of fats for energy and the synthesis of structural and
functional lipids (de Carvalho and Caramujo, 2018). Lipid
biosynthesis is a part of metabolic abnormalities in cells,
which require large quantities of lipids to synthesize
cytomembranes, organelles, and signaling molecules during
cell proliferation (Xu et al., 2020). Importantly, fatty acid
oxidation (FAO) can provide abundant ATP for cells (Jeon
et al., 2012), and fatty acids are a major source of ATP
molecules (Fhu and Ali, 2020). In addition, lncRNAs affect
gene expression that is involved in lipid metabolism (Table 1).
Numerous studies have shown that lncRNAs participate in lipid
metabolism by influencing the expression of key genes, networks,
and pathways involved in lipid biosynthesis, cholesterol
transport, lipid uptake, and cholesterol efflux (Figure 2).

Recent studies have reported that lncRNAs participate in the
regulation of various genes expression in lipid metabolism that
was induced by hormones (Fu et al., 2020), environmental stress
(Wen et al., 2020), lipid/cholesterol (Ma et al., 2018), and obesity/
type 2 diabetes (Hu et al., 2020). A single lncRNA often targets
multiple mRNAs, and these mRNAs are linked to the different
metabolic pathways (Huang, 2018). It is important to note that
each mRNA is typically targeted by several lncRNAs, enabling
coordinated gene expression. Many molecules are involved in
lipid metabolism, including nuclear transcription factors such as
LXR, FXR, SREBP, and the scavenger receptor CD36 (Figure 2)
(Shimano and Sato, 2017; Yan et al., 2018; Piccinin et al., 2021).
These regulatory molecules, along with lncRNAs, are implicated
in the regulation of lipid metabolism.

Given the fact that lipid metabolism is distributed different
cellular organelles also transport of the intermediates between the
different organelles is an important point in lipid metabolism
(Khor et al., 2013; Xu and Taubert, 2021). Fox example, lipid
metabolism is located in the endoplasmic reticulum (ER) for lipid
biosynthesis (Jacquemyn et al., 2017), mitochondria and
peroxisomes for β-oxidation (Zhou et al., 2018), lipid droplets
(LDs) for storage and transport (Freyre et al., 2019), and
lysosomes for lipid hydrolysis and recycling (Go et al., 2012).
Lipid metabolism includes processes such as lipid uptake,
biosynthesis, catabolism, and secretion. LncRNAs can affect
biological functions in many ways, such as the miRNA
sponge, guide or decoy, scaffold, and chromatin remodeling.
Currently, numerous lncRNAs have been identified to be
involved in the regulation of lipid metabolism. However, many
lncRNAs with lipid metabolism functions do not directly target
genes involved in lipid metabolism pathways (He et al., 2019; Lan
et al., 2019), such as triglyceride and cholesterol biosynthesis and
fatty acid oxidation. Instead, they target the lncRNA-miRNA-
mRNA and lncRNA-mRNA axes. For example, the lncRNA
HULC has been shown to regulate abnormal lipid metabolism
by decreasing miR-9 expression, leading to the upregulation of
RXRA expression (Cui et al., 2015). RXRA, a member of the RXR
family that can be activated by sterol (Costet et al., 2000),
modulates the lipid metabolism disorders by activating acyl-
CoA synthetase long-chain family member 1 (ACSL1) (Cui
et al., 2015). Similarly, lncRNA PU.1 AS regulates lipid
metabolism via the sterol regulatory element-binding protein-
1c (SREBP-1c) pathway, resulting in reduced triglyceride

synthesis (Dong et al., 2019). Transcription factors of the
SREBP family, including SREBP-1a, SREBP-1c, and SREBP-2,
are central to transcriptional control of genes related to lipid and
fatty acid metabolism (Brown and Goldstein, 1999). Interestingly,
overexpression of SREBP-1c is known to facilitate fatty acid and
triglyceride synthesis and lead to lipid accumulation in the liver
(Yan et al., 2016). On the other hand, the inhibition of SREBP-1c
is shown to alleviate lipid accumulation and lipotoxicity (Jin et al.,
2020). The involvement of a lncRNA derived from hepatocytes
(lnc-HC) in lipid metabolism has been extensively reported. For
example, lnc-HC was found to regulate PPARγ-mediated lipid
metabolism and triglyceride (TG) concentration via miR-130b-
3p, where lnc-HC expression was positively correlated with the
miR-130b-3p expression (Lan et al., 2019). Furthermore, it has
been illustrated that lnc-HC forms a complex with hnRNPA2B1
and negatively regulates Cyp7a1 and Abca1 expressions; both are
implicated in hepatocytic cholesterol metabolism (Lan et al.,
2016). Another lncRNA and hnRNP complex has also been
identified with LeXis and RALY hnRNP, which are involved
in lipid metabolism and influence metabolic gene expression
(Sallam et al., 2016).

DISEASES ASSOCIATED WITH
LNCRNA-RELATED LIPID
DYSREGULATION
Several diseases, including atherosclerosis, MI, liver disease, and
hypercholesterolemia, are caused by or associated with lipid
dysregulation (Butt et al., 2017; Gluchowski et al., 2017;
Michos et al., 2019). Importantly, studies focused on these
diseases were performed using patient specimens, animal
models (ApoE−/− and LDL−/−), and atherosclerosis model
cell lines, such as human umbilical vein endothelial cells
(HUVECs) (Chen L. et al., 2019), human peripheral blood
monocytes (THP-1) (Choi et al., 2021), human vascular
smooth muscle cells (HVSMCs) (Li X. et al., 2021). Therefore,
we only summarised several representative studies that mainly
focused on lncRNA functions in lipid-related disease processes.

Disruption of lipid metabolism has been confirmed as a
significant factor in the pathogenesis of atherosclerosis
(Sukhorukov et al., 2020). The progression of atherosclerosis is
known to be regulated by disturbances of lipid metabolism
(Lovren et al., 2015), which impairs endothelial cells’ function.
Recent studies have identified H19 as a well-known lncRNA
associated with atherosclerosis (Huang Y. et al., 2019). H19
expression has been reported to be up-regulated in patients
with atherosclerosis and may be a potential therapeutic target
for atherosclerosis (Yang Y. et al., 2019). Knockdown of H19
inhibits hyperlipidemia and alleviates atherosclerotic lesions in
HFD-treated ApoE−/− mice (Pan and sciences, 2017; Shi et al.,
2020), while lentivirus-mediated H19-forced expression increase
the plaque area size (Huang Y. et al., 2019). Technically, H19 acts
as a molecular sponge for miR-148b-3p and activates its
expression of ELF5 (E74 like ETS transcription factor 5),
resulting in the restoration of ELF5 that inhibit the cell
migration in ox-LDL-stimulated HUVECs (Liu S. et al., 2021).
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Additionally, lncARSR, a lncRNA regulator of Akt signaling
associated with HCC and RCC, has recently been studied as a
potential therapeutic target for cholesterol disorder, and its
downstream target SREBP-2 was identified. SREBP-2 has been
found to bind to HMG-CoA reductase (HMGCR) to promote
hepatic cholesterol biosynthesis, resulting in aberrant regulation
of cholesterol metabolism (Huang et al., 2018). Collectively,
lncARSR-SREBP-2-HMGCR plays a pivotal role in regulating
lipid metabolism and the development of atherosclerosis (Xiao
and Song, 2013).

Dysregulated lipid metabolism is a hallmark of non-alcoholic
steatohepatitis (NASH), a very common liver disorder (Musso
et al., 2013). Recently, growing evidence has suggested that
dysregulated lncRNA expression is associated with
inflammation and fibrosis in NASH (Leti et al., 2017). Whole
transcriptome analysis and identified differentially expressed
lncRNAs (RP11-128N14.5 and TGFB2-OT1) in patients with
non-alcoholic fatty liver disease (NAFLD) (Di Mauro et al.,
2019). Several lncRNAs, including hepatocellular carcinoma
up-regulated lncRNA, NEAT1, and metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), were highly expressed
in liver biopsies from NAFLD patients (Leti et al., 2017).
Furthermore, expression of MALAT1 was upregulated in livers
of ob/ob mice and hepatocytes exposed to palmitate (Yan et al.,
2016). Another lncRNA, Alu-mediated p21 transcriptional
regulator (APTR), was discovered to be significantly increased
in human cirrhosis and activate hepatic stellate cells (Yu et al.,
2015). Hepatic LeXis expression is a mediator of cholesterol
biosynthesis (Sallam et al., 2016). Thus, raising or lowering
LeXis levels influence the expression of genes involved in
cholesterol biosynthesis and alter liver and plasma cholesterol
levels (Sallam et al., 2016). Brown fat-enriched lncRNA 1 (Blnc1)
was strongly elevated in obesity and NAFLD in mice (Zhao et al.,
2018). Hepatic Blnc1 deficiency is suggested to abrogate high-fat
diet-induced hepatic steatosis and insulin resistance and
ameliorate NASH pathogenesis (Zhao et al., 2018). These
findings provide a further rationale for analyzing global
changes in lncRNA expression in NAFLD and NASH.

Recent bioinformatics and high-throughput sequencing
studies have revealed that lncRNAs are differentially expressed
in patients with hypoalphalipoproteinemia and MI caused by
abnormal lipid metabolism (Wang et al., 2019). Differently
expressed lncRNAs and mRNAs in atherosclerosis by
analyzing dataset GSE28829 (Wang et al., 2019). A total of
654 lncRNAs and 5,784 mRNAs were significantly
dysregulated in the progression of atherosclerosis (Wang et al.,
2019). Moreover, six lncRNAs, ZFAS1 (ZNFX1 antisense RNA 1),
LOC100506730, LOC100506691, DOCK9-AS2, RP11-6I2.3, and
LOC100130219, were confirmed as potential novel therapeutic
and prognostic targets for atherosclerosis (Wang et al., 2019).
LncRNA ENST00000416361 was higher in the plasma of 50
patients with coronary artery disease (CAD) than the 50
healthy volunteers (Li P. et al., 2020). SREBP1 and SREBP2
were also up-regulated in CAD patients and showed positive
correlations with ENST00000416361 (Li P. et al., 2020). Single
nucleotide polymorphisms (SNPs) on the cyclin-dependent
kinase inhibitor 2B antisense RNA (ANRIL) and MALAT1,

two lncRNAs, affect the prognosis of MI (Li Y. et al., 2020).
ANRIL rs9632884 and MALAT1 rs3200401 were significantly
associated with the lipid levels of both controls and MI patients
(Li Y. et al., 2020). KCNQ1 overlapping transcript 1
(KCNQ1OT1) was found to be increased in the serum of
myocardial infarction (MI) patients, ischemia/reperfusion (I/R)
mouse and hypoxia/reoxygenation (H/R)-induced cell model (Li
J. et al., 2021). Moreover, several SNPs interacted with sex and age
and modified the total cholesterol (rs9632884), LDL-C
(rs1537373), and creatinine levels, affecting the risk of MI (Li
Y. et al., 2020). These studies using clinical specimens and in vitro
disease models have suggested that lncRNAs are involved in lipid-
related diseases. However, the results should be further validated
via in vitro and in vivo systems. Further research is required to
analyze potential biomarkers and therapeutic targets in various
lipid-related diseases (see Figure 3). This review provides a
comprehensive insight into the current knowledge regarding
the involvement of lncRNAs in regulating lipid metabolism,
which may unveil the potential biomarkers and therapeutic
targets for treating lipid-related diseases (Table 1).

LNCRNAS ARE IDEAL DIAGNOSTIC
BIOMARKERS AND THERAPEUTIC
TARGETS
Diagnosis of several lipid-related diseases and their associated
disease risks are mainly accomplished by analyzing the
concentrations of lipid components such as total cholesterol,
HDL, LDL, and triglycerides in the blood (Gotto, 2011;
Paredes et al., 2019). This method only obtains accurate
results when patients are fasted for at least 9–12 h. However, it
provides limited information on cholesterol levels. Thus, it is
necessary to search for better diagnostics and novel biomarkers
for lipid-related diseases to overcome these disadvantages.
LncRNAs are present in body fluids and are as stable as
mRNA. Due to their tissue-specific properties, lncRNAs can
be used as clinical indicators for diagnosis and are expected to
become a new target for disease treatment (Table 1). Therefore,
the application of lncRNAs as diagnostic biomarkers can result in
a timely collection of more accurate and detailed disease
information and risk factor data.

Previous attempts to use lncRNAs as biomarkers for disease
diagnosis have been demonstrated in several cancer studies (Ratti
et al., 2020) (Table 2). They revealed the functional roles of
lncRNAs during cancer progression, including tumorigenesis,
metastasis, and resistance to cancer treatment (Shen et al.,
2015; Bin et al., 2018). Interestingly, some lipid-related
lncRNAs mentioned in this review have also been emphasized
in some cancer studies and proposed as potential diagnostic
biomarkers (Peng et al., 2020). For example, the CHROME,
which is mainly involved in cholesterol efflux and HDL
biogenesis, was elevated in the plasma and atherosclerotic
plaques of individuals and identified as a novel biomarker for
the progression of CAD (Hennessy et al., 2019). On the other
hand, plasma LeXis, which participates in cholesterol metabolism
and the development of hepatic steatosis, was found to act as a
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non-invasive diagnostic biomarker for NASH (Park et al., 2020).
NEAT1 and ANRIL, which are associated with cholesterol
synthesis and MI, respectively, were suggested to be
biomarkers that identify non-small cell lung carcinoma
(NSCLC) (Yu X. et al., 2017; Osielska and Jagodziński, 2018).
Furthermore, elevated plasma levels of HULC, which is involved
in cholesterol synthesis, were identified as a biomarker for liver
cancer (Xie et al., 2013). Additionally, the correlation between
MALAT1, known to participate in cholesterol efflux, and lung
cancer has been suggested as a diagnostic indicator (Lin et al.,
2018). Moreover, the role of TUG1, an atherosclerosis-associated
lncRNA, in various cancers has been previously studied (Niu
et al., 2017; Guo et al., 2019). TUG1 was found to recruit specific
RNA-binding proteins to facilitate cancer progression (Duan
et al., 2019). These results suggest that lncRNAs play multiple
functional roles in various disease processes and, as has frequently
been reported in recent studies, cholesterol homeostasis is closely
related to cancer occurrence. Collectively, these reports on
lncRNAs in cancer indicate that the development of lncRNA
biomarkers for diagnosing lipid-related diseases is very
promising.

Importantly, from a therapeutic perspective, the best approach to
prevent and treat lipid-related diseases is to make certain lifestyle
modifications, such as exercisingmore and consuming a healthy diet
(Mannu et al., 2013). However, if high lipid levels persist, medication
must be taken to lower them. As mentioned earlier, the diagnosis
criteria for lipid-related diseases are based on detecting cholesterol
levels present in plasma (Płaczkowska et al., 2014). Thus, the primary
purpose of treatment is to reduce cholesterol to appropriate levels.

However, it is essential to note that the relationship between
cholesterol and lipid-related diseases is ever-changing, which
means that treatments also vary depending on the type and
condition of the related disease. For instance, statin-based drugs,
bile acid sequestrants, and cholesterol absorption inhibitors
(Ezetimibe) are used clinically for different conditions.
Specifically, statins decrease substances required for liver
cholesterol production, bile oxides or bile acid sequestrants
facilitate bile acid production from cholesterol, and cholesterol
absorption inhibitors reduce cholesterol and limit cholesterol
absorption from the small intestine (Taoufiq et al., 2011). In
addition, drugs that only increase the absorption of LDL
cholesterol have also been increasingly used recently (Lee et al.,
2020). Due to their specific actions and side effects, these drugs are
commonly used in combination in clinical and surgical treatments.

Importantly, lncRNAs involved in lipid metabolism can also
be used as potential therapeutic targets to maintain cholesterol
levels in the normal range. In general, RNA interference (RNAi),
using shRNA, siRNA, or anti-sense oligonucleotide (ASO), is the
most promising approach to target lncRNA silencing (Chi et al.,
2017). This approach has been proven effective at the whole
animal and cellular levels through various research (Liu et al.,
2017; Zhang L. et al., 2020). For instance, the lentiviral shRNA
targeting of lncRNA myocardial infarction associated transcript
(MIAT) significantly attenuates atherosclerosis progression and
increases plaque stability in vivo (Ye et al., 2019). Thus, a novel
method for achieving safe and efficient RNAi delivery should be
investigated and developed by further research. Furthermore,
ASO-based methods are also studied for more stable and less off-

FIGURE 3 | LncRNAs are involved in the three major diseases, including atherosclerosis, NAFLD, and myocardial infarction (MI) caused by abnormal cholesterol
levels and various lipid fractions. Various lncRNAs and their mechanisms are illustrated. APF: autophagy promoting factor; CAIF: cardiac autophagy inhibitory factor;
CALM2: calmodulin 2; GSA5: growth arrest-specific transcript 5; lncRNA XIST: long non-coding RNA X-inactive specific transcript; NLRC5: nucleotide-binding and
oligomerization domain-like receptor C5; Sfrp2: secreted frizzled-related protein 2.
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TABLE 2 | Summary of data from relevant lncRNAs-based biomarkers in human multiple tumors.

Biomarkers Dys-
regulation

Tumors Sample
type

Sample
size

Technological
approach

Application Comments References

LncRNA-ATB
FAM83H-AS1

Up Breast
cancer

Serum 90 breast cancer
patients

RT-PCR Prognosis;
disease
monitoring

Serum lncRNA-ATB
and FAM83H-AS1
could be used as a
non-invasive
diagnostic marker for
early stages of breast
cancer

El-Ashmawy
et al. (2020)

LINC00114,
LINC00261,
HOTAIR

HOTAIR (Up),
LINC00114
and
LINC00261
(Down)

CRC Tissues 459 nonmetastatic
CRC samples and
87 metastatic
CRC samples

RT-PCR Prognosis;
disease
monitoring

3-lncRNA signature
that includes
LINC00114,
LINC00261, and
HOTAIR is an
independent factor
for predicting CRC
prognosis

Liu et al.
(2020)

MSC-AS1 Up LC Tissues 123 LC patients
(111 tumor

— — — —

tissues, 12
adjacent
normal
samples)

RT-PCR Diagnosis
and
prognosis

MSC-AS1 may be
used as a potential
biomarker of LC.

Liu et al. (2021b) — — — —

HELIS
LINC01093,
CYTOR

HELIS and
LINC01093
(Down),
CYTOR (Up)

HCC Tissues 82 paired tissue
samples from
patients with HCC

RT-PCR Prognosis;
disease
monitoring

Down-regulated
HELIS and
LINC01093, up-
regulated CYTOR
are perspectives for
differential
diagnostics of HCC

Burenina et al.
(2021)

SNHG18 Up HCC Tissues, Plasma 71 paired HCC
patients

RT-PCR Diagnosis — —

DLG2-AS1 Down LUAD Tissues 70 LUAD patients RT-PCR Prognosis;
disease
monitoring

DLG2-AS1 serves as
a good diagnostic
biomarker for LUAD
patients

Arenas et al.
(2020)

MIAT,
LINC00460,
and
LINC00443

MIAT and
LINC00460
(Up)
LINC00443
(Down)

KIRC Tissues 530 KIRC patients RT-PCR Prognosis;
disease
monitoring

The LPM based on
three-lncRNAs could
serve as
independent
prognostic factors
with a tremendous
predictive ability for
KIRC patients

Zhang et al.
(2020a)

SAMMSON Up OSCC,
GBM

Tissues, Plasma 90 OSCC patients — — — —

56 patients with
GBM (34 males
and 22 females)

RT-PCR Diagnosis
and
prognosis

SAMMSON might
play a critical role in
OSCC progression
and serve as a novel
prognostic and
diagnostic
biomarker in OSCC.

— — — — —

Plasma
SAMMSON
has diagnostic
value for GBM

Xie et al.
(2019); Zheng
et al. (2020)

— — — — — — —

LUCAT1 Up PTC Tissues 61 PTC patients RT-PCR Diagnosis
and
prognosis

LUCAT1 can act as a
novel prognostic
biomarker for
patients with PTC

Luzón-Toro
et al. (2019)

PTENP1 Down BC Plasma 50 patients with
BC and 60 healthy
controls

RT-PCR Diagnosis Exosomal PTENP1 is
a potential novel
biomarker that can
be used for the

Zheng et al.
(2018)

(Continued on following page)
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target occurrence in addition to RNA interference technology
(Maruyama and Yokota, 2020). For example, MALAT1 targeted
ASO has been developed, and its inhibitory effect has been
identified using animal models of malignancy (Amodio et al.,
2018). Moreover, besides the method that targets lncRNA itself,
controlling lncRNA function by inhibiting its interaction with the
RNA-binding proteins has also been attempted (Kung et al., 2013;
Bhat et al., 2016). However, note that RNA interference
therapeutics have recently been progressed through preclinical
development into clinical trials (Bobbin and Rossi, 2016). Thus,
applying these as ideal clinical therapeutics requires the
development of safe and effective delivery systems.

Small molecules have been extensively used for the therapeutic
targeting of various diseases. These compounds have greater
cellular uptake and fewer administrative challenges than
antisense oligonucleotides and viral vectors for RNAi delivery.
Small molecule inhibitors target lncRNAs by preventing them
from binding to their RNA-binding proteins (RBPs). After
analysing the lncRNA expression profiles from lncRNA
modulator atlas in pan-cancer (LncMAP) database by
bioinformatics analysis, the lncRNA network consists of 1,206
nodes and 4,770 drug-lncRNA associations to examine the global
relationship between small molecule drugs and their affected
lncRNAs (He et al., 2019). In addition, small molecules were
screened to modulate the lncRNAHOX transcript antisense RNA
(HOTAIR)-enhancer of zeste homolog2 (EZH2) interaction using
alphaScreen technology (Pedram Fatemi et al., 2015). The
interaction was inhibited with HOTAIR-polycomb repressive
complex 2 (PRC2) binding through small-molecule
intervention resulting in reduced metastatic phenotypes in
many cancers, including breast (Gupta et al., 2010), colorectal
(Kogo et al., 2011), and hepatocellular carcinomas (El-Khazragy
et al., 2020). However, it is necessary to investigate the lncRNA-
protein interaction and pharmacological trends further to
develop more effective small molecule drugs (Figure 3).

CONCLUSION AND FUTURE
PERSPECTIVES

Recent studies have shown that lncRNAs are involved in various
lipid-related diseases (Table 1), thereby opening up a new
research field and providing insight for lncRNAs as important
eukaryotic transcripts. Concerning the correlation between
lncRNAs regulation and lipid-related diseases, atherosclerosis
is the most frequently studied disease (Ye et al., 2021). The
occurrence of lipid-related diseases is due to the inactivation
of suppressor genes and the activation of pathogenic genes. Thus,
screening and identifying candidate biomarkers for prognosis,
monitoring, and evaluating patients’ responses to therapies is
required to develop novel strategies for lipid-related disease
therapies. Also, ncRNAs (miRNAs and lncRNAs), DNA
methylation, and histone modifications can epigenetically
regulate gene expression. LncRNAs have recently served as
important regulators of lipid-related diseases via various
biological processes, including lipid metabolism, lipid

TABLE 2 | (Continued) Summary of data from relevant lncRNAs-based biomarkers in human multiple tumors.

Biomarkers Dys-
regulation

Tumors Sample
type

Sample
size

Technological
approach

Application Comments References

clinical detection
of BC.

PANDAR,
FOXD2-AS1,
SMARCC2

Up GC Plasma 109 GC patients
and 106 healthy
controls

RT-PCR Diagnosis Plasma PANDAR,
FOXD2-AS1, and
SMARCC2 may be
appropriate
diagnostic
biomarkers for GC.

Yang et al.
(2019b)

FIGURE 4 | The application of lncRNAs as therapeutic targets and
diagnostic biomarkers. LncRNAs in urine or blood specimens can be detected
by various methods such as RNA sequence, microarray, RT-PCR, and
aptamer. The interactions of lncRNAs with target proteins and lncRNAs
involved in lipid metabolism and cholesterol synthesis will be the potential
therapeutic targets for lipid-related diseases.
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accumulation, lipid synthesis, and cholesterol efflux (Sallam et al.,
2018; Chen X. et al., 2019; Wang Z. et al., 2020; Zuo et al., 2020).
Thus, there is a considerable thrill in using lncRNAs as a critical
therapeutic target in treating lipid-related diseases.

Recent studies have demonstrated that lncRNAs could be
detected in the blood plasma, tumor tissue, and urine, making
them serve as promising biomarkers for development as disease,
including atherosclerosis, MI, and cancer diseases (Dastmalchi
et al., 2020; Fattahi et al., 2020). Genome-wide sequencing
techniques have emerged as an important technology and
reported a large number of newly dysregulated lncRNAs,
implying promising results about the broad application
prospects of lncRNAs in the prognosis and diagnosis of lipid-
related diseases. Deregulation of many lncRNAs, such as H19
(Pan, 2017), TUG1 (Li et al., 2018), GAS5 (Chen et al., 2017),
RAPIA (Sun et al., 2020), MIAT (Ye et al., 2019), CASC11 (Tao
et al., 2019), NEXN-AS1 (Hu Y.-W. et al., 2019), and lnc00113
(Yao et al., 2018), has been detected in patients with
atherosclerosis. LncRNAs including H19, TUG1, MIAT, and
CASC11 could be detected in serum samples as a potential
diagnostic marker in patients with atherosclerosis. In addition
to establishing the functional role of lncRNAs in diagnosis, some
lncRNAs such as AL117190.1, COL4A2-AS1, LINC00184, MEG3
and MIR22HG could function as crucial prognostic markers for
patients (Yao et al., 2019). Besides, as diagnostic and prognostic
markers, lncRNAs such as H19 (Yörüker et al., 2018), MEG3
(Wan and Zhao, 2020), PVT1 (Pan et al., 2019), FAM83H
antisense RNA 1 (FAM83H-AS1) (El-Ashmawy et al., 2020),
SNHG1 (Xiao et al., 2018), and LUCAT1 (Xing et al., 2021)
are involved in the process of various cancer progression. Thus,
we speculate that dysregulated lncRNAs may be used as
biomarkers to provide diagnosis and prognostic of lipid-
related diseases but also are useful in therapeutic applications.

Although it is well established that high concentrations of
serum cholesterol levels facilitate the development of
atherosclerosis (Johnston et al., 2017), the association of
LDL-C or other lipids with atherosclerosis remains
controversial. To date, a large number of lncRNAs
associated with lipid metabolism and lipid-related diseases
have been identified through RNA-seq and bioinformatics
analyses. The functions of these lncRNAs may have
important clinical implications in lipid metabolism and
lipid-related diseases since they provide a myriad of
possibilities for the diagnostics and treatment of these
diseases. Furthermore, lncRNAs have been described as
high tissue- and cell type-specific expression patterns (Kopp
and Mendell, 2018; Antonov et al., 2019), which could be
classified as different subclasses of lipid-related diseases or
even predict responses to treatments. However, our current
knowledge of the effect of lncRNAs on lipid-related diseases is

possibly only the tip of the iceberg. Thus, more comprehensive
investigations should be conducted to better understand how
lncRNAs affect lipid-related diseases and develop new
therapies.

The study of lncRNAs involved in controlling the cholesterol
levels, specifically lncRNAs that directly interact with target genes
or epigenetic proteins at the transcriptional level, may contribute
to developing novel drugs to treat lipid-related diseases.
Importantly, the latest next-generation sequencing-based big
data research has identified numerous lncRNAs associated
with various lipid-related diseases (Ye et al., 2021). However,
further molecular biological research is needed to deepen the
understanding of the association between various lncRNAs
discovered and actual genetic mechanisms.

This review summarised various lipid-related lncRNAs and
their target genes that play essential roles in lipid metabolism and
lipid-related diseases. The involvement of lncRNAs was
abnormally expressed in certain disease conditions, including
atherosclerosis (Gao and Guo, 2021), myocardial infarction (Li
J. et al., 2021), non-alcoholic fatty liver disease (Li J.-z. et al.,
2021), and hypercholesterolemia (Tontonoz et al., 2017).
Furthermore, a large number of lncRNAs identified from
various studies were found to be associated with a diverse
range of diseases. As lncRNAs are structurally and functionally
conserved, further research is required to develop more effective
diagnostics and therapeutics in this field or reveal the mechanism
of certain diseases (see Figure 4 and Table 1). Altogether,
advancing the knowledge of these lncRNAs and their
functions is crucial for developing novel detection and
modification methods.
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GLOSSARY

AMI Acute myocardial infarction

ASH Alcoholic steatohepatitis

ATG12 autophagy-related 12 homologs

CAIF Cardiac autophagy inhibitory factor

CASIMO1 Cancer-associated small integral membrane open reading
frame 1

CAVD calcific aortic valve disease

CHAST cardiac hypertrophy-associated transcript

HF heart failure

HMGCR HMG-CoA reductase

HOXC6 homeobox C6

HOXC-AS1 lncRNA HOXC cluster antisense RNA 1

ITGB1 integrin β1

JDP2 Jun dimerization protein 2

LDLR low-density lipoprotein receptor

LRP2BP low-density lipoprotein related receptor 2 binding protein

MALAT1 metastasis-associated lung adenocarcinoma transcript 1

MIAT myocardial infarction associated transcript

MMP1 matrix metalloproteinase 1

NEXN nexilin F-actin binding protein

NEXN-AS1 nexilin F-actin binding protein antisense RNA 1

PDCD4 programmed cell death 4

PPARA proliferator-activated receptor alpha

RAPIA associated with the progression and intervention of atherosclerosis

SOCS2 cytokine signalling 2

SQLE squalene epoxidase

TNRC6A trinucleotide repeat-containing gene 6a

BC bladder cancer

CYTOR cytoskeleton regulator RNA

FAM83H-AS1 FAM83H antisense RNA 1

FOXD2-AS1 FOXD2 adjacent opposite strand RNA 1

GBM glioblastoma

GC gastric cancer

HCC hepatocellular carcinoma

KIRC kidney renal clear cell carcinoma

LC laryngeal cancer

LncRNA-ATB lncRNA activated by TGF β

CRC colorectal cancer

LPM lncRNA prognostic model

LUAD lung adenocarcinoma

MSC-AS1 MSC antisense RNA 1

OSCC oral squamous cell carcinoma

PANDAR promoter of CDKN1A antisense DNA damage activated RNA

PCa prostate cancer

PTC papillary thyroid cancer

PTENP1 phosphatase and tensin homolog pseudogene 1

SAMMSON survival associated mitochondrial melanoma-specific
oncogenic non-coding RNA

SMARCC2 SWI/SNF related, matrix associated, actin-dependent
regulator of chromatin subfamily c member 2

SNHG18 small nucleolar RNA host gene 18
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