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Teneligliptin, a dipeptidyl peptidase-4 inhibitor, is used to treat type 2 diabetes mellitus.
FMO3 and CYP3A4metabolize teneligliptin into teneligliptin sulfoxide. This study examined
the effects of FMO3 (rs909530, rs1800822, rs2266780, and rs2266782) and CYP3A4
(rs2242480) polymorphisms on teneligliptin pharmacokinetics at a steady state among 23
healthy participants administered 20 mg teneligliptin daily for 6 days. Subjects with FMO3
rs909530, rs2266780, and rs2266782 polymorphisms exhibited a significant gene
dosage-dependent increase in maximum steady-state plasma drug concentration
(Cmax,ss) and area under the drug concentration vs time curve (AUC) (p<0.05).
However, the Cmax values significantly decreased but the AUC values did not
significantly vary in subjects with CYP3A4 polymorphism (rs2242480). These results
suggest that FMO3 and CYP3A4 polymorphisms affect teneligliptin pharmacokinetics
in humans. The findings of this study provide a scientific basis for the inter-individual
variation in teneligliptin disposition.
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INTRODUCTION

Teneligliptin, which belongs to the family of dipeptidyl peptidase-4 inhibitors, is used to treat type 2
diabetes mellitus (T2DM). The absorbed fraction of teneligliptin is approximately 74%. The liver
metabolizes 66–80% of teneligliptin into teneligliptin sulfoxide, while the kidney mediates the
excretion of 20–34% of the drug (1–4). Flavin-containing monooxygenase 3 (FMO3) and
cytochrome P450 3A4 (CYP3A4) are equally involved in teneligliptin metabolism in the liver (3).

Previous clinical and in vitro studies have elucidated the mechanism of teneligliptin metabolism
using various inhibitors of FMO3 and CYP3A4, such as ketoconazole and methimazole (5,6).
Ketoconazole and methimazole (FMO inhibitor) inhibit teneligliptin metabolism by 47.0 and 67.2%,
respectively, in the human microsomes (7). Recent studies have demonstrated the roles of FMO3
(8,9) and CYP3A4 (10–12) in the disposition of their substrates. FMO3 polymorphisms, including
rs909530 (c.855C>T, N285N), rs2266782 (c.472G>A, E158K), and rs2266780 (c.923A>G, E308G),
are reported to affect the pharmacokinetic characteristics of sulindac, a FMO3 substrate (8,9).
Additionally, rs2242480 (g.20230G>A, IVS10 + G12A, and CYP3A4*1G) located in intron 10 is one
of the most frequent genetic polymorphisms in the East Asian population and affects the
pharmacokinetic characteristics of various drugs by up-regulating (13) or downregulating
CYP3A4 activity (14,15). However, the underlying mechanisms have not been elucidated.
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The effects of FMO3 and CYP3A4 on the pharmacokinetics of
teneligliptin are unclear. Therefore, we hypothesized that FMO3
and CYP3A4 polymorphisms affect the pharmacokinetics of
teneligliptin based on the currently known teneligliptin
metabolism pathways. This study aimed to examine the
potential effects of FMO3 (rs909530, rs1800822, rs2266780,
and rs2266782) and CYP3A4 (rs2242480) polymorphisms on
teneligliptin pharmacokinetics in humans.

MATERIAL AND METHODS

Subjects
In this study, 23 healthy male Korean volunteers were enrolled.
Detailed physical examination, 12-lead electrocardiogram, vital
parameters, and laboratory tests, including blood chemistry,
hematology, and urine analyses, were performed to determine
the health status of the volunteers. The exclusion criteria were as
follows: history or evidence of hepatic, renal, gastrointestinal, or
hematological pathologies; hepatitis B or C and human
immunodeficiency virus infections; any other acute or chronic
disease; and drug allergies. The participants were not allowed to
consume drugs 2 weeks before or during the study period. The
study protocol was approved by the Institutional Review Board of
Korea University Anam Hospital (IRB no.2017AN0117). Written
informed consent was obtained from all volunteers. All
procedures were performed according to the Declaration of
Helsinki and Good Clinical Practice guidelines.

Study Design
The participants were administered 20 mg teneligliptin (Handok
Inc., Seoul, Korea) daily for 6 days to reach a steady state. On day
6 post-drug administration, the serial blood samples were
collected immediately before (0 h) and after 0.25, 0.5, 1, 1.5, 2,
3, 4, 6, 8, 10, 12, and 24 h of dosing. The blood samples were
collected in ethylenediaminetetraacetic acid (EDTA) tubes
(Vacutainer; Becton Dickinson, Franklin Lakes, New Jersey,
United States) and centrifuged at 1977 g and 4°C for 15 min.
The plasma samples were stored at −70°C until analysis. The
participants were genotyped for FMO3 (rs909530, rs1800822,
rs2266780, and rs2266782) and CYP3A4 (rs2242480) single-
nucleotide polymorphisms (SNPs).

FMO3 and CYP3A4 Genotyping
Genomic DNA was isolated from the peripheral leukocytes as
described previously (Hoffmeyer et al., 2000; Cascorbi et al.,
2001). The rs909530, rs1800822, rs2266780, and rs2266782
polymorphisms of FMO3 and the rs2242480 polymorphism of
CYP3A4 were identified using pyrosequencing with a PSQ 96MA
Pyrosequencer (Pyrosequencing AB, Uppsala, Sweden) (Kim
et al., 2013). The details of the primers used for each FMO3
and CYP3A4 SNPs are described in Supplementary Table S1
(Park et al., 2021, Submitted).

Bioanalysis
The teneligliptin and teneligliptin sulfoxide concentrations were
measured as described previously (Park et al., 2020). Briefly, the

sample was injected into a high-performance liquid
chromatography system (Shiseido Co., Ltd, Japan) coupled
with an API 4000 mass spectrometer (Applied Biosystems-
SCIEX, MA, United States) equipped with a Capcell Pak C18
column (2.0 mm × 150 mm, 5 μm, Tokyo, Japan) and a guard
column. The isocratic mobile phase was a mixture of acetonitrile
(100%) and methanol (50%; diluted in distilled water) (1:1; v:v).
The flow rate of the mobile phase was 0.25 mL/min. The mass
spectrometer was equipped with an electrospray ionization
source and operated in positive ion mode with multiple
reaction monitoring. The mass transition ion pairs of
teneligliptin and teneligliptin-d8 were selected as m/z 427.2→
243.1 and m/z 435.2→ 251.3, respectively. Standard working
solutions of teneligliptin (1,000, 500, 100, 50, 10, 5, and 2 ng/
mL) were prepared by diluting the stock solution with blank
plasma. A linear calibration curve of standard teneligliptin was
established (r2 � 0.9996).

Pharmacokinetic Analysis
The pharmacokinetic parameters of teneligliptin and teneligliptin
sulfoxide were determined using non-compartmental analysis
with Phoenix® WinNonlin® software (version 8.0, Certara™,
Princeton, United States). The minimum steady-state plasma
concentration during the dosage interval (Cmin,ss), maximum
steady-state plasma concentration during the dosage interval
(Cmax,ss), and time to reach Cmax,ss (Tmax) were estimated
directly from the observed plasma concentration vs time plots.
The total areas under the plasma concentration-time curves
during the dosing interval (AUCτ) were calculated using the
linear trapezoidal rule for 24 h after the final dose.

The t1/2 of teneligliptin was calculated as follows:

t1/2 � ln2/Ke

The oral clearance (CL/F) of teneligliptin was calculated as CL/
F � dose/AUCτ.

Statistical Analysis
All data are expressed as mean ± standard deviation unless
otherwise indicated. The differences were considered
significant at p <0.05. The pharmacokinetic parameters among
FMO3 and CYP3A4 genotypes were comparatively analyzed
using one-way analysis of variance or Kruskal-Wallis test,
followed by Tukey’s post hoc analysis after examining the
normal distribution of the data. Genetic equilibrium and
linkage disequilibrium were determined according to the
Hardy-Weinberg equation using SNPalyzer version 9.0
(DYNACOM Co., Ltd., Yokohama, Japan). All statistical analyses
were performed using the SAS statistical software package version 9.4.
(SAS Institute, Cary, NC, United States).

RESULTS

Demographic Data
In total, 23 healthy subjects were recruited in this study (age:
24.7 ± 2.3 years; height, 174.3 ± 3.7 cm; weight, 68.3 ± 6.7 kg). The
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frequencies of genotypes (FMO3 and CYP3A4) and demographic
data according to the genotypes are shown in Supplementary
Table S2. The genotype was not significantly correlated with any
of the covariates.

Genetic Analysis of FMO3 and CYP3A4
Polymorphisms
The observed allele frequencies for FMO3 rs909530,
rs1800822, rs2266780, and rs2266782 polymorphisms were
0.391, 0.152, 0.239, and 0.239, respectively, whereas those for
CYP3A4 rs2242480 polymorphism were 0.261. The allele
frequencies measured in this study did not deviate from
the Hardy-Weinberg equilibrium (Table 1). FMO3
rs2266780 and rs2266782, which were in complete linkage
disequilibrium (r2 � 1), exhibited a strong linkage
disequilibrium with FMO3 rs909530 (r2 � 0.4889; p < 0.05;
Table 2).

Effect of FMO3 Polymorphisms on
Teneligliptin Pharmacokinetics
The pharmacokinetic parameters of teneligliptin were
comparatively analyzed according to FMO3 polymorphisms.

Subjects with rs909530 polymorphism exhibited gene dosage-
dependent increases in Cmax,ss (p � 0.0125) and AUCτ
(p � 0.0006) values and a decrease in oral clearance (CL/F)
(p � 0.0002) (Table 1). The differences were highly marked in
the recessive genetic model (wild-type vs heterozygous and
homozygous mutant) (p � 0.0125, 0.0006, and 0.0002 for
Cmax,ss, AUCτ, and CL/F, respectively; Table 1 and Figures 1,
2). Similarly, subjects with FMO3 rs2266780/rs2266782
polymorphisms exhibited enhanced Cmax,ss (p � 0.0426) and
AUCτ (p � 0.0031) values but decreased CL/F (p � 0.0026)
values (Table 1; Figures 1, 2). FMO3 rs1800822
polymorphism did not affect the pharmacokinetics of
teneligliptin in this study. Also, FMO3 polymorphisms did not
affect the pharmacokinetics of teneligliptin sulfoxide
(Supplementary Figure S1, Table S3).

Effects of CYP3A4 Polymorphism on
Teneligliptin Pharmacokinetics
CYP3A4 rs2242480 polymorphism did not affect the
pharmacokinetics of teneligliptin and teneligliptin sulfoxide.
The Cmax,ss of teneligliptin significantly decreased in the
recessive genetic model (wild-type: 326.07 ng/ml, heterozygous
and homozygous mutant: 265 ng/ml; p � 0.0332; Table 1 and
Figures 1, 2).

TABLE 1 | Effect of FMO3 and CYP3A4 polymorphisms on teneligliptin pharmacokinetic parameters.

Parameter Wild-type (W) Heterozygous (H) Homozygous mutant
(M)

H and M p-value

W vs
H vs M

W vs
H and M

HWE

FMO3 (rs909530) GG (n � 9) GA (n � 10) AA (n � 4) GA, AA (n � 14) 0.9848
Cmin,ss (ng/mL) 29.99 ± 7.80 34.36 ± 8.86 42.43 ± 12.09 36.66 ± 14 0.0964 0.1079
Cmax,ss (ng/mL) 259.44 ± 22.42 314.6 ± 61 367.25 ± 101.01 329.64 ± 74.43 0.016ab,* 0.0125*
AUCτ (ng·h/mL) 1939.62 ± 289.61 2527.31 ± 383.35 2763.76 ± 545.01 2594.86 ± 427.29 0.0019ab,* 0.0006*
Half-life (h) 14.18 ± 3.17 14.56 ± 5.19 12.60 ± 2.05 14 ± 4.53 0.7214 0.9184
CL/F (L/h) 10.52 ± 1.62 8.07 ± 1.18 7.42 ± 1.24 7.89 ± 1.19 0.0009ab,* 0.0002*
FMO3 (rs1800822) GG (n � 17) GA (n � 5) AA (n � 1) GA, AA (n � 6) 0.9580
Cmin,ss (ng/mL) 32.18 ± 14.64 39.46 ± 14.33 38.80 39.35 ± 12.82 0.3094 0.1212
Cmax, ss (ng/mL) 295 ± 62.07 319.6 ± 97.2 337 322.5 ± 87.23 0.7003 0.4101
AUCτ (ng·h/mL) 2235.82 ± 439.44 2678.08 ± 622.25 2385.35 2629.29 ± 569.24 0.2201 0.0948
Half-life (h) 14.64 ± 4.4 12.15 ± 1.81 13.96 12.45 ± 1.78 0.4900 0.2558
CL/F (L/h) 9.29 ± 1.89 7.78 ± 1.69 8.38 7.88 ± 1.53 0.2881 0.1167
FMO3 (rs2266780/rs2266782) AA (n � 13) AG (n � 9) GG (n � 1) AG, GG (n � 10) 0.8323
Cmin,ss (ng/mL) 30.95 ± 8.42 39.30 ± 9.95 27.2 38.09 ± 8.42 0.1023 0.0787
Cmax,ss (ng/mL) 277.15 ± 52.45 320.22 ± 63.68 465 334.7 ± 75.5 0.0107b,* 0.0426*
AUCτ (ng·h/mL) 2087.98 ± 393.83 2673.3 ± 454.39 2581.15 2664.09 ± 429.39 0.0137a,* 0.0031*
Half-life (h) 13.69 ± 2.78 14.83 ± 5.51 12.11 14.56 ± 5.27 0.7267 0.6157
CL/F (L/h) 9.88 ± 1.79 7.66 ± 1.2 7.75 7.67 ± 1.13 0.0122a,* 0.0026*
CYP3A4 (rs2242480) GG (n � 14) GA (n � 8) AA (n � 1) GA, AA (n � 9) 0.9438
Cmin,ss (ng/mL) 35.03 ± 10.62 32.39 ± 8.95 33.7 32.53 ± 8.38 0.8400 0.5586
Cmax,ss (ng/mL) 326.07 ± 73.75 265.88 ± 41.14 258 265 ± 38.57 0.109 0.0332*
AUCτ (ng·h/mL) 2453.17 ± 567.87 2159.08 ± 323.73 2167.74 2160.04 ± 302.83 0.4014 0.1713
Half-life (h) 14.46 ± 4.77 13.56 ± 2.55 12.66 13.46 ± 2.40 0.8343 0.5664
CL/F (L/h) 8.57 ± 1.99 9.49 ± 1.75 9.23 9.46 ± 1.64 0.5582 0.2777

*p<0.05.
ap < 0.05 between W and H.
bp < 0.05 between W and M.
HWE, Hardy-Weinberg equilibrium; Cmax,ss, maximum (peak) steady-state plasma drug concentration during a dosage interval; AUCτ, area under the drug concentration vs time curve
within a dosing interval at a steady state; CL/F, apparent total body clearance of the drug from the plasma.
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Additionally, CYP3A4 rs2242480 polymorphism did not affect
the pharmacokinetics of teneligliptin sulfoxide (Supplementary
Figure S1, Table S3).

DISCUSSION
This study demonstrated that the rs909530, rs2266780, and
rs2266782 (but not rs1800822) polymorphisms of FMO3 and
the rs2242480 polymorphism of CYP3A4 affected the
pharmacokinetics of teneligliptin in humans.

FMO3 plays a crucial role in the disposition of its substrates in
humans. The rs909530, rs2266780, and rs17565766
polymorphisms of FMO3 affect the formation of sulindac
sulfide, which is formed from the FMO3-mediated metabolism
of sulindac (Park et al., 2014). In particular, rs909530 is the most
important polymorphism affecting sulindac metabolism. One
study reported that FMO3 rs909530 and rs2266780
polymorphisms influence sulindac metabolism in the Chinese
population (Tang et al., 2017). The AUC and Cmax values for
sulindac disposition in subjects with homozygous mutants were
50 and 71% higher than those in subjects with wild-type alleles,
respectively. In this study, the AUCτ and Cmax,ss values for

teneligliptin in the rs909530 homozygous mutant group were
42 and 41% higher, respectively, than those in the wild-
type group.

Among the four genetic polymorphisms of FMO3 examined in
this study, rs2266780 and rs2266782 exhibited complete linkage
disequilibrium (r2 � 1). Consistently, a previous study
demonstrated that rs2266780 and rs2266782 exhibited a strong
linkage disequilibrium (r2 � 0.848–0.980) (Ren et al., 2017; Xu
et al., 2017b). Similar to the effect of rs909530 on teneligliptin
disposition, rs2266780/rs2266782 polymorphisms promoted
gene dosage-dependent increase in teneligliptin exposure in
this study. In contrast to the findings of this study, previous
studies have demonstrated that rs909530 (but not rs2266782) is a
key factor influencing the disposition of FMO3 substrates,
including sulindac and tacrolimus (Park et al., 2014; Ren et al.,
2017). This suggests that the polymorphic effect of FMO3may be
substrate-specific (Hisamuddin and Yang, 2007).

FMO3 rs909530 is a synonymous mutation (N285N) that does
not change the amino acid sequence (Waldman et al., 2011).
Therefore, rs909530 may indirectly affect teneligliptin
pharmacokinetics by modulating protein expression through
different mechanisms (Johnson et al., 2005; Wang and Sadée,

TABLE 2 | r2 values of pair-wise linkage disequilibrium between eight single-nucleotide polymorphisms of FMO3 and CYP3A4.

r2 FMO3 rs909530 FMO3 rs1800822 FMO3 rs2266780 FMO3 rs2266782

FMO3 rs1800822 0.2792
FMO3 rs2266780 a0.4889 0.0564
FMO3 rs2266782 a0.4889 0.0564 b1
CYP3A4 rs2242480 0.0033 0.0017 0.0015 0.0015

ar2 > 0.3, strong linkage disequilibrium.
br2 � 1, perfect linkage disequilibrium.

FIGURE 1 | Plasma concentration vs time plots of teneligliptin according to polymorphisms of FMO3 (A–D) and CYP3A4 (E). Data are represented as mean ±
standard deviation.
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2006; Sauna et al., 2007; Waldman et al., 2011). However, another
synonymous polymorphism, rs1800822 (c.441C>T, S147S) did
not affect teneligliptin pharmacokinetics. Similarly, tacrolimus
disposition was affected by rs909530 but not by rs1800822 (Ren
et al., 2017). A recent study has reported that six FMO3 SNPs,
including rs909593, rs2266780, and rs2266783, were associated
with significantly decreased protein abundance. However, these
SNPs were not correlated with the mRNA expression of FMO3
(Xu et al., 2017a; Xu et al., 2017b) and may promote post-
translational modifications (Xu et al., 2017a). We believe that
the experimental evidence presented in this study supports the
polymorphic effects of FMO3 on teneligliptin
pharmacokinetics.

The effect of rs2242480 (CYP3A4*1G) polymorphism on
CYP3A4 functions is controversial (Hu et al., 2007; Liu et al.,
2017; Lolita et al., 2020). Current knowledge indicates that the
effect of polymorphism on CYP3A4 activity is dependent on the
substrate (Stresser et al., 2000). In this study, rs2242480
significantly decreased the Cmax, ss values of teneligliptin and
markedly decreased teneligliptin exposure (AUCτ values). This
indicates that rs2242480 polymorphism regulates teneligliptin
disposition by increasing CYP3A4 activity. Several studies have
suggested the conflicting roles of CYP3A4*1G in CYP3A4
activity. CYP3A4*1G polymorphism enhances the disposition
of CYP3A4 substrates, including atorvastatin (Gao et al.,
2008), cyclosporin A (El-Shair et al., 2019), and tacrolimus
(Tamashiro et al., 2017; Tang et al., 2019). In contrast,
CYP3A4*1G polymorphism is reported to decrease the

disposition of fentanyl (Yuan et al., 2015). However, we
suggest that CYP3A4*1G polymorphism may increase the
disposition of teneligliptin in a substrate-dependent manner
(Stresser et al., 2000) based on the assumption that G-to-A
substitution at IVS10 + 12 enhances the transcription of
CYP3A4 in vitro (He et al., 2011).

Teneligliptin sulfoxide (M1) is the main metabolite formed
from FMO3- and CYP3A4-mediated metabolism of teneligliptin
(Nakamaru et al., 2014). The polymorphic FMO3 genotype
markedly increased teneligliptin exposure in this study. Hence,
the blood levels of teneligliptin sulfoxide may be decreased due to
dysfunctional FMO3 activity. Although polymorphic FMO3
genotypes decreased M1 exposure, the pharmacokinetic
parameters of M1 were not significantly different between
subjects with different FMO3 polymorphisms. M1, which is
the main metabolite formed from teneligliptin in humans
(Nakamaru et al., 2014), is further metabolized into
teneligliptin sulfone (M2) (Nakamaru et al., 2014). Therefore,
the extent of metabolic conversion from M1 to M2 may have
influenced the results. This study did not assess the formation of
M2 as the enzymes involved in the formation ofM2 have not been
reported. However, M2 may be pharmacodynamically inactive
based on the assumption that M1 is an inactive metabolite.
Therefore, the quantification of M2 is not clinically essential
(Halabi et al., 2013).

This study is associated with several limitations. In this study,
only healthy male participants were recruited. Patients with
T2DM exhibiting different FMO3 and CYP3A4 genotypes were

FIGURE 2 | Comparison of pharmacokinetic parameters [area under the plasma concentration-time curve: (A–E) and Cmax: (F–J)] according to FMO3 (rs909530,
rs1800822, rs2266780, rs2266782) and CYP3A4 (rs2242480) genotypes. Asterisks indicate significant differences between the two groups: wild (W) type vs
heterozygous mutant (H) or mutant (M) types (***p ≤ 0.001,**p < 0.01,*p < 0.05).
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not included to exclude other factors influencing teneligliptin
disposition. In addition to teneligliptin, the study subjects may
have undergone other drug therapies. Additionally, the
pharmacodynamic effects of FMO3 and CYP3A4 genotypes on
teneligliptin were not assessed in this study. As the study
participants were healthy, they exhibited euglycemia.
Therefore, the antidiabetic effects were not examined in this
study. Further studies are needed to confirm the possible role
of these polymorphisms in teneligliptin metabolism and their
clinical effects.

In conclusion, the findings of this study suggest that the
rs909530, rs2266780, and rs2266782 (but not rs1800822)
polymorphisms of FMO3 and the rs2242480 polymorphism of
CYP3A4 affect the pharmacokinetics of teneligliptin. Future
studies must elucidate the effect of these polymorphisms in
patients with diabetes and their influence on the
pharmacodynamics of teneligliptin using a large population.
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