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Dry eye disease is a common and frequently occurring ophthalmology with complex and
diverse causes, and its incidence is on the upward trend. The pathogenesis of DED is still
completely clear. However, the immune response based on inflammation has been
recognized as the core basis of this disease. In this review, we will systematically
review the previous research on the treatment of DED in immune inflammation, analyze
the latest views and research hotspots, and provide reference for the prevention and
treatment of DED.
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INTRODUCTION

Dry eye disease (DED) is newly defined as eye surface disease caused by a variety of factors, tear film
instability, increased osmotic pressure, ocular surface inflammation and damage, and neurosensory
abnormalities play a pathogenic role, characterized by the loss of tear film balance accompanied
by eye symptoms. These include dryness, foreign body sensation, burning sensation, itching
sensation, photophobia, red eyes, blurred vision, fluctuating vision, and visual fatigue. In severe
cases, corneal epithelial exfoliation, filamentous adhesion, and conjunctival lesions may occur
(Stapleton et al., 2017). The global prevalence of dry eye disease is 5–50%, while the incidence in
China is 45%, which is a high incidence area (Guo et al., 2010; Farrand et al., 2017; Stapleton et al.,
2017). With the popularity of electronic products, makeup, contact lenses, environmental pollution
and other influences, the number of patients with dry eye disease will continue to rise at a rate of
more than 10% per year, and tend to be younger. The pathogenesis of dry eye has not yet
been fully elucidated, but the eye surface immune inflammatory response as the focus of the
mechanism has been increasingly concerned. In the classification of etiology, Dry Eye Workshop
II regards the imbalance of tear film homeostasis as the main feature of dry eye and the core
of pathophysiology, whether it is water-based tear deficiency type or over-evaporation type
(Nelson et al., 2017). This process is caused by the increase of Th17 and chemokines in the
ocular surface of DED patients, which breaks the normal ocular surface immune balance and leads
to the immune homeostasis in the tear membrane (Kodati et al., 2014). In the clinical treatment of
DED, anti-inflammatory drugs represented by cyclosporine A and immunomodulatory drugs
represented by lifitegrast can play a good ameliorative effect (Wan et al., 2015; Perez et al., 2016).
Therefore, it is of strategic significance to further study the immune inflammatory mechanism
of DED.
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IMMUNE RESPONSE AND DED

The ocular surface immune response is a rigorous and complex
regulatory process designed to protect and defend the ocular
surface, but if the regulation is maladjusted, it will lead to DED
(Pflugfelder and Paiva, 2017). Immune response can be divided
into innate immunity and adaptive immunity. The inherent
response is the innate immunity of the human body, known
as the first natural defense line, which mainly includes
macrophages, monocytes, dendritic cells, neutrophils and
natural killer cells, etc. Adaptive immunity is acquired
immunity, which generally forms a highly targeted immune
process after the invasion of certain pathogenic
microorganisms. The two immune modes are jointly involved
in the immune regulation of dry eye disease (Schaumburg et al.,
2011).

Innate Immune Response of Ocular Surface
In the innate immunity, the human body has formed a natural
physical barrier composed of sugar calyx, conjunctival
epithelium, mucin, cornea, and a series of antimicrobial
defense proteins in tears in the long time of survival and
evolution. This barrier is a necessary part to ensure the
relative safety of the eyes exposed to the external environment.
After the occurrence of dry eye, the high osmotic state of patients
can prevent the defense system from taking effect, and further
aggravate the immune inflammatory response by directly
activating the MAPK pathway to activate interleukin and
tumor necrosis factor (Milner et al., 2017). At the same time,
in the process of immune inflammation, Toll-like receptor signal
transduction will lead to the activation of immune cells, further
aggravating the inflammatory response (Lee et al., 2012).

Inflammatory immune response IIR is the most important
type of innate immune response, among which macrophage and
dendritic cells (DC) are common inflammatory immune cells,
among whichmacrophages are divided intoM1 andM2 cells. The
former is related to cellular response, while the latter plays a
regulatory role. DC are divided into myeloid cells (DC1) and
lymphoid cells (DC2). In dry eye disease, DC2 cells are mainly
involved in immune regulation, and the two types of cells
combine with the expression of various factors, such as
interleukin and tumor necrosis factor, leading to the
continuous increase of inflammatory receptor levels leading to
dry eye disease (Jaafar et al., 2009).

Adaptive Immune Response of Ocular
Surface
The abundant presence of CD4+ T cells in the adaptive immune
response and cyclosporine in the treatment of DED suggest that
adaptive immunity also plays an important role in DED. During
the adaptive immune phase, the production of antigen-specific
T cells in regional lymph nodes induces migration to the ocular
surface in response to ocular stress. In this stage, the proliferation
and amplification of T cells in the ocular surface cause injury,
restart the acute proinflammatory innate response, and with the
loss of immune regulation, trigger a vicious cycle of pathological

immune response (Baudouin, 2001). DC is the most powerful
known APC that can activate initial T cells, and play a dual role in
the initiation and regulation of immune response, connecting
innate immunity and adaptive immunity (Hackstein et al., 2016;
Pan et al., 2016). In diabetes-associated dry eyes, advanced
glycosylation end products can directly promote the
maturation of DC and induce specific immune response of
CD4+T cells, and the increased number and abnormal
function of DC can induce adaptive immune response.
(Charles et al., 2009; Surenda et al., 2011). Inflammatory
factors in patients with DED can be amplified by DC, for
example by upregulating the expression of TLR7 and
activating the secretion of IFN-γ(Hui et al., 2010). IFN-γ
induces the transformation of B cells into DC cells to produce
antigen-specific antibodies, which are further activated by CD40
signaling molecules to produce large quantities of IL-6. IL-6 can
promote the differentiation of Th17 cells by enhancing and
inducing transcriptional activators, and secrete pro-
inflammatory cytokine IL-17 to enhance immune response
(Jego et al., 2003). The IL-4 secreted by mature PDC
stimulates the differentiation of CD4+ T cells into Th2 cells,
which can secrete a large number of inhibitory cytokines
including IL-4, IL-10, and IL-13 upon activation. IL-4
increases B cell infiltration in lacrimal glands, thereby
promoting the production of autoantibodies against acinar
epithelial cells and contributing to the pathogenesis of DED
(Abehsira-Amar et al., 1992).

IMMUNE-BASED INFLAMMATION
MECHANISMS IN DED

Inflammation is the most common and important risk factor for
DED, and studies have shown that patients with DED can detect
large amounts of lymphocyte infiltration in the ocular surface and
lacrimal gland tissue, at the same time, the secretion of lactoferrin
decreased, the cell inflammatory factors, leading to further
expansion of the scope of inflammation. Ophthalmic surface
inflammation is both an initial cause and a subsequent
consequence of DED (Baudouin, 2001). When the body is
exposed to external stimuli or homeostasis disorders, the
initiation and elimination of ocular surface inflammation are
usually controlled by immunomodulatory processes. The
continued inflammatory response amplifies the immune
response, especially the adaptive response. This process will
increase the activity of mAPC, as well as the production and
recruitment of CD4+ Th cells in the ocular surface. When
immune regulation is insufficient to eliminate inflammation or
is bypassed, the activity of effector T cells will be immediately
disregulated, mainly manifested by increased release of pro-
inflammatory cytokines, which will lead to further
inflammation and injury. The new inflammation and damage
then restarts the innate immune response, creating a vicious cycle
(Stern et al., 2010; Stern et al., 2013; Periman et al., 2020). At the
molecular level, studies on the relationship between dry eye and
inflammation mainly focus on cytokines, chemokines and signal
transduction pathways.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7328872

Yu et al. Developments About DED

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Throughout the inflammatory response, immune cells release
pro-inflammatory cytokines and chemokines, recruiting more
immune cells and ultimately leading to a vicious cycle of
inflammation. Current studies on inflammatory mediators
associated with DED include IL-1α, IL-1β, IL-1R, IL-2, IL-4,
IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IL-23, CCL-2, CCL-3, CCL-
5, CCL-19, CCL-20, CCL-21, CCR2, CCR6, CCR7, CX3CL1,
CXCL9, CXCL10, CXCL12, CXCR3, CXCR4, EGF, ICAM-1,
IFN-γ, MMP-1, MMP-3, MMP-9, MMP-13, TNF-α, TGF-β2,
VCAM-1, andNF-κB (Matsuda et al., 1998;Matsuda and Koyasu,
2000; Marsland et al., 2005; Chauhan et al., 2009; Du et al., 2009;
Lam et al., 2009; Gollmer et al., 2009; Enríquez-de-Salamanca
et al., 2010; Chen et al., 2011; Schaumburg, et al., 2011; Zhang
et al., 2011; Zhang et al., 2012; Coursey et al., 2013; Dohlman
et al., 2013; Li et al., 2013; Marko et al., 2013; Barbosa et al., 2014;
Duque and Descoteaux, 2014; Ji et al., 2014; Kodati et al., 2014;
Mesraoua et al., 2014; Zhang et al., 2014; Ames and Galor, 2015;
Corrales et al., 2015; Contreras-Ruiz and Masli. 2015; Pierre et al.,
2018; Seung et al., 2019).

IL-32 and IL-33 are new family of IL-1 cytokines involved
in a variety of inflammatory diseases. A new study has found
that IL-32 and IL-32-induced TSLP is a key cytokine involved
in the inflammatory response through the corneal epithelial
caspase-1 and NF-κB signaling pathways, providing a new
molecular target for ocular surface inflammatory diseases
(Jing et al., 2018). Another study found elevated IL-33 mRNA
and protein levels in HCONEC cells under hypertonic conditions
(Wang and Zhang, 2019). IL-33 and its receptor ST2 protein
levels were higher in CIC of DE patients and correlated with
the severity of the disease. In addition, the activated type 2
helper T (Th2) cells in the tears of DE patients released
increased concentrations of IL-13 and IL-5, and the IL-33/ST2
pathway may play a role in the initiation of ophthalmic
surface inflammation regulation. IL-33 mRNA and protein
levels were increased in the corneal tissues of mice and human
corneal epithelial cells (HCECs) infected with Aspergillus
fumigatus. IL-33 also promoted the proliferation of HCECs
cells through its receptor ST2. In addition, IL-33/ST2/p38
signaling pathway plays an important role in enhancing the
inflammatory response of HCECs to Aspergillus fumigatus
infection (You et al., 2019).

Immunoregulatory Molecules and
Inflammation
Corneal epithelial cells (CECs) are the main target tissues for the
immunomodulatory response of DED. More and more studies
have been conducted on the expression of immunomodulatory
molecules in corneal epithelial cells.

Pigment epithelium-derived factor (PEDF) is a 50 kDa
secreted glycoprotein with well-established anti-inflammatory
functions, and then proved to be highly expressed in
CECs(Ogata et al., 2002; Becerra, 2006; Zhang et al., 2006).
Singh et al. found that CEPCs of mice exposed to dry stress
had an amplified immunosuppressive effect on DC maturation,
which was eliminated by blocking endogenous PEDF and
enhanced by supplementing exogenous recombinant PEDF

(Singh et al., 2020). Their subsequent experiments showed
that in vitro culture in the presence of PEDF prevented the
reduction in frequency and phenotypic inhibition of regulatory
T cells induced by proinflammatory cytokines (associated
with helper T cells type 17) in normal mice. Their results
revealed that PEDF can promote the inhibitory ability of
regulatory T cells and reduce its type 17 helper T cell-
mediated dysfunction, thus playing a role in DED inhibition
(Singh et al., 2021). Recently, Ma et al. found that PEDF could
inhibit the expression of inflammatory cytokines IL-1β, IL-6,
TNF-α, and IL-17A in DED and the percentage of Th17
cells in vivo and in vitro experiments. It was also found
that PEDF inhibited the phosphorylation of MAPK p38 and
JNK in hypertonic CECs(Ma et al., 2021). All the above
studies have shown that PEDF plays anti-inflammatory and
immunoregulatory roles in the pathogenesis of DED.

As a myxoid glycoprotein, proteoglycan 4(PRG4) is expressed
in the ocular surface, which contributes to the ocular surface
integrity and has a good anti-inflammatory effect (Domoto et al.,
2002). Menon et al. found that HTCEPI cells synthesized and
secreted PRG4, and the secretion of PRG4 was inhibited by TNFα
and IL-1β in vitro, and exogenous rhPRG4 could significantly
reduce the trend of MIP-1α and MIP-1β(Menon et al., 2021).
Their experiments also found that rhPRG4 can bind toMMP-9 in
human tears and inhibit the in vitro activity of exogenous MMP-
9. In vivo experiments with a mouse DED model showed a
significant decrease in PRG4 immunolocalization in corneal
epithelium and a significant decrease in the amount of PRG4
in lacrimal gland lysate. These findings may help us to further
understand the mechanism of PRG4’s immune inflammatory role
in the ocular surface.

Thrombocyte reactive protein-1 (TSP-1) is a stromal cell
glycoprotein first identified in activated platelets (Lawler,
1978). It can be secreted and expressed in a variety of
epithelial cells (Wight et al., 1985). The secretion of TSP-1 is a
protective response to inflammation, which can promote the
digestion of inflammatory process and accelerate the
phagocytosis of damaged cells (Doyen et al., 2003; Grimbert
et al., 2006). Tan et al. found that TSP-1 mRNA expression was
up-regulated in corneal epithelial cells in DED group. Compared
with wild-type mice, the corneal epithelial cells of DEDmice were
more able to inhibit the expression of MHC-II and CD86 in DC.
Moreover, topical application of recombinant TSP-1 significantly
inhibited the expression of maturation of DC and
proinflammatory cytokine mRNA in the mouse DED model,
and improved symptoms. (Tan et al., 2018).

Programmed death ligand 1 (PD-L1) is a member of the
receptor B7 family and plays a role in regulating T-cell-
mediated immunity (Latchman et al., 2004). Yang et al. found
that PD-L1 was highly expressed in the eye cells of DED patients,
and it may control inflammation by inhibiting the production of
pro-inflammatory cytokines and Th2 cytokines by activated
T cells (Yang et al., 2009). EI Annan et al. found
downregulation of corneal epithelial PD-L1 promotes homing
of T cells to the ocular surface by increasing chemokine ligand
and receptor expression, thereby amplifying DED associated
keratitis and epithelial lesions. (El Annan et al., 2010).
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Autophagy and Inflammation
Autophagy is a highly conserved self-degradation process, which
has been found in a variety of physiological and pathological
processes in the body (Boya et al., 2016; Klionsky et al., 2021). The
mechanisms involved in autophagy have been demonstrated in a
variety of inflammatory diseases (Lahm and Petrache, 2012;
Leung et al., 2017; Lippai and Szatmári, 2017; Rubin et al.,
2017; Vij et al., 2018). Autophagy regulates inflammation by
affecting the survival, development and homeostasis of
inflammatory cells (Saitoh et al., 2008; Zhong et al., 2016;
Qian et al., 2017), and affects the transcription, processing and
secretion of inflammatory mediators (Crişan et al., 2011).
Autophagy is also regulated by inflammatory factors, including
IFN-γ, TNF-α, IL-1, IL-2, IL-6, and TGF-β2, which can induce
autophagy, while IL-4, IL-10, and IL-13 can inhibit autophagy.
The role of autophagy in DED is a research hotspot.

Recent studies of DED have shown that autophagy activation
can protect the ocular surface from inflammation. Liu Zhao et al.
founded that autophagy activation is a late response of HcECs to
hyperosmotic stress after inflammation is triggered, which protects
HcECs and promotes survival by reducing inflammatory mediators
in an vitro model of dry eye. These protective effects were further
enhanced when rapamycin enhanced autophagy activation in
hypertonic HCECs(Liu et al., 2020a). In addition, they suggest
that trehalose, as an autophagy enhancer, induces autophagy anti-
inflammation by inhibiting Akt activation of transcription factor EB
in primary HCECs exposed to high osmotic stress (Liu et al., 2020b).
The mechanism of trehalose inhibition of inflammation is
independent of NFκB pathway, and it may reduce stress-induced
inflammation by inhibiting p38MAPK and activating autophagy
(Panigrahi et al., 2019). Therefore, the activation of autophagy is
expected to be a new strategy for the treatment of DED.

Pyroptosis and Inflammation
Pyroptosis is a mechanism of cell death associated with the
inflammatory response. Different from cell necrosis, apoptosis
and autophagy, pyrodeath can be divided into classical and non-
classical pyrodeath pathways. The classical pathway is induced by
caspase-1, while the non-classical pathway relies on caspase-4 or
caspase-5. Pyrotic cells release many inflammatory cytokines,
such as IL-1β and IL-18, which trigger the aggregation of immune
cells. Pyrolysis is characterized by intact nuclei, DNA strand
destruction, and positive TUNEL staining (Guo et al., 2019; Liu
and Sun, 2019; Yu et al., 2020) (18–21).

As a member of the immunoglobulin family, triggering
receptor expressed on myeloid cells 2 (TREM2) is an immune
receptor expressed on the surface of myeloid cells such as
microglia, macrophages, osteoclasts and dendritic cells
(Colonna, 2003; Daws et al., 2015). TREM2 may exert anti-
inflammatory effects by enhancing the phagocytosis of
myeloid cells (N’Diaye et al., 2009). Qu W. et al. found that
compared with wild-type mice, TREM2-deficient mice were more
likely to develop keratitis. This is due to the absence of TREM2
leading to increased caspase-1 and subsequent activation of cell
pyroptosis and IL-1β release. In addition, caspase-1 inhibitors
were found to reverse keratopathy in TREM2-deficient mice
while inhibiting pyroptosis (Qu et al., 2018).

Pryrin-containing nod-like receptor protein 3(NLRP3)
inflammasome is one of the inflammasomes that have been
studied extensively. The production of a large number of
reactive oxygen species (ROS) can activate NLRP3, and the
activation of NLRP3 can activate Caspase-1, which will cause
cell Pyroptosis (Mariathasan et al, 2006; Dinarello, 2009) Massive
reactive oxygen species (ROS) release is the main characteristic of
DED. ROS activate NLRP3 inflammasomes and lead to caspase-1
self-activation and maturation of pro-inflammatory cytokine IL-
1β in a dry-eye mouse model (Zheng et al., 2014). Niu L et al.
found that the mRNA and protein levels of NLRP3 were
increased in patients with and without Sjogren’s syndrome,
and also positively correlated with the severity of dry eye (Niu
et al., 2015). The ROS-NLRP3-IL-1β signaling pathway may play
an important role in the initiation of environmental induced DE
models (Zheng et al., 2015). These findings suggest that NLRP3
inflammasomes may be involved in the development of ocular
surface inflammation in DED.

Apoptosis and Inflammation
Apoptosis is an active, programmed cell death controlled by genes
in order to maintain internal environment stability without
causing inflammatory response. In dry eyes, the apoptosis of
lacrimal acinus, conjunctival epithelium, corneal epithelium, and
corneal endothelial cells is abnormally increased, resulting in
damage and destruction of eye tissues, while the apoptosis of
lymphocytes in local tissues is inhibited, prolonging the survival
time of lymphocytes and promoting the inflammatory activation
state (Wilson et al., 2002; Yeh et al., 2003; Moore et al., 2011).
Cysteine aspartic acid specific protease, p53 protein, and B-cell
lymphoma-2 gene (Bcl-2) family proteins are involved in the
signal transduction of DED cell apoptosis. Inflammation and
apoptosis act together in the pathogenesis of dry eye. In the
corneal and conjunctival epithelial cells of diabetic patients, the
expression levels of pro-apoptotic factors such as Fas, Fasl
and Bax were significantly higher than those of normal
subjects, while the expression levels of anti-apoptotic factors
such as Bcl-2 were relatively lower. The inflammatory
environment of ocular surface can activate pro-apoptotic
factors, activate apoptotic signals and activate apoptotic
pathways. Moreover, the synergistic effect can further aggravate
the apoptosis of corneal epithelial cells, conjunctival epithelial cells
and glandular cells, leading to ocular surface abnormalities, and
assist in accelerating the occurrence of dry eye disease (Hao et al.,
2015). For example, in the occurrence of DED, caspase-8 and
interferon-γ (IFN-γ) jointly induce and aggravate the apoptosis
of conjunctival cells through the dual apoptotic pathway (X Zhang
et al., 2011; X. Zhang, et al., 2014).

LIST THE FACTORS OF DED
PATHOGENESIS AND IMMUNE
INFLAMMATION
Sex Hormone and Immune Inflammation
Epidemiological survey results show that the prevalence of dry
eye disease increases significantly with age, especially in women
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(Cohen, 2004). Reduced androgen levels may be responsible for
the higher prevalence in women than in men.

Androgen plays an important role in the pathogenesis of
xerophthalmia and its mechanism is also involved in immune
inflammation. Androgens have immunosuppressive effects and
can maintain the balance of pro-inflammatory factors and anti-
inflammatory factors in ocular surface tissues and glands, while
the imbalance of androgens will increase the pro-inflammatory
factors and cause eye discomfort (Babić et al., 2010; Knop and
Knop, 2010; Li and Pflugfelder, 2005). The decrease of androgen
level will lead to the atrophy of lacrimal epithelial cells, the
disappearance of acinus mucus, the decrease of conjunctival
goblet cells, the decrease of mucin expression, the shorten of
tear film rupture time, and the decrease of tear quality and
quantity (Sullivan et al., 2006). Androgen promotes cholesterol
synthesis by regulating the gene expression of the meibomian
gland, and the lack of androgen can cause damage to the lipid
layer of tear film (Cohen, 2004). Androgen can down-regulate the
mRNA expression of small proline rich protein, prevent excessive
keratinization of the meibomian gland, and maintain the
synthesis and secretion of lipid components in tears from
eyelid gland (Sullivan et al., 2009).

Different opinions exist about the role of estrogen in DED and
its mechanism. First of all, Zylberberg C et al. found that estrogen
acted on lacrimal glands to increase the secretion of MMP-2 and
9. Suzuki T found that 17-β-estradiol up-regulated the expression
of proinflammatory cytokines (IL-1,6,8) and metalloproteinases
(MMP-2,7,9) in corneal epithelial cells (Suzuki and Sullivan,
2005). Studies have found that the activation of estrogen
receptor B is associated with the down-regulation of the

expression of enzymes required for the synthesis of serum
lipoxins (LXA4) in corneal epithelial cells (Wang et al., 2011).
LXA4 is a negative regulatory signal of some endogenous pro-
inflammatory and pro-proliferation transmitters, which can
strongly inhibit the inflammatory response in vivo and inhibit
the chemotaxis and adhesion of neutrophils. It can be seen from
the above studies that estrogen may promote ocular surface
inflammation, and the increase of its level may aggravate
ocular surface inflammation, which also explains that estrogen
replacement therapy in postmenopausal women can not relieve
dry eye symptoms, but may aggravate them. However, in another
study, 17-β-estradiol was found to significantly inhibit IL-1, IL-6,
and TNF-α in hypertonic corneal epithelial cells (S. B. Wang,
et al., 2011). Ozcura et al. also found that 17-β-estradiol could
inhibit the apoptosis of ocular surface epithelial cells (Ozcura
et al., 2012). These also provide some evidence for the treatment
of DED with estrogen. Therefore, the role of estrogen in DED
needs to be further studied.

Meibomian Gland and Immune
Inflammation
The main function of the meibomian gland is to fight
inflammation and infection. Dysfunction of meibomian gland
is one of the main causes of DED. When the conjunctival
epithelial cells are exposed to bacterial toxins, they can induce
significant upregulation of defense genes, expression of cytokines
and chemokines, TLR signaling pathway, inflammation and
immune response. However, when the epithelial cells of the
meibomian gland are exposed to bacterial toxins, they do not

FIGURE 1 | A brief view of the immune-inflammatory mechanisms in DED pathogenesis and the protective effects of immunomodulatory molecules (PEDF, PRG4).
External stimulation and internal imbalance lead to the inflammatory initiation of dry eye disease and a vicious cycle of immune regulation dysfunction. Expression of PEDF
and PRG4 were up-regulated in damaged corneal endothelial cells. PEDF plays a protective role in DED by inhibiting IL-1β, IL-6, TNF-α, IL-17A and the percentage of
Th17 cells. PRG4 plays an immunomodulatory role in DED by down-regulating IL-1β, TNF-α, MIP-1α/β, and inhibiting the activity of MMP-9.

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7328875

Yu et al. Developments About DED

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


cause the expression of pro-inflammatory genes and TLR signal
transduction. Thus it is speculated that the meibomian gland may
have inherent anti-inflammatory and anti-infection factors (Liu
et al., 2011). Omiya et al. found that Leucocyte-associated
immunoglobulin-like receptor-1 expression is the highest in
the meibomian gland, as a kind of inhibitory receptor, could
inhibit the activation of immune cells and reduce the production
of pro-inflammatory cytokines (Omiya et al., 2009). Furthermore,
Leucocyte-associated immunoglobulin-like receptor-1 for
differentiation of human meibomian gland epithelial cells was
significantly up-regulated (Sullivan et al., 2014). Therefore, we
speculate that the meibomian gland may have inherent immune
anti-inflammatory and anti-infection mechanisms.

Recent studies have found that a large number of immune
inflammatory cells, such as dendritic cells, were detected in
corneal epithelial cells and palpebral conjunctival epithelial
cells in MGD patients compared with healthy patients (Qazi
et al., 2018; Zhou and Robertson, 2018). In addition, there are sex
hormone receptors in the palpebral gland and palpebral cells
contain enzymes necessary for endocrine synthesis and
metabolism of sex hormones and steroids (Knop et al., 2011).
Hampel U found that androgens can stimulate eyelid lipid
secretion and inhibit inflammation, while estrogen can cause
inflammation (Hampel and Garreis, 2017). As a chronic
inflammatory disease, MGD induces the infiltration of a large
number of immune inflammatory cells, which are important
mechanisms leading to the occurrence of dry eye disease.

CONCLUSION

As the core focus of the pathogenesis of dry eye disease, immune
inflammatory response has always been the focus of scholars and
the research direction is relatively extensive. The most recent
studies focus on the immunoregulatory molecules expressed by
ocular surface cells, especially on PDEF and PRG4 (Figure 1),
which have achieved exciting results. The results of these studies
can not only provide new targets for the prevention and
treatment of DED, but also point out a new direction for our
research.
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