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Qiangji Decoction (QJD), a classic formula, has been widely used to treat brain aging–related
neurodegenerative diseases. However, the mechanisms underlying QJD’s improvement in
cognitive impairment of neurodegenerative diseases remain unclear. In this study, we
employed D-galactose to establish the model of brain aging by long-term D-galactose
subcutaneous injection. Next, we investigatedQJD’s effect on cognitive function of themodel
of brain aging and the mechanisms that QJD suppressing neuroinflammation as well as
improving neurodegenerative changes and hippocampal neuron apoptosis. Themice of brain
aging were treated with three different dosages of QJD (12.48, 24.96, and 49.92 g/kg/d,
respectively) for 4 weeks. Morris watermazewas used to determine the learning andmemory
ability of the mice. HE staining and FJB staining were used to detect the neurodegenerative
changes. Nissl staining and TUNEL staining were employed to detect the hippocampal
neuron apoptosis. The contents of TNF-α, IL-1β, and IL-6 in the hippocampus were detected
by using ELISA.Meanwhile, we employed immunofluorescence staining to examine the levels
of GFAP and IBA1 in the hippocampus. Besides, the protein expression levels of Bcl-2, Bax,
caspase-3, cleaved caspase-3, AMPKα, p-AMPKα-Thr172, SIRT1, IκBα, NF-κB p65,
p-IκBα-Ser32, and p-NF-κB p65-Ser536 in the hippocampus of different groups were
detected by Western blot (WB). Our findings showed that the QJD-treated groups,
especially the M-QJD group, mitigated learning and memory impairments of the model of
brain aging as well as the improvement of neurodegenerative changes and hippocampal
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Abbreviation: AMPK, mammalian 5′-AMP-activated protein kinase; Bax, BCL-2–associated X protein; Bcl-2, B-cell lym-
phoma 2; DAPI, 4′ 6-diamidino-2-phenylindole; D-gal, D-galactose; FJB, Fluoro-Jade B; GFAP, glial fibrillary acid protein; HE,
hematoxylin-eosin; IBAl, ionized calcium-binding adaptor molecule 1; IL-6, interleukin-6; IL-lβ, interleukin-l beta; IκBα,
nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor; MWM, Morris water maze; NF-κB, nuclear factor-
kappa beta; PBS, phosphate-buffered saline; PVDF, polyvinylidene difluoride; QJD, Qiangji Decoction; SDS-PAGE, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis; SIRT1, silent information regulator of transcription 1; TNF-α, tumor
necrosis factor-alpha; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling; WB,
Western blot.
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neuron apoptosis. Moreover, the M-QJD markedly attenuated the neuroinflammation by
regulating the AMPK/SIRT1/NF-κB signaling pathway. Taken together, QJD alleviated
neurodegenerative changes and hippocampal neuron apoptosis in the model of brain
aging via regulating the AMPK/SIRT1/NF-κB signaling pathway.

Keywords: Qiangji Decoction, brain aging, D-galactose, AMPK/SIRT1/NF-κB signaling pathway, neuroinflammation,
neurodegenerative changes

INTRODUCTION

Brain aging is the main factor inducing aging-related
neurodegenerative diseases (Fung et al., 2020). With the rapid
escalation of the aging population all over the world, the prevalence
of chronic neurodegenerative diseases including mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) is increasing
rapidly. Although we have made encouraging progress in the
research of MCI and AD, its high prevalence has resulted in a
heavy burden on the economy and society of the world. To date, we
have no effective therapies against MCI and AD, and current drugs
cannot fundamentally reverse the pathological process of MCI and
AD (Yiannopoulou and Papageorgiou, 2020; Trevisan et al., 2021).
Thus, the delay of brain aging has been recognized as a key to
prevent the onset of MCI and AD.

The causes resulting in brain aging are complex, of which
neuroinflammation is considered as the crucial culprit. The
increasing researches have confirmed that neuroinflammation
can damage the structure and function of the brain and finally
result in hippocampal-dependent learning and memory
impairment (Lima Giacobbo et al., 2019; Yahfoufi et al., 2020;
Salami et al., 2021). Therefore, the inhibition of
neuroinflammation has been regarded as an effective
therapeutic intervention to alleviate the progression of chronic
neurodegenerative diseases.

D-galactose (D-gal), a type of reducing sugar, has been
commonly found to present as the lactose in the milk of
mammals (Shwe et al., 2018). In general, the low dose of D-gal
can be metabolized into galactose-1-phosphate. But at higher
concentrations, D-gal can be converted to aldose and hydrogen
peroxide, causing the disposition of superoxide anion and oxygen-
derived free radicals in the brain, and finally lead to brain damage
(Sun et al., 2018). Mounting studies have confirmed that chronic
D-gal administration leads to the cognitive impairment of rodents
by the accumulated oxidative stress, mitochondrial deficits, and
neuroinflammation (Chen et al., 2019; Jeong et al., 2021; Oskouei
et al., 2021). For these reasons, chronic administration of D-gal is
well-established in the experimental rodent models of aging-related
cognitive impairment and investigating the anti-aging
pharmacological studies. Chronic D-gal administration can not
only induce oxidative stress but also lead to neuroinflammation.
Previous researches have pointed out that neuroinflammation acts
as a contributor in accelerating and deteriorating the pathological
process of brain aging. Cumulative reports have showed that
chronic D-gal administration can suppress the AMPK/SIRT1
signaling pathway, thereby activating the NF-κB signaling
pathway (Wang et al., 2020a; Lin et al., 2020; Wang et al., 2021).
When the NF-κB signaling pathway is activated, it can induce

neuroinflammation (Wang et al., 2020b; El-Far et al., 2020).
However, once the AMPK/SIRT1 signaling pathway is activated,
NF-κB is also inhibited accordingly, and finally alleviating cognitive
impairment and neurodegenerative changes induced by D-gal.

From the view of traditional Chinese medicine, kidney
deficiency is considered as an important factor causing brain
aging, and tonifying kidney is a critical treatment method for
anti–brain aging. Qiangji Decoction (QJD) is a classic formula
created by Chen Shiduo in Qing Dynasty and can nourish kidneys
to delay the process of brain aging. QJD comprised four raw herbs,
namely, wine-steamed roots of Rehmannia glutinosa Libosch.
(family: Scrophulariaceae, Shudihuang in Chinese), air-dried
mature seeds of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu
ex H. F. Chou (family: Rhamanaceae, Suanzaoren in Chinese), air-
dried tuberous roots of Ophiopogon japonicus (L. f) Ker-Gawl.
(family: Liliaceae, Maidong in Chinese), air-dried roots and
rhizomes of Polygala tenuifolia Wild., or Polygala sibirica L.
(family: Polygalaceae, Yuanzhi in Chinese). Since the Qing
Dynasty, QJD has been demonstrated to have a positive
therapeutic effect on chronic neurodegenerative diseases
including MCI and AD. A large body of clinical practice has
confirmed that QJD can alleviate the aging-related cognitive
impairment. At the same time, animal experiments have also
verified that QJD can alleviate the cognitive impairment and
neurodegenerative changes induced by D-gal and scopolamine
(Gu., et al., 2008; Li., et al., 2008). However, the molecular
mechanism underlying QJD’s anti–brain aging is still unclear, so
the present study was designed to evaluate whether QJD could
mitigate the cognitive impairment induced by D-gal and then the
molecular mechanisms that QJD inhibited neurodegenerative
changes through anti-neuroinflammation were explored.

MATERIALS AND METHODS

Animals
A total of 60 eight-week-old male C57BL/6 mice with specific
pathogen free (SPF) were used in this study, weighing about 25 ±
2 g, which were obtained from Liaoning Changsheng
Biotechnology Co., Ltd. (Benxi, Liaoning, China; Certification
number: SCXK 2020-0001). The experimental animals used in
this study were housed in the Center Laboratory of Chinese
Medicine of Hubei University of Chinese Medicine. The standard
laboratory was controlled at the temperature of 23 ± 2°C, 60%
relative humidity, and 12:12 h lightdark cycle. During the
experiment, the animals had free access to a standard diet and
water. The approval of animal feeding and experiment protocol
were obtained from the Animal Ethics Review Committee of
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Hubei University of Chinese Medicine (No. 8217150845) and
conducted in accordance with the ethical guidelines.

Drugs
Qiangji Decoction (QJD) comprised four raw herbs, including
wine-steamed roots of Rehmannia glutinosa Libosch. (30 g), air-
dried mature seeds of Ziziphus jujuba Mill. var. spinosa (Bunge)
Hu ex H. F. Chou (30 g), air-dried tuberous roots of Ophiopogon
japonicus (L. f) Ker-Gawl. (30 g), air-dried roots and rhizomes of
Polygala tenuifolia Wild. or Polygala sibirica L. (6 g), which were
provided by Jinpai Chizhengtang Pharmaceutical Co., Ltd.
(Huangshi, Hubei, China). All raw herbs were authenticated
by Prof. Qiu-yun You, a pharmacologist from Hubei
University of Chinese Medicine, and identified in accordance
with the Chinese Pharmacopoeia. Metformin hydrochloride
extended-release tablets (0.5 g/tablet, batch number: ABU7707)
were obtained from Sino-American Shanghai Squibb
Pharmaceutical Co., Ltd. (Shanghai, China).

Preparation of QJD Extract and Metformin
According to the methods described in our previous report with
minor modifications, the stock solution of QJD was prepared
(Long et al., 2021). In general, the raw herbs were crushed into
pieces, and the mixtures of raw herbs were soaked in water (1:8,
w/v) for 30 min. Subsequently, the mixed herbs were decocted for
30 min. After filtration, the residue was decocted for 20 min (1:6,
w/v). The two filtrates were mixed and refluxed in the rotary
evaporators (QYMD-60, Qi yu industry co., LTD., Shanghai,
China) for 1.5 h, and finally concentrated into a stock
solution. Metformin was dissolved in saline and prepared as a
0.01 g/ml stock solution.

Reagents and Antibodies
D-galactose (D-gal), purity>99.0%, was supplied by Solarbio
Science and Technology Co., Ltd. (Beijing, China; D8310). HE
staining solution, Nissl staining solution, and Fluorescein (FITC)
TUNEL Cell Apoptosis Detection Kit were obtained from
Servicebio Technology Co., Ltd. (Wuhan, Hubei, China;
G1005, G1036, and G1501, respectively). Fluoro-Jade B (FJB)
staining kit was obtained from Merck-Millipore (Darmstadt,
Germany; AG310). ELISA Kits for the detection of TNF-α, IL-
1β, and IL-6 were supplied by ABclonal technology (Wuhan,
Hubei, China; RK00027, RK00006, and RK00008, respectively).
Rabbit monoclonal anti–Bcl-2, rabbit monoclonal anti-Bax,
rabbit monoclonal anti–caspase-3, rabbit polyclonal
anti–cleaved caspase-3, rabbit monoclonal anti–total-AMPKα,
rabbit monoclonal anti–phospho-AMPKα (Thr172), rabbit
monoclonal anti-SIRT1, rabbit monoclonal anti–β-actin, and
HRP-linked goat anti-rabbit IgG were purchased from ABcam
(Cambridge, MA, USA; ab32124, ab32503, ab32351,ab2302,
ab32047, ab133448, ab110304, ab8227, and ab6721,
respectively). Rabbit polyclonal anti-GFAP, rabbit monoclonal
anti-IBA1, and Cy3-conjugated goat anti-rabbit IgG were
purchased from ABclonal technology (Wuhan, Hubei, China;
A0237, A1527, and AS007, respectively). Rabbit monoclonal
anti–total-IκBα, rabbit monoclonal anti–phospho-IκBα (Ser32),
rabbit monoclonal anti–total-NF-κB p65, and rabbit monoclonal

anti–phospho-NF-κB p65 (Ser536) were purchased from Cell
Signaling Technology (Beverly, MA, USA; #4812, #2859, #8242,
and #3033, respectively).

Experimental Model and QJD
Administration
After the acclimation, the mice were randomly assigned to the
following six different groups of 10 animals each, namely,
negative control group (NC), D-gal group (D-gal), metformin
group (Met), low dose of QJD group (L-QJD), middle dose of
QJD group (M-QJD), and high dose of QJD group (H-QJD).
With reference to the previous reports (Baeta-Corral et al., 2018;
Ullah et al., 2020; Ahmad et al., 2021), the mice in the negative
control group were administered with 0.9% saline by
subcutaneous injection for 8 weeks, while the other groups
were administered with D-gal (100 mg/kg/d). Based on the
previous reports and clinical equivalent doses (Farr et al.,
2019; Li et al., 2019), the therapeutic dose of the metformin
group and QJD-treated group was confirmed accordingly. From
the fifth to the eighth week, the NC group and the D-gal group
received the same amount of normal saline by oral
administration, the metformin group was given metformin
(200 mg/kg/d), and the QJD-treated groups were treated with
three different doses of QJD extract (L-QJD: 12.48 g/kg/d,
M-QJD: 24.96 g/kg/d, H-QJD: 49.92 g/kg/d). As shown in
Figure 1A, the study design of this research has been illustrated.

Morris Water Maze
After the treatment was completed, the hippocampus-dependent
learning andmemory ability of mice in each group were evaluated
by the Morris water maze (MWM) test. The equipment of the
MWM test was given in our previous report, and it was
performed with minor modifications (Long et al., 2021).
Briefly, the MWM test contains two tests, namely, the
navigation and spatial probe test. During the navigation test,
every trained animal was given 60 s to search for the platform,
and the escape latency was documented by the MWM software
(version YH-MWM, Wuhan Yihong Technology Co., Ltd.,
China). If the experimental animals did not locate the
platform within the allocated 60 s, they were manually led to
the platform and allowed to remain on the platform for at least
15 s. After the completion of the navigation test, the hidden
platform was retracted manually, and then the spatial probe test
was executed. MWM software automatically recorded and
analyzed the number of crossing the hidden platform in the
spatial probe test. In addition, we also analyzed and counted the
time of staying on the target quadrant and the mean swimming
speed in each group.

Hippocampal Tissue Collections
After the completion of MWM, four animals in each group were
sacrificed, and then the brain tissues were collected to fix in 4%
paraformaldehyde for HE staining, FJB staining, Nissl staining,
TUNEL staining, and immunofluorescence staining. The
remaining mice were anesthetized in the same way, and the
hippocampal tissue was separated and split into two parts on a
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cold plate. One portion of the hippocampal tissue was used for
ELISA, and another part was used for Western blot. After
separation, the hippocampal tissue was in a cryopreservation
tube and stored in liquid nitrogen for 30 min, finally kept at −80°C
until further processing.

HE Staining
The brain tissues were immersed in 4% paraformaldehyde at 4°C
for 24 h and then processed into paraffin-embedded tissues.
Subsequently, a microtome (CM 2016, Leica, Germany) was
employed to cut the paraffin-embedded tissues into 5-μm-
thick slices. The slices were dewaxed with xylene and
dehydrated with gradient ethanol (100–75%). After being
rinsed with double distilled water, the slices were placed in a
solution of hematoxylin for 3–5 min and then stained with a
solution of eosin for 5 min. Finally, neutral gum was used to
mount the slices. The stained slices were photographed and
analyzed with an upright optical microscope (ECLIPSE Ni-E,
Nikon, Japan).

Fluoro-Jade B Staining
Based on the manufacturer’s protocol and a previously described
report, the FJB staining was carried out (Xie et al., 2019). Briefly,
the prepared sections were immersed in xylene for 15 min.
Subsequently, the slices were placed in a gradient ethanol of
85 and 75% for dehydration for 5 min each. The slices were rinsed
in 0.1 M PBS for 1–2 min and then incubated to a solution of final
working concentration of FJB for 10 min. The cell nuclei were
labeled by 4 ′6-diamidino-2-phenylindole (DAPI). After FJB
staining, the slices were visualized and photographed under an
upright fluorescence microscope (DP72, Olympus, Japan), and
then the number of FJB-positive cells were measured by using
Image-Pro Plus 7.0 software (Media Cybernetics, Inc., Rockville,
MD, USA).

Nissl Staining
The paraffin-embedded slices were dewaxed with xylene for
5 min. Later, the dewaxed slices were dehydrated in a gradient
ethanol series with decreasing concentration for 5 min
(100–75%). After being dehydrated, the slices were treated
with Nissl staining solution at 37°C for 30 min and then
washed in 0.1 M PBS for 5 min. Subsequently, the paraffinized
slices were incubated in 70% alcohol differentiation at 37°C for
15 s. The sections were dehydrated with gradient alcohol
(70–95%) for 2 min and finally covered with neutral gum. The
images were photographed and analyzed with an imaging system
(BX50, Olympus, Japan). Subsequently, the number of neurons in
the hippocampus was analyzed by Image-Pro Plus 7.0 software.

TUNEL Staining
The TUNEL staining was employed to assess the level of
hippocampal neuron apoptosis in each group, and it
performed as described previously (Li et al., 2021). After being
dewaxed and rehydrated, the paraffin-embedded slices were
incubated with proteinase K at room temperature for 25 min.
After incubation, the sections were washed in 0.1 M PBS for
5 min and then incubated in permeabilize working solution at

room temperature for 20 min. The slices are slightly dried and
then incubated with TUNEL mixture at room temperature for
2 h. Subsequently, the cell nuclei were counterstained by using 4′
6-diamidino-2-phenylindole (DAPI), and the slices were finally
mounted with anti-fade mounting medium. The slices were
observed under an upright fluorescence microscope (DP72,
Olympus, Japan). In this study, we used Image-Pro Plus 7.0
software to measure the number of TUNEL-positive cells, so as to
assess whether QJD could improve the hippocampal neuronal
apoptosis.

Immunofluorescence Staining
Based on the previous report, the immunofluorescence staining
was conducted with minor modifications (Rong et al., 2019). In
brief, the slices were dewaxed with xylene and dehydrated with
gradient ethanol (100–75%), and then washed in 0.1 M PBS for
5 min. Next, the dehydrated slices were placed in EDTA antigen
retrieval buffer for 8 min at a sub-boiling temperature.
Subsequently, the slices were blocked in 3% bovine serum
albumin (BAS). After washing three times using 0.1 M PBS
3 min, the primary antibody (IBA1, 1:100; GFAP, 1:200) was
selected to incubate the slices overnight at 4°C. The following day,
the Cy3-conjugated secondary antibody (1:200) was added to
incubate at 37°C for 50 min. DAPI was employed to label the cell
nuclei, and the slices were finally mounted with anti-fade
mounting medium. In this study, we used Image-Pro Plus 7.0
software to calculate the mean fluorescence intensity of images.

Enzyme-Linked Immunosorbent Assay
To evaluate whether QJD could inhibit the neuroinflammation,
we employed enzyme-linked immunosorbent assay (ELISA) kits
to estimate the contents of pro-inflammatory factors in
hippocampal tissue, such as TNF-α, IL-1β, and IL-6. In brief,
the separated hippocampus was immersed in PBS (1:8, w/v),
homogenized in a cold tissue homogenizer (JXFSTPRP-CL-24,
Tuohe Electromechanical Technology Co., Ltd., Shanghai,
China), followed by centrifugation (12,000 rpm) at 4°C for
10 min. The supernatant was then collected. Subsequently, the
level of protein was quantified using the BCA Protein Assay kit.
Finally, the contents of TNF-α, IL-1β, and IL-6 in hippocampus
were detected using ELISA kits, following the manufacturer’s
protocol.

Western Blot
In brief, the separated hippocampus was lysed in RIPA lysis
buffer (1:8, w/v) containing phenylmethylsulfonyl fluoride
(PMSF) and phosphatase inhibitors to extract the total
proteins of hippocampus. After homogenizing, the
hippocampal homogenates were subjected to centrifugation
(12,000 rpm) at 4°C for 30 min, and the supernatants were
collected. Subsequently, BCA Protein Assay kit was used to
calculate the protein concentration of each sample. After that,
the 10–12% separation gel buffer and 5% stacking gel buffer were
prepared, and the protein of each sample (30 μg) was separated
with SDS-PAGE. The protein was then transferred to the PVDF
membranes (Millipore, Darmstadt, Germany). After blocked in
5% nonfat milk at room temperature for 30 min, the membranes
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were incubated with primary antibodies including anti–Bcl-2 (1:
1,000), anti-Bax (1:1,000), anti–cleaved caspase-3 (1:1,000), anti-
AMPKα (1:1,000), anti–p-AMPKα-Thr172 (1:1,000), anti-SIRT1
(1:1,000), anti-IκBα (1:1,000), anti–p-IκBα-Ser32 (1:1,000),
anti–NF-κB p65 (1:1,000), anti–p-NF-κB p65-Ser536 (1:1,000),
and anti–β-actin (1:1,000) at 4°C overnight. The next day, the
membranes were incubated with HRP-linked secondary antibody
(1:10,000) at room temperature for 30 min. After washing three
times with TBST, ECL kit was used to capture the blots, and the
band intensity of each sample was quantified by using the Image J
software (Bethesda, United States).

Statistical Analysis
All experimental data were dealt by using Statistical Analysis
System software (SAS, version 9.4, SAS Institute Inc., Cary, NC,
USA), and the results were expressed as mean ± standard error of
the mean (SEM). The two-way analysis of variance (ANOVA)

with repeated measures was used to analyze the escape latency,
and the remaining data were analyzed by one-way ANOVA. If the
variance was homogeneous, the Bonferroni post hoc test was
adopted. If not, the Tamhane T2 test was used. When the p-value
was less than 0.05, values were considered statistically significant.

RESULTS

QJD Alleviates Learning and Memory
Impairments in D-Gal–Induced Mice
MWM is one of the most widely used behavioral testing methods,
which has been commonly used to evaluate the learning and
memory ability of brain aging–related neurodegenerative diseases
(Garthe and Kempermann, 2013; Wahl et al., 2017). Accordingly,
we assessed the mice’s spatial learning ability in each group by
using the navigation test. During the navigation test, there was no

FIGURE 1 | QJD alleviated learning and memory impairments in D-gal–induced mice. (A) Study design. (B) Mean escape latency to the platform of each group
during the training session of five consecutive days. (C) Escape latency to the platform of each group in the navigation test. (D) Representative path tracings of each
group in the navigation test. (E) The number of crossing platform in the permitted 60 s. (F) Time of staying on the target quadrant in the permitted 60 s. (G) The mean
swimming speed of mice in all groups. All data were presented as mean ± SEM (n � 10/group). **p < 0.01 vs. NC group; #p < 0.05 and ##p < 0.01 vs. D-gal group.
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obvious alteration in the escape latency among all groups during
3 days of consecutive training (p > 0.05, Figure 1B). Starting from
the fourth day, the D-gal treatment significantly increased the
escape latency, whereas this phenomenon was significantly
reversed by the metformin, M-QJD, and H-QJD (p < 0.05 or
0.01; Figures 1B, C). The representative path tracings of each
group in the navigation test were presented in Figure 1D, which
indicated theM-QJD significantly shortened the escape latency in

D-gal-induced mice. Besides, we examined the spatial memory
ability of mice by using the spatial probe test. According to the
spatial probe test, we found the M-QJD group and H-QJD group
had a higher number of crossing platform when compared to the
D-gal group (p < 0.05 or 0.01; Figure 1E). Meanwhile, theM-QJD
group and H-QJD group significantly increased the time that
mice spent in the target quadrant (p < 0.05 or 0.01; Figure 1F).
Nevertheless, the L-QJD group did not significantly change the

FIGURE 2 | QJD alleviated the pathological alterations in the hippocampus of D-gal–induced mice. (A) Representative HE staining images in the hippocampus of
CA1 and CA3 regions (magnification × 400; scale bar � 20 μm). (B) Representative FJB staining images (labeled in green) in the hippocampus of CA1 and CA3 regions
(magnification × 400; scale bar: 20 μm). (C) Number of FJB-positive neurons in the hippocampus CA1 region. (D) Number of FJB-positive neurons in the hippocampus
CA3 region. The blue arrows indicate damaged neurons in the hippocampus. All data were presented as mean ± SEM (n � 4/group). **p < 0.01 vs. NC group; #p <
0.05 and ##p < 0.01 vs. D-gal group.
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FIGURE 3 | QJD alleviated the hippocampal neuron loss and apoptosis in D-gal–induced mice. (A) Representative Nissl staining images in the hippocampus of
CA1 and CA3 regions (magnification × 400; scale bar � 20 μm). (B) Representative TUNEL staining images (labeled in green) in the hippocampus of CA1 and CA3
regions (magnification × 400; scale bar � 20 μm). (C) Number of neurons in the hippocampus CA1 region. (D) Number of neurons in the hippocampus CA3 region. (E)
Number of TUNEL-positive neurons in the hippocampus CA1 region. (F) Number of TUNEL-positive neurons in the hippocampus CA3 region. (G) Representative
Western blot bands showing the protein expression levels of Bcl-2, Bax, caspase-3 and cleaved caspase-3 in the hippocampus. (H) Relative protein expression level of
Bcl-2. (I) Relative protein expression level of Bax. (J)Relative protein expression level of cleaved caspase-3/caspase-3. The red arrows indicate the hippocampal neuron
loss. All data were presented as mean ± SEM (n � 4 or 6/group). **p < 0.01 vs. NC group; #p < 0.05 and ##p < 0.01 vs. D-gal group.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7358127

He et al. Qiangji Decoction Alleviates Neurodegenerative Changes

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


abovementioned results (p > 0.05; Figures 1E,F). In mean
swimming speed, no statistical difference was found among all
groups (p > 0.05; Figure 1G), which implies that mice’s
swimming ability had no difference. These results indicated
that chronic D-gal administration could induce the cognitive
impairment, and the QJD, especially the M-QJD, reversed this
phenomenon, whereas the L-QJD did not mitigate the cognitive
impairment in D-gal–induced mice.

QJD Alleviates the Pathological Alterations
in the Hippocampus of D-Gal–Induced Mice
The MWM test results show that the QJD could alleviate the
cognitive deficits induced by D-gal, and thereby, the HE staining
and FJB staining were utilized to evaluate whether QJD could
rescue the pathological alterations of the hippocampus induced
by D-gal. In HE staining, we noticed that the D-gal group’s
neurons in the hippocampal CA1 and CA3 regions were
degenerated with dark staining, deformed, and denatured
nuclei in comparison with the NC group (Figure 2A).
However, the neuronal damages in these regions of the
M-QJD group and H-QJD group were decreased in
comparison to the D-gal group, and the stained neurons and
deformed nuclei were also alleviated. In addition,
neurodegenerative changes in the hippocampus were detected
by using FJB staining. As showed in FJB staining, compared with
the NC group, there were remarkably increased FJB-positive cells
in the hippocampal CA1 and CA3 regions of D-gal group
(p < 0.01, Figures 2B–D). However, after treatment with
M-QJD and H-QJD, the number of FJB-positive cells in these
regions were significantly diminished (p < 0.05 or 0.01; Figures
2B–D). The above findings manifested that QJD could relieve the
pathological alterations of hippocampus induced by D-gal.

QJD Alleviates the Hippocampal Neuron
Loss and Apoptosis in D-Gal–Induced Mice
We also employed Nissl staining and TUNEL staining to
investigate whether QJD could improve the hippocampal
neuron loss and apoptosis in D-gal–induced mice. In Nissl
staining, we found that there was a decreased number of
neurons in the CA1 and CA3 regions, when compared to the
NC group (p < 0.01; Figures 3A,C,D). Whereas compared to the
D-gal group, the decreased neurons were rescued by the M-QJD
and the H-QJD (p < 0.05 or 0.01; Figures 3A,C,D). We also used
the TUNEL staining to evaluate whether QJD could restrain
neuronal apoptosis and quantified the number of TUNEL-
positive cells by using Image-Pro Plus 7.0 software. The TUNEL
staining results showed that the decreased TUNEL-positive
neurons in the CA1 and CA3 regions were inhibited by the
M-QJD and the H-QJD (p < 0.05 or 0.01; Figures 3B,E,F). In
addition, the apoptotic markers including Bcl-2 (anti-apoptotic
protein), Bax (apoptosis regulator), and cleaved caspase-3 (pro-
apoptotic protein) were detected by Western blot (Ullah et al.,
2020). Our finding verified that the D-gal treatment could
upregulate the protein levels of Bax and cleaved caspase-3 in
the hippocampus compared to the NC group (p < 0.01; Figures

3G,I,J), while the protein levels of Bcl-2 were significantly
downregulated (p < 0.01; Figures 3G,H). After 4 weeks of
M-QJD and H-QJD treatment, the above phenomenon was
reversed (p < 0.05 or 0.01; Figures 3G–J). These results implied
that the QJD could alleviate the hippocampal neuron loss and
apoptosis in D-gal–induced mice.

QJD Alleviates the Neuroinflammation
Through Suppressing Microglial and
Astrocytes Activation in D-Gal–Induced
Mice
Neuroinflammation acts as the contributor in accelerating the
pathological progression of aging-related neurodegenerative
diseases, and the increasing researches have demonstrated that
chronic D-gal administration can stimulate the microglia and
astrocytes activation in central nervous system, thereby inducing
chronic neuroinflammation (Lu et al., 2010; Cao et al., 2019;
Yahfoufi et al., 2020). Therefore, in this study, we measured the
contents of TNF-α, IL-1β, and IL-6 in the hippocampus through
ELISA. When compared to the D-gal group, the NC group had a
lower level of TNF-α, IL-1β, and IL-6 (p < 0.01; Figures 4A–C).
However, after treatment with M-QJD and H-QJD, these pro-
inflammatory cytokines were suppressed (p < 0.05 or 0.01;
Figures 4A–C). The microglia and astrocytes activation is the
critical factor for the release of pro-inflammatory cytokines.
Growing researches have confirmed that chronic D-gal
administration can induce the microglia and astrocytes
activation, thereby accelerating the release of pro-inflammatory
cytokines (Lu et al., 2010; Jeong et al., 2021; Oskouei et al., 2021).
So, we used the immunofluorescence staining to detect the levels
of IBA1 and GFAP. Our findings showed that the D-gal group
had higher fluorescence intensity of IBA1-positive microglia and
GFAP-positive astrocytes (p < 0.01; Figures 4D–I), when
compared to the NC group. After treatment with M-QJD and
H-QJD, the fluorescence intensity of IBA1-positive microglia and
GFAP-positive astrocytes was significantly decreased (p < 0.05 or
0.01; Figures 4D–I). Collectively, these results manifested that
QJD could alleviate chronic neuroinflammation through
suppressing the activation of microglial and astrocytes in
D-gal–induced mice.

QJD Activates the AMPK/SIRT1 Signaling
Pathway in the Hippocampus of
D-Gal–Induced Mice
In the aging-related neurodegenerative diseases, the AMPK/
SIRT1 signaling pathway acts as a crucial role in regulating
energy metabolism, apoptosis as well as neuroinflammation
(Domise and Vingtdeux, 2016; Chen et al., 2020). Previous
research has confirmed that the inactivation of this signal
pathway can accelerate neuroinflammation, while the
activation of this signal pathway can naturally inhibit
neuroinflammation (Peixoto et al., 2017). In this study, we
examined the levels of AMPK and SIRT1 and the
phosphorylation of APMK in the hippocampus by using
Western blot. Compared with NC group, the levels of SIRT1
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FIGURE 4 |QJD alleviated the neuroinflammation through suppressing microglial and astrocytic activation in D-gal–induced mice. (A) Protein expression of TNF-α
in hippocampus. (B) Protein expression of IL-1β in hippocampus. (C) Protein expression of IL-6 in hippocampus. (D) Representative immunofluorescence staining
images of GFAP (labeled in red) in the hippocampus of CA1 and CA3 regions (magnification × 400; scale bar � 20 μm). (E) Representative immunofluorescence staining
images of IBA1 (labeled in red) in the hippocampus of CA1 andCA3 regions (magnification × 400; scale bar � 20 μm). (F)Mean fluorescence intensity of GFAP in the
hippocampus of CA1 region. (G)Mean fluorescence intensity of GFAP in the hippocampus of CA3 region. (H)Mean fluorescence intensity of IBA1 in the hippocampus of
CA1 region. (I) Mean fluorescence intensity of IBA1 in the hippocampus of CA3 region. All data were presented as mean ± SEM (n � 4 or 6/group). **p < 0.01 vs. NC
group; #p < 0.05 and ##p < 0.01 vs. D-gal group.
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and the phosphorylation of APMK in the D-gal group were
significantly decreased (p < 0.01; Figures 5A–D), which indicated
that the AMPK/SIRT1 signaling pathway was inhibited by D-gal.
After treatment with QJD, the M-QJD and H-QJD had a higher
levels of SIRT1 and the phosphorylation of APMK, when
compared to the D-gal group (p < 0.05 or 0.01; Figures
5A–D). Furthermore, we noticed that the H-QJD had the
similar effect with M-QJD. Those results showed that QJD
could activate the AMPK/SIRT1 signaling pathway in the
hippocampus of D-gal–induced mice.

QJD Inhibits the NF-κB Signaling Pathway in
the Hippocampus of D-Gal–Induced Mice
AMPK/SITR1 signaling pathway is an important regulator of NF-
κB, and the activity of NF-κB can be restrained by the AMPK/
SITR1 signaling pathway. Growing researches have suggested
that the activation of the AMPK/SITR1 signaling pathway can
inhibit the activation of NF-κB, so we further investigate whether
QJD alleviates the neuroinflammation through regulating the
AMPK/SITR1–mediated NF-κB signaling pathway. In this study,
we first used Western blot to examine the IκBα and NF-κB p65 in
the hippocampus. Subsequently, the phosphorylated IκBα (Ser32)
and NF-κB p65 (Ser536) were also detected by Western blot. As
revealed by Figures 6A–E, the D-gal treatment significantly
increased the levels of phosphorylated IκBα and
phosphorylated NF-κB p65 in the hippocampus of the D-gal

group, when compared to the NC group (p < 0.01). However, the
H-QJD, especially the M-QJD, suppressed the levels of
phosphorylated IκBα and phosphorylated NF-κB p65 (p < 0.05
or 0.01; Figures 6A–E). These data indicated that QJD could
inhibit the NF-κB signaling pathway activation in the
hippocampus of D-gal–induced mice.

DISCUSSION

Cognitive and memory deficits are one of the major clinical
symptoms in brain aging. Numerous studies have confirmed that
long-term D-gal subcutaneous injection (100 mg/kg) can induce
memory impairment of rodents, so we employed the D-gal to
establish the model of brain aging, and the mice were treated with
D-gal by subcutaneous injection for 8 weeks in the present research
(Chen et al., 2019; Jeong et al., 2021; Oskouei et al., 2021).
Metformin is the activator of AMP-activated protein kinase
(AMPK) (Steinberg and Carling., 2019). Simultaneously,
previous studies have confirmed that metformin can alleviate
the memory impairment of brain aging models in rodents by
inhibiting oxidative stress and neuroinflammation, so it was used
as a controlled drug in this research (Pan et al., 2016; Mudgal et al.,
2019; Saffari et al., 2020). After treatment with metformin and QJD,
we applied the MWM test to examine the learning and memory of
mice in each group. As showed in Figure 1, there was no obvious
difference in average escape latency to platform among all groups

FIGURE 5 | QJD activated the AMPK/SIRT1 signaling pathway in the hippocampus of D-gal–induced mice. (A) Representative Western blot bands showing the
protein expression levels of AMPKα, p-AMPKα-Thr172, and SIRT1 in the hippocampus. (B) Relative protein expression level of AMPKα. (C) Relative protein expression
level of p-AMPKα-Thr172. (D) Relative protein expression level of SIRT1. All data were presented as mean ± SEM (n � 6/group). **p < 0.01 vs. NC group; #p < 0.05 and
##p < 0.01 vs. D-gal group.
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during the first to third days of the navigation test, whereas the
D-gal group significantly increased the escape latency to the
platform from the fourth day compared with the NC group.
Taken together, our data implied that we have successfully
established the model of brain aging by subcutaneous
injection of D-gal. After 4-week treatment, the M-QJD group
and the H-QJD group had shortened escape latency to platform
compared with the D-gal group, while we did not find a
considerable alteration in the L-QJD group. The navigation
test showed that M-QJD and H-QJD could mitigate the spatial
learning impairment of the model of brain aging. As for the
spatial probe test, the H-QJD, especially the M-QJD, had
significantly increased the number of crossing platform and
time spent in the target quadrant, when compared with the
D-gal group. Both of above data indicated that M-QJD and
H-QJD could alleviate the spatial memory impairment in the
model of brain aging. In addition, the metformin group has a
similar effect to the M-QJD group. Collectively, the metformin
and QJD, especially the M-QJD, could alleviate the cognitive
impairment in the model of brain aging induced by D-gal.

The structure and function of neurons are critical for the
hippocampus-dependent learning and memory, and the damage
of neuronal structure and function can induce the learning and
memory dysfunction. Growing researches have demonstrated
that pathological alterations in hippocampus can be induced
by long-term D-gal subcutaneous injection (Bei et al., 2018;

Wang L. et al., 2020). To evaluate whether QJD can alleviate
the pathological changes in the hippocampus induced by D-gal,
we used HE staining to detect the pathologically degenerated
neurons in the hippocampus. In the HE staining, we found that
the D-gal group had obvious histopathological degenerative
changes in hippocampal CA1 and CA3 regions. Furthermore,
FJB staining was also employed to detect degenerative neurons,
and the number of FJB-positive neurons in the hippocampus was
analyzed by Image-Pro Plus 7.0 software. As showed in FJB
staining, the D-gal group had a higher number of FJB-positive
neurons in hippocampal CA1 and CA3 regions than the NC
group. Therefore, the FJB staining’s results were consistent with
the HE staining, both of which indicated that D-gal could induce
hippocampal neurodegenerative changes. After treatment with
QJD for 4 weeks, we find that the hippocampal neurodegenerative
changes were improved compared to the D-gal group. The FJB
staining also confirmed that QJD could reduce the number of
FJB-positive cells of CA1 and CA3 regions in hippocampus.
Taken together, the above experiments clearly suggested that
QJD could alleviate the pathological alterations in the
hippocampus induced by the D-gal.

Neuronal loss and apoptosis are other pathological features of
the brain aging (Shruster et al., 2010; Grimm and Eckert, 2017).
Thus, the Nissl staining and TUNEL staining were carried out to
evaluate whether QJD could ameliorate the neuron loss and
apoptosis, respectively. As showed in Nissl staining, compared

FIGURE 6 | QJD inhibited the NF-κB signaling pathway in the hippocampus of D-gal–induced mice. (A) Representative Western blot bands showing the protein
expression levels of IκBα, p-IκBα-Ser32, NF-κB p65, and p-NF-κB p65-Ser536 in the hippocampus. (B) Relative protein expression level of IκBα. (C) Relative protein
expression level of p-IκBα-Ser32. (D) Relative protein expression level of NF-κB p65. (E) Relative protein expression level of p-NF-κB p65-Ser536. All data were
presented as mean ± SEM (n � 6/group). **p < 0.01 vs. NC group; #p < 0.05 and ##p < 0.01 vs. D-gal group.
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with the NC group, the number of neurons in the hippocampal CA1
and CA3 regions in the D-gal group was decreased. However, we
found that the number of TUNEL-positive cells in hippocampal
CA1 and CA3 regions of the D-gal group was prominently higher
than the NC group. In short, both Nissl staining and TUNEL
staining demonstrated that long-term D-gal subcutaneous
injection (100mg/kg) can induce the neuron loss and apoptosis.
After 4-week treatment, the H-QJD group, especially the M-QJD
group, increased the neurons in the hippocampal CA1 and CA3
regions, whereas the TUNEL-positive cells in hippocampal CA1 and
CA3 regions were significantly reduced. Thus, our present study
indicated that QJD could inhibit neurodegenerative changes and
hippocampal neuron apoptosis induced by D-gal. Besides, Western
blot was carried out to detect the apoptotic markers including Bcl-2
(anti-apoptotic protein), Bax (apoptosis regulator), and cleaved
caspase-3 (pro-apoptotic protein). We noticed that the QJD
groups had lower protein expression level of Bax in hippocampus
in comparison with the D-gal group, and protein expression level of
cleaved caspase-3 in hippocampus showed a similar trend to the Bax.
However, the M-QJD and H-QJD increased the protein expression
level of Bcl-2. Collectively, the above data suggested that QJD could
relieve the hippocampal neuron loss and apoptosis induced by the
D-gal.

Neuroinflammation is significantly involved in aggravating
cognitive impairment and neurodegenerative changes of brain
aging (Singhal et al., 2014). Accumulated researches have
confirmed that long-term D-gal subcutaneous injection can induce
neuroinflammation by stimulating the activation of microglia and
astrocytes (Lu et al., 2010; Jeong et al., 2021; Oskouei et al., 2021).
Meanwhile, the activation of microglia and astrocytes will further
trigger neuroinflammation, and finally releasing the pro-
inflammatory factors, such as TNF-α, IL-1β, and IL-6, in
D-gal–induced mice. Thus, we used ELISA to detect the levels of
TNF-α, IL-1β, and IL-6 in the hippocampus. The ELISA results
suggested that QJD-treated groups, especially theM-QJD remarkably,
suppressed the contents of TNF-α, IL-1β, and IL-6 in the
hippocampus, when compared with the D-gal group. Besides, the
IBA1 and GFAP expression in the hippocampus of each group was
examined through immunofluorescence staining. By analyzing the
fluorescence intensity of microglia and astrocytes, we noticed that the
M-QJD group and the H-QJD group had a decreased level of IBA1
and GFAP in the hippocampal CA1 and CA3 regions in comparison
with theD-gal group. These obtained findings demonstrated thatQJD
could alleviate the neuroinflammation through suppressingmicroglial
and astrocytes activation in D-gal–induced mice.

AMP-activated protein kinase (AMPK) known as the crucial
factor in the regulation of cellular energy metabolism in
hippocampal tissues, but it has been demonstrated to ameliorate
brain aging by regulating energy metabolism, oxidative stress,
neuroinflammation, apoptosis, and autophagy (Shah et al., 2017;
Stern andMcnew, 2021). AMPKα, the representative member of the
AMPK family, and the phosphorylated AMPKα at the Thr172 site
can inhibit neuroinflammation and apoptosis by activating silent
information regulator of transcription 1 (SIRT1). In this research, we
employed the Western blot to examine the protein expression level
of p-AMPKα-Thr172 as well as a total of AMPKα and SIRT1 in the
hippocampus of mice. Our findings showed that the D-gal group

had a lower protein expression level of p-AMPKα-Thr172 and
SIRT1 in comparison with the NC group. Thus, the present
research suggested that the D-gal could suppress the AMPK/
SIRT1 signaling pathway. After treatment with the QJD,
compared with the D-gal group, we noticed that the protein
expression level of p-AMPKα-Thr172 and SIRT1 was remarkably
increased in the M-QJD group. Collectively, our study showed that
QJD could activate the AMPK/SIRT1 signaling pathway.

Nuclear factor-kappa beta (NF-κB) can be regulated by the
AMPK/SIRT1 signaling pathway, and the activation of the
AMPK/SIRT1 signaling pathway can inhibit the NF-κB,
thereby suppressing the neuroinflammation (Li et al., 2020;
Zhang et al., 2020). Under physiological conditions, NF-κB
combines with IκBα in the cytoplasm. However, IκBα can be
phosphorylated at serine 32 site by TNF-α, IL-1β, and IL-6.
Subsequently, phosphorylated IκBα further promotes the
activation of NF-κB p65 at serine 536, thereby inducing the
neuroinflammation (Sivandzade et al., 2019; Ding et al., 2020).
Hence, we employed Western blot to detect the protein
expression levels of p-IκBα-Ser32 and p-NF-κB p65-Ser536 as
well as the total of IκBα andNF-κB p65. As shown in Figure 6, the
increased p-IκBα-Ser32 and p-NF-κB p65-Ser536 were rescued in
the M-QJD group and the H-QJD group. The above results
showed that QID could mitigate neuroinflammation through
inhibiting the NF-κB signaling pathway in D-gal–induced mice.

CONCLUSIONS

In short, the present study showed that QJD alleviated cognitive
impairment and neurodegenerative changes induced by D-gal.
Furthermore, QJD attenuated the neuroinflammation by regulating
the AMPK/SIRT1/NF-κB signaling pathway. Hence, our present
study suggested that QJD may offer a promising therapeutic
intervention in preventing cognitive impairment of brain aging.
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