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Programmed death protein 1 (PD1) is a common immunosuppressive member on the
surface of T cells and plays an imperative part in downregulating the immune system and
advancing self-tolerance. Its ligand programmed cell death ligand 1 (PDL1) is
overexpressed on the surface of malignant tumor cells, where it binds to PD1, inhibits
the proliferation of PD1-positive cells, and participates in the immune evasion of tumors
leading to treatment failure. The PD1/PDL1-based pathway is of great value in
immunotherapy of cancer and has become an important immune checkpoint in recent
years, so understanding the mechanism of PD1/PDL1 action is of great significance for
combined immunotherapy and patient prognosis. The inhibitors of PD1/PDL1 have shown
clinical efficacy in many tumors, for example, blockade of PD1 or PDL1 with specific
antibodies enhances T cell responses and mediates antitumor activity. However, some
patients are prone to develop drug resistance, resulting in poor treatment outcomes, which
is rooted in the insensitivity of patients to targeted inhibitors. In this paper, we reviewed the
mechanism and application of PD1/PDL1 checkpoint inhibitors in tumor immunotherapy.
We hope that in the future, promising combination therapy regimens can be developed to
allow immunotherapeutic tools to play an important role in tumor treatment. We also
discuss the safety issues of immunotherapy and further reflect on the effectiveness of the
treatment and the side effects it brings.
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INTRODUCTION

Through the process of tumor immune editing, tumor cells acquire multiple methods of evading
host immunity in the tumor microenvironment (TME) (Dunn et al., 2002). Studies on tumor
immune escape have shown that PD1/PDL1-mediated immune checkpoint in TME is an
important component of the tumor immune escape mechanism (Inaguma et al., 2018;
Prestipino and Zeiser, 2019; Zhang et al., 2020). Early preclinical evidence suggests that
activation of PD1/PDL1 signaling pathway may be the mechanism by which tumors escape
the antigen-specific T cell immune response (Dong et al., 2002; Iwai et al., 2002). PD1 on immune
cells interacts with PDL1 on tumor cells can protect tumor cells from killing by immune cells
(Carlomagno et al., 2017; Wang et al., 2018a; Takeuchi et al., 2020). PD1 was first described in the
early 1990s as it is expressed in the course of inducing apoptosis in T cell hybridoma (Ishida et al.,
1992; Agata et al., 1996). As research progressed, PD1 was found to be taken part in the negative
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regulation of apoptotic T cell-mediated immunological reaction
through binding to PD-L1 (Nishimura et al., 1999; Greenwald
et al., 2005). Studies have shown that immunotherapy is
effective in treating melanoma and renal cell carcinoma, etc.
(Siegel et al., 2017; Sanmamed et al., 2018; Yu et al., 2019).
Recent years, checkpoint inhibitors targeting the PD1/PDL1 or
Cytotoxic T lymphocyte associated protein 4 (CTLA-4)
pathways have shown great success, and driven the
development of immunotherapy (Lesokhin et al., 2015;
Sharma et al., 2015; Shin and Ribas, 2015; Topalian et al.,
2015; Søndergaard et al., 2018). The anti-CTLA-4 antibody
ipilimumab has shown durable anti-tumor activity and
prolonged survival in patients with advanced melanoma, but
is prone to immune-related adverse events (IAEs) (Buchbinder
et al., 2016). PD1/PDL1 inhibitors are promising
immunotherapeutic agents that can achieve satisfactory
efficacy for different tumor types, different treatment routes,
different drug combinations and different treatment regimens
(Chen et al., 2021). The incidence of PD1/PDL1 inhibitor-
mediated IAEs was significantly lower compared to CTLA-4
blockade (Ott et al., 2013). Study shows that PD-1 pathway
blockade is more efficient than CTLA-4 blockade in advanced
melanoma (Farolfi et al., 2012).

BIOLOGICAL FUNCTION OF PD1/PDL1 IN
TUMOR IMMUNITY

PD1 is a checkpoint protein and a composition of the CD28
family. It pertains to a group of suppressor T-cell receptors that
was not expressed by T cells alone, but was upregulated by
antigen stimulation and cytokines caused by T cell excitation
(Kinter et al., 2008; Kulpa et al., 2013). PD1 is also expressed by

B cells, monocytes, and dendritic cells (DCs)( Keir et al., 2008),
and regulates various aspects of its immune function (Thibult
et al., 2013; Roy et al., 2015). PDL1 is a type 1 transmembrane
glycoprotein of the B7 ligand family. Which is not only expressed
on activated T cells and B cells but also on some non-
hematopoietic cells (Zou et al., 2016). It is in a favorable
position to regulate T cell function in DCs and other antigen-
presenting cells (APCs). T cells recognize tumor cells in the
human body and kill them, but when tumor cells recognize
PD1 protein on T cells, the tumor cells will upregulate the
PDL1 protein and PD1 binds to PDL1 leading to apoptosis of
the T cells (Li et al., 2015; Topalian et al., 2016; Tremblay et al.,
2018; Li et al., 2020).

PDL1 on the surface of tumor cells can be upregulated by
interferon gamma (IFN-γ) produced by activated T cells (Tang
et al., 2018). PD1/PDL1 signal transduction pathway is a vital
component of tumor immunosuppression, which can inhibit
the excitation of T lymphocytes and strengthen the tumor
cellular immune tolerance, so as to achieve tumor immune
escape (Iwai et al., 2017). In summary, PD1 binds to PDL1 can
diminish T cell-mediated immune surveillance, resulting in an
absence of immunoreaction and even to apoptosis of T cells. It
also inhibits tumor-infiltrating CD4+/CD8+ T cells (CD4+/
CD8+ TILs) and leads to a decrease in cytokines including
tumor necrosis factor (TNF), IFN-γ and Interleucina-2 (IL-2),
so as to provide a way for cancer cells to escape the
immunoreaction (Francisco et al., 2010; Daassi et al., 2020).
PD1/PDL1 inhibiters unblock the immune suppression of
anti-tumor T cells (Figure 1), which results in T cell
multiplication and permeation into the TME and inducing
an anti-tumor response (Kuzume et al., 2020). Existing anti-
PD1/PDL1 therapy interdicts the combination between PD1
and PDL1, and effectively activates depleted immune cells and

FIGURE 1 | PD1/PDL1 inhibitors in TME (Hamanishi et al., 2016).
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triggers an anti-tumor immune response (Ribas et al., 2018;
Seidel et al., 2018; Liang et al., 2021).

MECHANISM OF ACTION AND
TREATMENT OF PD1/PDL1 INHIBITORS
Peptides/Polysaccharides and Small
Molecules Target Treatment
Recently, a great number of research has been devoted to the
exploitation of peptide-based inhibitors and nonpeptidic small-
molecules targeting PD1/PDL1 (Akturk et al., 2018; Sasikumar
et al., 2018). Furthermore, through structural modification of
peptidomimetic inhibitors, small molecules can be developed.
Compared to monoclonal antibodies, small-molecule drugs offer
significant advantages (Zhang et al., 2020).

Peptide-Based PD1/PDL1 Inhibitors
The first inhibitor AUNP-12, which was reportedly patented in
2014 (Sasikumar et al., 2019), is a 29-amino acid branching
peptide. In an animal study, tumor cell growth and metastasis
were effectively inhibited by AUNP-12 with few adverse
reactions. In addition to AUNP-12, other peptide-based
PD1/PDL1 inhibitors also have been developed. For
example, a small peptide mimicking a peptide containing
7–8 amino acids, showed the best bioactivity in mice
infected with melanoma B16F10 cancer cells, reducing lung
metastases by 64 percent. Another compound is a cyclopeptide
derivative of 7–9 amino acids, characterized by the formation
of a circular structure by an amide bond between the N and C
ends of the amino acid residues. In Crystal Field Stabilization
Energies (CFSE) detection, Sasikumar et al. found that a cyclic
peptide derivative can induce the proliferation of spleen cells
in mice with high expression of PDL1 in human breast MDA-
MB-231 cancer cells and reduce the lung metastasis of mice
with melanoma B16F10 cancer cells by 54% (Sasikumar, 2013;
Sasikumar et al., 2015).

Nonpeptidic PD1/PDL1 Small-Molecule
Inhibitors
The first reported small molecule inhibitor based on the PD1/
PDL1 axis was a derivative of sulfamethoxine and
sulfamethimazole antibiotics (Sharpe et al., 2018), which have
low cytotoxicity. They can block the PD1 signaling pathway
through restraining the combination of mPD1 to mPDL2
within the micromolar concentration range. Recent years,
Bristol-Myers Squibb (BMS) has revealed a large number of
non-peptide small molecule inhibitors targeting PD1/PDL1
pathway (Chupak et al., 2015). Among reported compounds,
the representative compounds BMS-8 had IC50 value of 146 nM,
and BMS-202 had IC50 value of 18 nM. Researchers investigated
the mechanism of action of BMS inhibitors and demonstrated
that these inhibitors induce the dimerization of PDL1, thereby
suppressing the activation of PD1 (Zak et al., 2016). Holak’s team
showed that some BMS compounds have structures that bind
directly to PD-L1. More importantly, the combination between

PD1 and PDL1 was blocked by inducing and stabilizing the
formation of PD1/PDL1 homodimer under the action of
compounds (Sasikumar et al., 2016). The IC50 values of
representative compounds LH1306 and LH1307 were 25 and
3.0 nM, respectively. In addition, these inhibitors can interfere
with interactions between PD1/PDL1 proteins and block PD1
signal transduction in co-culture experiments (Yang and Hu,
2019).

Aptamer Therapy
Aptamer-Drug Conjugates (APDCs) are a very promising
platform. Studies have shown that APDC can deliver
immunomodulators, restrict immunomodulatory co-
stimulation to tumor regions, induce neoantigens in tumors,
block depletion-induced immune checkpoints, activate
functional immune cells and prolong anti-tumor immunity
(Zhu and Chen, 2018). Geng et al. designed and synthesized
an amphiphilic telomeric dimer, aptamer polyvalent drug
conjugate (ApMDC). And described the use of ApMDC
nanoparticles to enhance the antitumor reaction of α-PD1
immunotherapy with targeted chemotherapy to tumors (Geng
et al., 2021). They established 4t1 (breast cancer cell) and h22
(hepatoma carcinoma cell) tumor-bearing mouse models and
draw a conclusion that the increased antitumor immunity
accelerated the therapeutic reaction of α-PD1. In one study,
researchers developed a DNA inducer for PD1/PDL1 signaling
pathway to reverse immune evasion and stimulate antitumor
immunity (Prodeus et al., 2015). DNA aptamer blocks the
interaction of PD1/PDL1 by specifically binding to the
extracellular domain of mouse PD1. MP7 is one of the
aptamers, which can inhibit the inhibition of IL-2 secretion by
primary T cells mediated by PD-L1. PEGylated MP7 directly
blocks PD1 binding to PDL1. The Pegylated form of MP7 is
equivalent to the antagonistic PD1 antibody, and can significantly
inhibit the growth of PD-L1+ colon cancer cells in vivo for it
retains the ability to block the PD1/PDL1 interaction (Ellington
et al., 1990; Tuerk et al., 1990; Keefe et al., 2010).

According to another study, aptPDL1 stop the combination
between PD1 and PDL1 in humans. Experiments in mouse
models have shown that aptPDL1 promotes lymphocyte
proliferation in vitro and inhibits tumor growth in vivo
without causing significant hepatorenal toxicity. Further
analysis of tumors treated with aptPD-L1 revealed increased
levels of invasive CD4+ and CD8+ T cells, IL-2, TNF-α, and
IFN-γ(Figure 2). Chemokine receptor 3(CXCR3) expression was
higher in CD8+ T cells treated with aptPD-L1 than in tumors
treated with random sequence oligonucleotide (Lai et al., 2016).
Researchers have developed a novel PDL1 aptamer, a short single
strand of DNA that is smaller than the PDL1 antibody, which can
effectively avoid the effects of glycosylation that block PD-L1
binding. The selected adapter is more possibly to be glycosylated
by PDL1 as peptide antigens, which is hopeful to provide a higher
effectiveness of recognition while compared with PDL1
antibodies from extracellular cells (Huang et al., 2020). Liu’s
team found that in the presence of dual targets (PDL1 as a natural
receptor and azide modified glycoprotein as a chemical receptor),
the cyclooctyne-coupled PDL1 (D-APDL1) can be covalently
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coupled to the surface membrane of cancer cells through APDL1
aptamer recognition and DNA logic calculation reaction of
cyclooctyne/azide biological orthogonal reaction. This in turn
triggers precise and sustained T cell-mediated anti-tumor
immunotherapy (Yang et al., 2021). Besides, they also found
that this logical calculation could achieve long-term retention in
the tumor by inducing covalent coupling of the PDL1 aptamer on
the tumor cell surface, thus providing effective and precise
checkpoint-blocking immunotherapy.

Antibody Therapy
Antibody-based inhibitors of PD1/PDL1 induce persistent tumor
remission in various kinds of advanced cancer patients, making
inhibition of the PD1/PDL1 signaling pathway clinically important
in the treatment of tumors. So far, Food and Drug Administration
(FDA) has approved six monoclonal antibodies targeting PD1
(nivolumab, pembrolizumab, and cemiplimab) or PDL1
(atezolizumab, Durvalumab and avelumab) for the treatment of
hematological and solid malignancies. (Tan et al., 2016; Chen et al.,
2021). Monoclonal antibodies (mAb), known as checkpoint
inhibitors, overcome the shortcomings of traditional anticancer
therapies and inhibit the PD1/PDL1 mutual effect. Using in vivo
and in vitro studies, Lussier et al. have found that T cell function
can be enhanced by blocking PD1 with antibodies (Lussier et al.,
2015). Within tolerable limits, monoclonal antibodies can
significantly reduce toxicity, reduce solid tumor size, inhibit
advanced tumors and metastases, and improve overall survival
in patients. Nivolumab and pembrolizumab have been given
permission for the therapy of terminal melanoma, non-small
cell lung cancer (NSCLC) and renal cell carcinoma (RCC) by
targeting PD1 and blocking its interaction with PDL1 and PDL2
(Hughes et al., 2016; Arranz-Nicolás et al., 2021). Phase I clinical
trials of pembrolizumab or atezolizumab in patients with mTNBC
showed promising results, with objective response rates (ORR) of
18.5 and 33%, respectively (Hwang et al., 2019). However, due to its

long half-life and binding time with the target, it is easy to result in
severe immune-related adverse reactions. Besides, mAb drugs are
expensive, complex to produce, and difficult to store and transport.
Therefore, how to use the PD1/PDL1 signaling pathway to develop
simple and efficient non-monoclonal antibody treatment strategy
is the focus of our current work (Pan et al., 2021).

Combination Therapy
In a study, the researchers used an immune rejection phenotype
in a mouse model to discover that therapeutic application of
TGF-β blocking antibodies in combination with anti-PDL1
reduces stromal TGF-β signaling, promotes T cell infiltration
into tumor centers and stimulated powerful anti-tumor
immunity ultimately leading to tumor extinction (Mariathasan
et al., 2018). The addition of the anti-PD-L1 drug atezolizumab to
NAB-paclitaxel chemotherapy has been shown to significantly
improve PD-L1-positive (PD-L1+) metastases and improve
overall survival (OS) in patients with advanced TNBC(Schmid
et al., 2018). Combined use of CDK4/6 and PD-L1 inhibitors
significantly increased the survival rate of mouse xenograft
models (Zhang et al., 2015). It has been reported that
combining PD1/PDL1 inhibitors with PARP inhibitors is
hopeful to remarkably improve the overall efficacy of TNBC.
Mechanistically, PARPI inactivates GSK3β, thereby enhancing
PARPI-mediated upregulation of PDL1 and reducing the efficacy
of PARPI through cancer-associated immunosuppression.
Blocking PD-L1 can restore the weakened anti-tumor immune
function and enhance the antitumor effect of PARPI.

When anti-PD1/PDL1 antibody (anti-PD1/PDL1) and anti-
CTLA4 antibody (anti-CTLA4) are administered alone, their
effectiveness is only 20–25% at most. When combined, the
yield of anti-PD1/PDL1 and anti-CTLA4 could reach 60%
(Wei et al., 2018). The combination of antibodies blocking
PD1 and agonistic antibodies triggering the costimulatory
receptor glucocorticoid induced tumor necrosis factor receptor

FIGURE 2 | APTPD-L1 can inhibit the PD1/PDL1 interaction and weaken the inhibition of T cells (Lai et al., 2016).
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(GITR) may further improve the therapeutic effect (Wang et al.,
2018b). Using the mouse colon cancer cell line MC38,Wang et al.
found that anti-PD-1+ anti GITR had a significantly stronger
anti-tumor effect in mice than either antibody alone. The
synergistic effect of anti-PD-1+ and anti-GITR depends on
CD8+ T cells, which can directly kill cancer cells and are adept
at recruiting other tumor oncogenic immune cells from tumor
(Wei et al., 2018). Wang et al. used gemcitabine (GEM) and PD1/
PDL1 checkpoint inhibitor to form reactive oxygen species
reactive scaffold in situ for combination treatment. They
found that aPDL1-GEM scaffold induced an immunogenic
tumor phenotype in mice bearing tumor, promoted immune-
mediated tumor regression, and prevented tumor recurrence after
primary resection (Wang et al., 2018c). Gao et al. treated a mouse
tumor model with an anti-PD1 antibody and an HDAC2
inhibitor. The combination of HDAC2 inhibitors and anti-
PD1 antibodies obviously slowed tumor growth and improved
survival compared to the anti-PD1 treatment group (Gao et al.,
2020).

Mechanism of Drug Resistance in PD1/
PDL1 Inhibitor Therapy
Although immune checkpoint blocking therapy has achieved
great success in clinic, the response rate of immunotherapy is
still low (Spranger et al., 2015; O’Donnell et al., 2017). Research
has suggested that only 10–30% of the patients can produce long-
term and sustained efficacy after receiving PD1/PDL1 inhibitors.
The majority of patients have no obvious response to the
treatment or will remain resistant to it (Andrews et al., 2019).
The development of PD1/PDL1 antibody resistance involves
many tumor-related processes, including PD-L1 expression,
tumor neoantigen expression and delivery, related cellular
signaling pathways, tumor microenvironment, and epigenetic
modifications. The lack of tumor antigens causes T cells to fail
to recognize PD1/PDL1 antibodies, leading to drug resistance. In
addition, molecules that process and deliver antigens, such as
MHC class I molecules and β2 microglobulin, can also lead to
resistance to immune checkpoint inhibitors (ICIs) when their
genetic code is altered (D’Ursoet al., 1991; Restifo et al., 1996;
Sucker et al., 2014). Aberrant cell signaling is also a factor
contributing to immunotherapy resistance, such as the PI3K/
Akt pathway, Wnt/β-linked protein pathway, JAK/STAT/IFN-γ
pathway, and mitogen-activated protein kinase (MAPK) pathway
(Munn and Mellor, 2013; Lin and Zhao, 2015).

Immune-Related Adverse Events
Despite the promising efficacy of immune checkpoint inhibitors,
the majority of treated patients have had immune-related adverse
events (IAEs) to varying degrees (Reynolds et al., 2021).
Commonly reported IAEs include rash or pruritus,
gastrointestinal disorders, and endocrine disorders (Farolfi
et al., 2012; Robert et al., 2015). Among these, cardiovascular
toxicity is particularly severe. In recent years, reports of
myocarditis associated with ICIs have increased (Moslehi
et al., 2018). Myocarditis associated with ICIs often manifests
as arrhythmias and can coexist with myocarditis and myasthenia

gravis, with severe disease and poor prognosis (Hu et al., 2019).
There is evidence that redox mechanisms are the main
mechanism responsible for cardiotoxicity (Tocchetti et al.,
2019). It has been shown that ICI treatment group had a
higher incidence of cardiovascular adverse reactions than the
non-ICI treatment group, and the incidence of cardiovascular
adverse reactions was higher in patients treated with the
combination of ICI + ICI than with ICI monotherapy. CTLA-
4 is prone to immune-related adverse reactions such as rash,
diarrhea, colitis, hepatotoxicity and endocrine disorders (Hodi
et al., 2010; Gangadhar et al., 2014), as well as cardiotoxicity
including pericarditis and myocarditis (Geisler et al., 2015;
Heinzerling et al., 2016). As for PD1/PDL1 inhibitors,
myocarditis has been reported after treatment with nivolumab
(Honton et al., 2014) or pembrolizumab (Läubli et al., 2015).
Wang et al. found significantly higher rates of colitis and diarrhea
after receiving the combination of ipilimumab and PD1/PDL1
inhibitors than with a single agent (Wang et al., 2017).

CONCLUSION AND PROSPECT

Over the past 20 years since the discovery of PD1, numerous
experimental studies have proved the clinical efficacy of PD1
blockers in a wide range of solid and hematologic malignancies,
offering promising prospects for cancer patients (Errico, 2015). In
addition, reports based on the clinical application of PD1 inhibitors
have elucidated the mechanism of tumor immune escape and
confirmed the general significance of tumor immune monitoring
and tumor immune editing (Burnet, 1967; Schreiber et al., 2011).
Nevertheless, there is still a need for a large number of basic and
exploratory studies on the prediction of tumor biomarkers, as well
as the efficacy of drug therapy and adverse drug reactions. However,
this does not prevent PD1/PDL1 from being a key area of research.
For the reason that PD1/PDL1 plays a crucial role in most cancers,
the development of immunotherapy with blocking agents will
undoubtedly be a huge opportunity and challenge. Due to the
occurrence of drug resistance, the efficacy of immunosuppressive
therapy is poor. We hope that future studies can minimize drug
resistance, reduce the occurrence of immune-related adverse events
and improve the efficacy of immunotherapy. We believe that as
research progresses, personalized immunotherapy will be further
developed in the clinic to bring hope to cancer patients.
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