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Objective: The purpose of this study was to investigate the effect of dapagliflozin (DAPA),
a sodium-glucose cotransporter 2 inhibitor, on relieving cardiac hypertrophy and its
potential molecular mechanism.

Methods: Cardiac hypertrophy induced by abdominal aortic constriction (AAC) in mice,
dapagliflozin were administered in the drinking water at a dose of 25 mg/kg/d for 12 weeks
was observed. Echocardiography was used to detect the changes of cardiac function,
including LVEF, LVFS, LVEDd, LVEDs, HR and LV mass. Histological morphological
changes were evaluated by Masson trichrome staining and wheat germ agglutinin
(WGA) staining. The enrichment of differential genes and signal pathways after
treatment was analyzed by gene microarray cardiomyocyte hypertrophy was induced
by AngII (2 μM) and the protective effect of dapagliflozin (1 μM) was observed in vitro. The
morphological changes of myocardial cells were detected by cTnI immunofluorescence
staining. ELISA and qRT-PCR assays were performed to detect the expressions levels of
cardiac hypertrophy related molecules.

Results: After 12 weeks of treatment, DAPA significantly ameliorated cardiac function and
inhibited cardiac hypertrophy in AAC-induced mice. In vitro, DAPA significantly inhibited
abnormal hypertrophy in AngII-induced cardiacmyocytes. Both in vivo and in vitro
experiments have confirmed that DAPA could mediate the Plin5/PPARα signaling axis
to play a protective role in inhibiting cardiac hypertrophy.

Conclusion: Dapagliflozin activated the Plin5/PPARα signaling axis and exerts a
protective effect against cardiac hypertrophy.
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INTRODUCTION

Cardiovascular diseases, especially acute myocardial infarction and atherosclerosis, remain the
leading cause of death worldwide. In China, the prevalence of cardiovascular disease is rising, causing
nearly 4 million deaths in 2016 alone (Liu et al., 2019). Epidemiological studies showed the incidence
of cardiac hypertrophy is high worldwide, with the prevalence of about 1/500 (Wasserstrum et al.,
2019). Cardiac hypertrophy is the basis of abnormal ventricular remodeling and plays a vital role in
the development of most cardiovascular diseases (Pichler et al., 2020). To some extent, elucidating
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the pathological mechanism of cardiac hypertrophy provides
theoretical support for targeted treatment strategies for
cardiovascular diseases. Thus, it is urgent to explore the
molecular mechanisms underlying cardiac hypertrophy and to
seek the effective strategies. Pathological cardiac hypertrophy that
occurs in cardiovascular disease is often accompanied by
inflammation and myocardial fibrosis, ultimately leading to
heart failure (Tham et al., 2015). In addition, the typical
pathological basis of cardiac hypertrophy includes the
accumulation and deposition of excessive extracellular matrix
(ECM) and abnormal cardiomyocyte hypertrophy. At present,
the drugs used in clinical treatment of cardiac hypertrophy
mainly include angiotensin-converting enzyme inhibitors (e.g.,
Captopril) (Zhang et al., 2019), angiotensin II receptor blockers
(e.g., Losartan) (Gonzalez et al., 2021) and calcium channel
blocker (e.g., Amlodipine) (Lu et al., 2016).

As a novel class of hypoglycemic agent, sodium-glucose co-
transporter 2 (SGLT-2) inhibitors (e.g., empagliflozin,
dapagliflozin) prevented the reabsorption of glucose and
sodium from the proximal convoluted tubules, resulting in
glycourine and sodium-rich properties. Dapagliflozin increased
the amount of glucose excreted in the urine and improved fasting
and postprandial blood glucose levels in patients with T2D
(Dhillon, 2019). In addition, it has been reported that
dapagliflozin has been widely used in the clinical treatment of
diabetes and cardiovascular disease. Empagliflozin (EMPA) has
been reported to improve cardiac remodeling and cardiac
metabolism and ATP homeostasis in rats with myocardial
infarction (Yurista et al., 2019). Excitingly, Ye et al. (2017)
found that DAPA has a potential cardiovascular protective
effect in the treatment of diabetes. Numerous studies (Aimo
et al., 2020; Zannad et al., 2020) have shown the importance of
DAPA in reducing hospitalization for heart failure in patients
with HFrEF and suggest that DAPA may also reduce the risk of
cardiovascular events and cardiovascular mortality associated
with diabetes. Besides, Lahnwong et al. (2020) reported that
acute administration of DAPA could play a protective role by
reducing myocardial infarction size and improving left
ventricular function in myocardial ischemia/reperfusion rats. It
was reported (Zhang et al., 2021) that DAPA ameliorated Ang II-
induced cardiac remodeling by regulating TGF-β1/Smad
signaling pathway. Despite the potential cardioprotective
effects of DAPA has been widely proven, its mechanisms
against cardiac hypertrophy remain unclear.

Modern pharmacology reported (Sharma et al., 2004; Chen
et al., 2015) that with the development of the pathological process
of cardiac hypertrophy, cardiac energy metabolism is disturbed,
fatty acid utilization is limited, and the accumulation of lipids will
aggravate the occurrence of cardiac hypertrophy and heart
failure. Recent studies (Martin and Parton, 2006; Wang et al.,
2015) have shown that as dynamic lipid storage organelles, lipid
droplets (LDs) is regarded as a key regulator of lipid metabolism
in various kinds of cells including adipocytes and cardiomyocytes.
The perilipin family of proteins is a classic LDs related protein,
among which perilipin 5 (Plin5) is highly expressed in heart, liver
and other tissues (Wolins et al., 2006). Wang et al. (2015)
confirmed that Plin5 deficiency increased liver lipid

metabolism, promoted mitochondrial proliferation, and led to
ROS burst. Plin5 deficiency also increased the oxidation of fatty
acids in the heart, leading to cardiac dysfunction. Besides, Plin5
deficiency has been reported to exacerbate TAC-induced cardiac
hypertrophy and heart failure. Peroxisome proliferator-activated
receptor-α (PPARα) is a ligand-activated transcription factor, a
member of the nuclear hormone receptor superfamily, which is
known for its critical role in the transcriptional regulation of lipid
metabolism (Smeets et al., 2008). Peroxisome proliferator-
activated receptors (PPARs) are members of the ligand-
activated nuclear receptor superfamily and are the key
transcriptional regulators that control the capacity for
myocardial mitochondrial fatty acid oxidation (FAO) (Stanley
et al., 2005). PPARs consists of three member subfamilies: PPAR-
α, PPAR-β and PPAR-γ (Montaigne et al., 2021). PPAR-α is
highly expressed in cardiomyocytes, and it regulates the
expression of key components in fatty acid uptake,
esterification, and oxidation through transcriptional activation
of genes encoding key proteins in the signaling pathway, and
maintains metabolic homeostasis in cardiomyocytes (Kar and
Bandyopadhyay, 2018). Loss of PPAR-α has been shown to lead
to more pronounced hypertrophic growth and cardiac
dysfunction, suggesting a key regulatory role for PPAR-α in
cardiac hypertrophy (Smeets et al., 2008). PPARα activator
attenuated cardiac hypertrophy by negatively regulating the
binding activity of activated protein-1 (AP-1) (Jia et al., 2014;
Shimojo et al., 2014) confirmed that Fenofibrate protected against
cardiac hypertrophy by activating the PPAR-α signaling and
ameliorating myocardial energy metabolism.

Considering the molecular mechanism of Plin5 and PPARα in
cardiac hypertrophy, we hypothesized that DAPA might mediate
the protective effect of Plin5/PPARα signaling axis. Therefore, we
performed the present study to confirm the effect of DAPA
towards cardiac hypertrophy in AAC-induced mice and to
explore the regulatory effect on Plin5/PPARα signal axis. Our
data revealed that the molecular mechanisms by which DAPA
attenuated cardiac hypertrophy, which is of great significance for
clinical use.

METHODS

Animals and Groups
Eight-week-old male C57BL/6 mice (23 ± 2 g) were obtained
from Beijing Vital River Laboratory Animal Technology Co., Ltd.
The mice were kept in wages and given free access to food and
water. Mice were housed under suitable conditions, including 12-
h light/dark cycle, temperature at 25 ± 2°C and relative humidity
50–60%. Follow-up experiments were started after 1 week of
adaptive feeding. Twenty-four mice were randomly divided
into three groups: sham group (n � 8), AAC group (n � 8)
and dapagliflozin treatment group (n � 8). Sham group and AAC
group were treated with saline for 12 weeks. In the treatment
group, after the establishment of AAC model, dapagliflozin was
administered in the drinking water at a dose of 25 mg/kg/d for
12 weeks (Kraakman et al., 2017). All the animal testing
procedures covered in this study complied with the guidelines
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of the Care and Use of Laboratory Animals and were approved by
the Laboratory Animal Center of Tianjin Medical University. All
procedures and care methods minimize the suffering of the mice.

Abdominal Aortic Constriction Model
AAC mice were performed as previously described. (Duan et al.,
2007). Briefly, after anesthesia with 2% isoflurane, the mice were
placed in the supine position on the platform and cut along the
midline of the abdomen to expose the abdominal cavity.
Subsequently, the abdominal aorta was ligated with 7-0 silk
sutures with a 27G needle. The degree of AAC was controlled
by needle removal under suture to ensure the stability and
uniformity of the operation. Close the abdominal cavity,
carefully suture the skin, and clean the wound. In the sham
operation, the silk was removed without ligation. After the
operation, the mice were injected with penicillin and put back
into the cage when they woke up.

Echocardiography
After 12 weeks of continuous administration, the mice were
anesthetized with 2% isoflurane, and cardiac function was
detected by echocardiography. As previously reported (Chai
et al., 2020), Doppler images of the lateral and septal mitral
annulus were recorded. Heart rate (HR) was recorded by
synchronized electrocardiography. Left ventricular ejection
fraction (LVEF), fraction shortening (LVFS), left ventricular
end-diastolic volume (LVEDV), left ventricular end-systolic
volume (LVESV) were calculated.

Microarray Profiling
After 12 weeks of treatment, the total RNA was isolated from the
heart tissue using Trizol reagent (Invitrogen, CA, United States).
Determine the concentration of total RNA by fluorescence-based
quantitation using an RNA RiboGreen® dye assay (e.g., Quant-
iT™ RiboGreen® RNA Reagent and Kit) and the NanoDrop
Fluorospectrometer for initial RNA concentration of 5 pg/μL
to 1 ng/μL (www.nanodrop.com). RNA integrity was tested
using the Agilent 2,100 Bioanalyzer with an RNA LabChip
Kit. Global transcriptome analysis of total RNA (50 ng/μl) was
performed using the Affymetrix GeneChip Primeview™,
according to the manufacturer’s instructions. Hybridization,
staining, normalization and data analysis were performed
following the standard protocol established by Agilent
Technologies, Inc.

Morphological and Histological Analysis
The mice were anesthetized, the hearts were immediately
removed, washed with PBS, and fixed with 4%
paraformaldehyde for 24 h. Then paraffin-embedded sections
with a thickness of 3–5 μm were stained according to Masson
trichrome staining, and wheat germ agglutinin (WGA) staining
(Zhu et al., 2018). Masson trichrome staining was performed to
evaluate cardiac fibrosis. WGA staining was used to assess the cell
size. For WGA staining, briefly, the slides were stained with
WGA-FITC labeled antibodies for 30 min at room temperature.
The nuclei were stained with DAPI for 5 min. For each analysis,
six fields were randomly selected for each sample under the

microscope. All histomorphological analyses were performed
by pathologists who were unaware of the experimental
grouping design.

Cell Culture and Treatment
Neonatal mouse cardiac myocytes (NMCMs) were isolated from
hearts of 1–3 days-old C57BL/6 mice according to the previous
report, then the heart was cut into small pieces (Bei et al., 2019).
Briefly, the heart was immediately removed and washed with ice-
cold PBS. Next the cardiac myocytes were cultured in DMEM
(Dulbecco’s modified Eagle’s Medium, Gibco) containing 10% FBS
(fetal bovine serum). Then, NMCMs were inoculated in two
25 cm2 culture flasks and incubated in 5% CO2 for 1 h to
isolate cardiomyocytes and cardiomyocytes. The purified mouse
primary cardiomyocytes (NMCMs) were cultured for 3 days,
which was used for the subsequent experiment. The cells were
divided into three groups: control group, AngII group and
dapagliflozin group. After the starvation for 4 h, the control
group was given a normal medium for 48 h. The cells in AngII
group were treated with AngII (2 μM) for 48 h, the medium was
changed every 24 h. In the dapagliflozin group, NMCMs were
treated with AngII (2 μM) and dapagliflozin (1 μM) for 48 h, the
medium was changed every 24 h (Uthman et al., 2018).

RNA Interference and Groups
After 24 h of cell culture, the purified cardiomyocytes were
replaced with the fresh complete medium containing a
cardiomyocyte growth supplement. After 24 h, the NMCMs
were washed with PBS, and cells were transfected with 1 μM
of Lipofectamine 2000 (Invitrogen, CA, United States) and siRNA
(si-NC, si-negative control or si-Plin5, Guangzhou RiboBioCo.,
Ltd., China) in Opti-MEM® I Reduced-SerumMedium according
to the manufacturer instructions. 6 h later, cells were treated with
AngII (2 μM) and dapagliflozin (1 μM), DMSO or GW6471
(10 μM) for 24 h. The cells were then washed with PBS,
harvested, lysed with TRIzol and stored in an −80°C
refrigerator for subsequent protein and RNA detection. This
part of the experiment is divided into the following groups:

A: AngII + DAPA (dapagliflozin)
B: AngII + DAPA (dapagliflozin) + DMSO
C: AngII + DAPA (dapagliflozin) + DMSO + GW6471
(PPARα inhibitor)
D: AngII + DAPA (dapagliflozin) + si-NC
E: AngII + DAPA (dapagliflozin) + si-Plin5

Immunofluorescence Staining
Cultured NMCM cells with a density of 1 × 105/mL were harvested
and allowed to air dry naturally on the slides. Then the cells were
washed with PBS three times and fixed for 15 min with 4%
paraformaldehyde at room temperature. 2% bovine serum
albumin (BSA) was added to block nonspecific binding at room
temperature for 2 h. Then, cTnI antibody was incubated at 37°C for
3 h. After PBS washing, the cells were incubated with biotinylated
goat anti-mouse IgG as the secondary antibody, incubated at 37°C
for 1 h. Subsequently, the slides were washed with PBS for three
times. And the nucleus was counterstained with DAPI. Finally, the
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cells were observed and photographed under a fluorescence
microscope (Olympus, Tokyo, Japan).

Western Blotting Assay
Heart tissue or NMCMs were lysed in RIPA buffer with PMSF,
protease and phosphatase inhibitors. Protein samples were
isolated after centrifugation, and the protein concentration was
determined by the BCA kit. Protein samples were diluted to
10 μg/μL by PBS, and then stored in −80°C refrigerator for later
use. The equal amount of protein was separated in 10% SDS-
PAGE gel, transferred to PVDF membranes and blocked with 5%

BSA. PVDF membranes were incubated with primary antibodies
(STAT1, ab109461; PPARα, ab126285; HMGCS2, ab137043;
PDK4, ab214938; GAPDH, ab181602, Abcam,
United Kingdom; Plin5, A20418, Abclonal, Wuhan, China) at
4°C overnight. After washing 3 times with TBST and incubated
with secondary antibodies at room temperature for 2 h. The
bands were visualized with enhanced chemiluminescence (ECL
kit) in dark. Then image J software was used to measure the gray
value of the target protein bands. GAPDHwas used as the loading
control. This section of the experiment was repeated
independently at least three times.

FIGURE 1 | Dapagliflozin alleviated cardiac remodeling and improved cardiac function in AAC-induced mice (A) Representative M-mode echocardiography
images. In AAC-induced mice, dapagliflozin improved ejection fractions (EF) (B) and fractional shortening (FS) (C), LV mass (D), Heart rate (E), LV end-diastolic volume,
LVEDV (F), LV end-systolic volume, LVESV, n � 8 (G). Images of Masson-stained (H) andWGA-stained sections (I) in different groups, n � 3, original magnification, 400×
(J) Images of whole heart frommice in different groups after 28 days. (K) The heart weight to body weight ratio was determined, n � 8. The data were expressed as
mean ± SD, *p < 0.05, vs. sham group; #p < 0.05, vs. AAC group.
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Quantitative Real-Time Polymerase Chain
Reaction Analysis
Total RNA was isolated from NMCMs and cardiac tissue using
Trizol according to standard protocols. The RNA was then
determined for purity and concerntration, and cDNAs were
synthesized with 500 ng RNA using a reverse transcription kit.
qRT-PCR analysis was performed using Takara SYBR Premix Ex
Taq™ on Roche LightCycler480 PCR System. The mRNA
expression was calculated by −2ΔΔCT method, and GAPDH
was used as the loading control.

Enzyme-Linked Immunosorbent Assay
The contents of ANP, BNP, β-MHC and cTnI in the serum were
detected by ELISA kits (Zhang et al., 2019). The test was
conducted according to the manufacturers’ instructions.

Statistical Analysis
The data in the study are presented as themeans± SD, and the data
was analyzed using one-way ANOVA followed by the Student t test
for multiple comparisons by SPSS 22.0 software. The p value of less
than 0.05 was considered statistically significant.

RESULTS

Protective Effects of Dapagliflozin on
AAC-Induced Cardiac Hypertrophy in Mice
After 12 weeks of treatment with dapagliflozin, the protective effect of
dapagliflozin on AAC-induced cardiac hypertrophy was observed. As
shown in Figures 1A–C, we found compared with sham group, the
left ventricular ejection fraction (LVEF) and fraction shortening
(LVFS) in AAC model group were significantly inhibited,

indicating a significant decrease in cardiac function in AAC-
induced mice. After dapagliflozin treatment, the LVEF and LVFS
in the treatment group were improved significantly compared with
AAC group. Furthermore, LV mass in DAPA group was reduced
markedly compared with AAC group (Figure 1D). According to the
echocardiography results (Figures 1E–G), we also obtained HR,
LVEDV and LVESV in different groups. There was no significant
difference in HR between AAC group and treatment group. While,
LVEDV and LVESV in AAC group were significantly increased
compared with those in sham group, which was consistent with
previous reports of cardiac hypertrophy (Ye et al., 2020). After
treatment, LVEDV and LVESV were decreased significantly
compared with AAC group. The results suggested that
dapagliflozin can significantly improve cardiac function in AAC-
induced mice. Masson staining results (Figure 1H) showed that
dapagliflozin significantly blunted the myocardial fibrosis. WGA
staining results (Figure 1I) were used to detect the changes of cell
size. Consistent with the H&E results, dapagliflozin significantly
inhibited abnormal hypertrophy of cardiomyocytes after treatment.
We observed the changes of the heart as a whole (Figures 1J,K), and
we found that the abnormal enlargement of the heart induced byAAC
was significantly improved in the treatment group. The ratio ofHWto
BWwas increased in AAC-induced mice, which could be reversed by
dapagliflozin. Taken together, we demonstrated that dapagliflozin
attenuated cardiac hypertrophy and improved cardiac function.

Dapagliflozin Down-Regulates the Levels of
Genes Associated With Cardiac
Hypertrophy in AAC-Induced Mice
In addition to the decreased cardiac function and the abnormal
enlargement of the heart shape, cardiac hypertrophy is
characterized by the activation of the fetal gene program, the

FIGURE 2 | Effect of dapagliflozin on the level of cardiac hypertrophy-related genes in AAC-induced mice. The contents of ANP (A), BNP (B), β-MHC (C) and cTnI
(D) in cardiac tissues of different groups were detected via ELISA kits. qRT-PCR analysis was performed to detect themRNA expression of ANP (E), BNP (F) and β-MHC
(G). The data were expressed as mean ± SD, *p < 0.05, vs. sham group; #p < 0.05, vs. AAC group.
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abnormal up-regulated genes mainly including ANP, BNP,
β-MHC and cTNI. In order to further confirm the effect of
dapagliflozin on cardiac hypertrophy, ELISA assay was
performed to detect the changes in the markers related to
cardiac hypertrophy in serum of AAC-induced mice. As shown
in Figures 2A–D, compared with sham group, the expression
levels of ANP, BNP, β-MHC and cTNI in AAC group were
significantly increased. After treatment, the expressions of
markers were down-regulated by dapagliflozin. Moreover, qRT-
PCR analysis was performed to detect the mRNA expression of

ANP, BNP and β-MHC in heart tissues. Similarly, the qRT-PCR
results (Figures 2E–G) were consistent with ELISA results. Based
on the above results, we hypothesized that dapagliflozin could
mitigate cardiac hypertrophy in AAC-induced mice.

Dapagliflozin Attenuated AngII-Induced
Cardiomyocyte Hypertrophy
Stimulation of NMCMs by AngII could induce cardiac
hypertrophy (Mele et al., 2019). Cardiac troponin I (cTnI)

FIGURE 3 | Dapagliflozin attenuated AngII-induced cardiomyocyte hypertrophy. (A) The morphological changes of cardiomyocyte cells were evaluated by
immunofluorescence staining with anti-cTNI (red), cells were counterstained with DAPI (blue) staining the nucleus, Phalloidin-FITC staining the cytoskeleton (green) qRT-
PCR analysis was used to detect the mRNA expression of Nppa (B), Nppb (C), Serca2 (D) and myh7 (E) in different groups. The data were expressed as mean ± SD in
three independent experiments, n � 3, *p < 0.05, **p < 0.01, vs. control group; #p < 0.05, ##p < 0.01, vs. AngII group.
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is an important structural protein and a cardiomyocyte-
specific marker (Luo et al., 2021). Immunofluorescence
staining results (Figure 3A) of NMCMs showed obvious
hyperplasia of myocardial cells induced by AngII,
suggesting that the cardiac hypertrophy model was
successful. Cardiomyocyte hypertrophy was inhibited after
dapagliflozin treatment, demonstrating that dapagliflozin
attenuates cardiac hypertrophy in vitro. And, qRT-PCR
analysis was performed to detect the expression level of
genes related to cardiac hypertrophy and to evaluate the
effect of dapagliflozin on cardiomyocyte hypertrophy
in vitro. The results (Figures 3B–E) indicated that
compared with control group, the mRNA expressions of
Nppa, Nppb, Serca2 and myh7 in AngII group were up-
regulated significantly. While the mRNA expressions of
Nppa, Nppb, Serca2 and myh7 in treatment group was

down-regulated markedly compared to AngII group. Taken
together, the results indicated that dapagliflozin attenuated
cardiomyocyte hypertrophy in vitro.

Differential Gene Analysis of Dapagliflozin in
AAC-Induced Mice Detected by Gene
Microarray
To further study the protective mechanism of dapagliflozin in
AAC-inducedmice, we conducted a microarray analysis. FC > 1.5
or FC < −1.5 represented significant differential expression. As
shown in Figure 4A, compared with AAC group, we found 2014
genes changed significantly in the dapagliflozin treatment group,
among which 941 genes were up-regulated and 1,073 genes were
down-regulated. Besides, signaling pathway enrichment analysis
showed the PPAR signal pathway was significantly down-
regulated in AAC-induced mice compared with sham group.
While PPAR signaling pathway was up-regulated in treatment
group compared with AAC group. In addition, we have identified
some key differential genes (Table 1), which may be key signaling
molecules for the protective effects of dapagliflozin. In subsequent
experiments, we explored the mechanism of dapagliflozin by
targeting signaling pathways and key molecules.

Dapagliflozin Mediated the Plin5/PPARα
Signaling Axis to Mitigate AngII-Induced
Cardiomyocyte Hypertrophy
Combined with the differential genes screened by microarray,
qRT-PCR analysis and western blotting assay were used for
in vitro validation. We identified the differential gene Plin5,
STAT1 and PPARα signaling pathways for verification. As
shown in Figures 5A–E, qRT-PCR results showed that
compared with control group, the mRNA expression of
STAT1 was up-regulated significantly in AngII group, while
the expressions of Plin5, PPARα, HMGCS2 and PDK4 were

FIGURE 4 | Differential gene analysis of dapagliflozin in AAC-induced mice detected by gene microarray (A) Clustered heat map showed the differential gene
expression profile after dapagliflozin treatment in AAC-induced mice. (B) Signaling pathway enrichment analysis among different groups, the PPAR signal pathway (red
line) is the signal pathway of this research.

TABLE 1 | Representative differential genes after dapagliflozin treatment in AAC-
induced mice (Fc < 0, down-regulated; Fc > 0, up-regulated).

Gene name Fold changes

Sham/AAC AAC + DAPA/AAC

STAT1 3.227 −7.945
Plin5 −1.636 1.558
PDK4 −75.584 18.896
HMGCS2 −134.364 9.646
Cxcr4 2.014 −2.099
Tap1 2.056 −1.853
IGF1 1.879 −2.071
Sly 6.916 −8.754
Uty 188.706 −206.5
Rgs7 −4.199 1.753
Thy1 −1.705 1.705
Sdc2 −1.879 1.879
Vcp −2.189 1.919
Gpx3 −2.173 2.099
Shb −2.25 1.84
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down-regulated. After treatment, the mRNA expressions of
STAT1, Plin5, PPARα, HMGCS2 and PDK4 were reversed by
dapagliflozin. Interestingly, the qRT-PCR results matched the
microarray results. Likewise, western blot results (Figures 5F–K)
showed the same trends. To sum up the above results, we
hypothesized that dapagliflozin mediated the Plin5/PPARα
signaling axis to mitigate cardiac hypertrophy.

Dapagliflozin Mediated the Plin5/PPARα
Signaling Axis to Attenuate Cardiac
Hypertrophy in vivo
To further clarify our hypothesis, we validated the expression of
differential genes and signaling molecules in AAC-induced mice.
QRT-PCR analysis and western blotting assay were performed to
detect the mRNA and protein expressions of STAT1, Plin5,
PPARα, HMGCS2 and PDK4 in heart tissues of different
groups. Similarly, we found the same results (Figure 6) as
in vitro experiment, confirming that dapagliflozin could
attenuate cardiac hypertrophy.

Silence Plin5 or GW6471 Could Reverse the
Protective Effect of Dapagliflozin-Mediated
PPARα Signaling Axis in AngII-Induced
Cardiomyocyte Hypertrophy
Finally, we investigated whether dapagliflozin mediated the Plin5/
PPARα signaling axis to exert a protective effect against cardiac
hypertrophy. Plin5 silencing and GW6471 (PPARα inhibitors) were
used to reduce the expression of Plin5 and PPARα, respectively. The
expression levels of Plin5/PPARα signal axis-related proteins were
detected by western blotting assay. The results (Figures 7A–D)
showed that compared with AngII + DAPA + DMSO group, the
expressions of Plin5, PPAR-α, HMGCS2 and PDK4 in AngII +
DAPA + GW6471 group were reduced significantly. Similarly, the
expressions of Plin5, PPARα, HMGCS2 and PDK4 in AngII +
DAPA + si-Plin5 were significantly down-regulated compared with
AngII + DAPA + si-NC group. Western blot results suggested that
si-Plin5 and GW6471 could reverse the expression levels of Plin5/
PPARα signaling axis in AngII-induced cardiomyocyte. Thus, we
speculated that dapagliflozin could up-regulate the expressions of

FIGURE 5 | Dapagliflozin mediated the Plin5/PPARα signaling axis to mitigate AngII-induced cardiomyocyte hypertrophy. qRT-PCR analysis was used to detect
the mRNA expressions of STAT1 (A), Plin5 (B), PPARα (C), HMGCS2 (D) and PDK4 (E) in cardiomyocytes of different groups. (F–J) Western blotting assay was
performed to detect the protein expressions of STAT1, Plin5, PPARα, HMGCS2 and PDK4. The data were expressed as mean ± SD, n � 3, *p < 0.05, vs. control group;
#p < 0.05, vs. AngII group.
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Plin5/PPARα and further promote the expression levels of PDK4
andHMGCS2. Subsequently, ELISA and qRT-PCR assays were used
to detect the expressions of cardiac hypertrophy-related molecules
and verify the effect of si-Plin5 and GW6471 on the protective effect
of dapagliflozin. ELISA results (Figures 7E–H) showed that
compare to AngII + DAPA + DMSO group, the contents of
ANP, BNP, β-MHC and cTNI in AngII + DAPA + GW6471
group were significantly increased. The contents of ANP, BNP,
β-MHC and cTNI in AngII + DAPA + si-Plin5 were increased
markedly compared with that in AngII + DAPA + si-NC group.
Furthermore, qRT-PCR results (Figures 7I–L) showed that
compared to AngII + DAPA + DMSO group, the mRNA
expressions of Nppa, Nppb, Serca2 and myh7 in AngII + DAPA
+ GW6471 group were significantly increased. The mRNA
expressions of Nppa, Nppb, Serca2 and myh7 in AngII + DAPA
+ si-Plin5 group were increased significantly compared with those in
AngII + DAPA+ si-NC group. In conclusion, we found that si-Plin5
and GW6471 could reverse the protective effect of dapagliflozin on

cardiac hypertrophy. It also revealed that dapagliflozin regulated the
Plin5/PPAR-α signaling axis to inhibit cardiac hypertrophy.

DISCUSSION

In the present study, we evaluated the effect of DAPA on AAC-
induced cardiac hypertrophy. In vivo, we found that DAPA
treatment mitigated AAC-induced myocardial hypertrophy,
fibrosis, and cardiac dysfunction. In vitro, we confirmed that
DAPA inhibited AngII-induced abnormal cardiomyocytes
hypertrophy. Furthermore, we demonstrated an inhibitory role
of DAPA on cardiac hypertrophy by activating Plin5/PPARα
signaling cascades in the myocardium. These results implied that
DAPA could ameliorate cardiac dysfunction in AAC-induced
mice, which is consistent with the results of other studies.

DAPA is a new class of oral hypoglycemic agents, SGLT2I,
which can enhance renal glucose excretion or glycerine and reduce

FIGURE 6 | Dapagliflozin mediated the Plin5/PPARα signaling axis to attenuate cardiac hypertrophy in vivo. qRT-PCR analysis was used to detect the
mRNA expressions of STAT1 (A), Plin5 (B), PPARα (C), HMGCS2 (D) and PDK4 (E) in cardiac tissues. (E) Western blotting assay was performed to detect the
protein expressions of STAT1, Plin5, PPARα, HMGCS2 and PDK4. The data were expressed as mean ± SD, n � 3, *p < 0.05, vs. sham group; #p < 0.05, vs.
AAC group.
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hyperglycemia (Garcia-Ropero et al., 2018). It has been reported
that patients taking DAPA have a lower risk of heart failure and
heart disease compared with other glucose-lowering drugs. There is
sufficient evidence to suggest that the cardioprotective effects of
DAPA are attributable to their systemic effects through glucose and
sodium. However, the molecular mechanism of its regulation on
cardiac hypertrophy remains unclear.

In the present study, AAC-induced cardiac hypertrophy model
in mice was established to further investigate the cardiac function

and pathological process after DAPA treatment. We found that
DAPA significantly improved cardiac function and increased
ejection fraction, which is consistent with Chang et al. reported
results (Zhang et al., 2021). After 12 weeks of treatment, we found
that the LVEF and LVFS were significantly increased, while
LVEDV and LVESV were significantly decreased. In addition,
we found that DAPA could reduce cardiac enlargement and inhibit
the development of pathological processes, which may contribute
to improving cardiac function.

FIGURE 7 | Silence Plin5 or GW6471 could reverse the protective effect of dapagliflozin-mediated PPARα signaling axis in AngII-induced cardiomyocyte
hypertrophy. The content of ANP (A), BNP (B), β-MHC (C) and cTNI (D) in cell culture supernatant was detected by ELISA kits. qRT-PCR analysis was performed to
detect the mRNA expression of Nppa (E), Nppb (F), Serca2 (G) and myh7 (H) in different groups. (I–L) Western blotting assay was used to detect the protein
expressions of Plin5, PPARα, HMGCS2 and PDK4 in cardiomyocyte of different groups. The data were expressed asmean ± SD, n � 3, *p < 0.05, vs. AngII + DAPA
+ DMSO group; #p < 0.05, vs. AngII + DAPA + si-NC group.
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Taking into account the complex pathological factors of
cardiac hypertrophy, ventricular hypertrophy and left
ventricular weight were considered as the core factors of
cardiac hypertrophy aggravated death (Aistrup et al., 2013).
In our study, DAPA treatment significantly improved the HW/
BW ratio and inhibited myocardial tissue fibrosis. Besides,
in vitro experiments also confirmed that DAPA can
significantly reduce the abnormal hypertrophy of
cardiomyocytes and downregulate the molecular markers
related to cardiac hypertrophy.

PPARα is the most abundant PPAR isoform in heart tissue,
and the activation of its related signaling pathways directly
affected the expressions of key genes in fatty acid oxidation,
which is crucial to lipid metabolism and energy metabolism
balance in the heart (Campbell et al., 2002). Numerous studies
(Zhao et al., 2017) have reported the beneficial effect of
activation of the PPARα signal on the development of
cardiac hypertrophy, which may be attributed to its
regulation of myocardial function and energy metabolism
through modulating fatty acid oxidation. Hrvey (Harvey
et al., 2020) reported that Nox2 was a key signaling
molecule in the pathological reaction of PPARα down-
regulation leading to cardiac hypertrophy, which proved
that the molecular mechanism of PPARα in cardiac
hypertrophy from the negative side. In cardiac hypertrophy,
the overexpression of PPARα in cardiac tissue can mediate the
p53/GSK3β signaling pathway to significantly improve
myocardial energy deficiency and cardiac function, which
also supports the important role of PPARα in the
pathological process of cardiac hypertrophy (Rana et al.,
2019). Interestingly, the absence of PPARα led to a more
marked hypertrophic growth response and cardiac
dysfunction, which is associated with enhanced expression
of inflammatory markers and extracellular matrix
remodeling (Smeets et al., 2008). In our study, Plin5 and
PPARα signaling pathways were selected as the key
signaling molecules in AAC-induced mice according to gene
chip detection. Consistent with previous studies (Hou et al.,
2021), we found that PPARα was significantly down-regulated
in AAC-induced mice. Myocardial hypertrophy was
significantly inhibited after treatment, suggesting that
DAPA may mediate the PPARα-related signaling axis. It has
been reported (Zhao et al., 2019) that microRNA-370
mediated the Plin5-dependent PPAR signaling pathway to
protect mice from myocardial ischemia/reperfusion injury.
Wang et al. (2019) found that PLIN5 deficiency exacerbated
cardiac hypertrophy by promoting oxidative stress.

We demonstrated that DAPA could activate the Plin5/
PPARα signaling pathway and further significantly
promoted the expressions PDK4 and HMGCS2 in cardiac
hypertrophy. It has been reported (Palomer et al., 2009)
that PPARs played key roles in the modulation of glucose
homeostasis in cardiac cells by regulating PDK4 through PGC-
1α. It has been reported (Thapa et al., 2018) that adropin
treatment of cardiomyocytes can reduce the inhibition of PDH

activity by regulating the expression of PDK4, thus affecting
the metabolic balance of glucose in cardiomyocytes, indicating
that PDK4 plays a key role in myocardial metabolism. Besides,
HMGCS2 could combat metabolic abnormalities by
transferring the flux of excess intramitochondrial acetyl-
CoA. Upregulation of HMGCS2 can promote myocardial
glucose oxidation (Singh et al., 2018). We suggested that
DAPA mediated the Plin5/PPARα signal axis, and
ultimately affected the expression level of PDK4 and
HMGCS2, myocardial cell metabolism, and relieve the
pathological progression of cardiac hypertrophy.

At present, dapagliflozin is mainly used in the first-line
treatment of diabetes with remarkable effects (Bouter et al.,
2020; Shah et al., 2021). Recent clinical studies not only focus
on the pathological mechanism of diabetes but also involve the
treatment of cardiovascular diseases (Cappetta et al., 2020; Nassif
et al., 2021). In the study, we investigated the protective effect of
dapagliflozin on AAC-induced cardiac hypertrophy and its
mechanism of involving activation of the Plin5/PPARα
signaling axis.
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