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Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
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INTRODUCTION
It is nowadays evident that prostate cancer (PCa) is recognized as the second most common cancer and the fifth cause of cancer death in males (Torre et al., 2015)Initially, the usual therapy for prostate cancer is prostatectomy or radiation, which aims to remove or kill the malignant cells that have not spread or metastasized (Feldman and Feldman, 2001). However, numerous patients cannot be cured thoroughly by this treatment, and then followed by cancer recurrence and/or metastasis. The majority of prostate cancer growth is androgen dependent. Androgen deprivation therapy (ADT) such as surgery or gonadotropin-releasing hormone (GnRH) analog treatment, is the main therapeutic and dramatically effective intervention for the treatment of androgen dependent prostate cancer (ADPC) in putting patients with tumors in remission, as documented by the work on castration of Huggins, who was awarded the Nobel prize in 1966 (Huggins, 1978). Nevertheless, after this therapy, most of these prostate cancer patients gradually become androgen independent, go on to progress, metastasize and resist to ADT within 13–24 months accompanied by increased levels of prostate-specific antigen (PSA). Siegel et al. reported that failure of ADT is responsible for the ∼27,000 metastatic prostate cancer deaths in the United States annually (Siegel et al., 2017). This stage of prostate cancer is called castration-resistant prostate cancer (CRPC), which has poor prognosis (Small et al., 2004). At present, there is no effective therapy for CRPC besides docetaxel, which has been demonstrated to prolong overall survival in this patient population. However, the efficacy of docetaxel is not satisfactory and there are many severe adverse effects such as anemia, neutropenia, diarrhea, and sensory neuropathy. Although, therapeutic options have expanded rapidly since 2011, including AR inhibitors (enzalutamide, abiraterone), immunotherapy (sipuleucel-T), bone seeking radionuclides (radium-223), and second-line chemotherapy (cabazitaxel), all of these agents or interventions only have shown a median survival benefit of 2–5 months (Ritch and Cookson, 2016). So searching for more effective anti-prostate cancer drugs, especially with high efficacy and low toxicity, remains an urgent problem that needs to be resolved. Natural compounds represent an irreplaceable resource of structural scaffolds that can offer chemical agents for making prostate cancer less devastating and curable. In recent years, many natural products and extracts have been scientifically investigated in vitro and/or in vivo and proved as potential anti-prostate cancer agents, which are currently scattered across various publications. So a systematic summary and knowledge of future prospects are necessary to facilitate further chemical and pharmacological studies for anti-prostate cancer agents.
Herein, we reviewed the detailed molecular causes of prostate cancer and critically summarized the natural compounds (or extracts and Chinese herb preparations) that have been reported to inhibit prostate cancer cells proliferation/tumor growth, induce prostate cancer cells apoptosis or exhibit effects on specific signaling pathways involved in prostate cancer in vivo and in vitro. In addition, we also provided possible novel targets for screening natural compounds (or extracts or Chinese herb preparations) with anti-prostate cancer activity and discuss the future prospects for the application of these compounds and extracts and the novel available approaches and technological improvements that should be explored to treat prostate cancer.
OVERVIEW OF THE MOLECULAR BASIS OF PROSTATE CANCER
Molecular Basis of Androgen Dependent Prostate Cancer
Androgens, principally testosterone (T) and dihydrotestosterone (DHT), are synthesized from cholesterol as the initial 27-carbon substrate via multiple enzymatic steps (Wadosky and Koochekpour, 2016). As a member of the ligand-activated nuclear hormone receptors superfamily, androgen receptor (AR) is a modular protein with four functional domains: an N-terminal regulatory domain (NTD), a DNA-binding domain (DBD), a small hinge region (H) and a ligand-binding domain (LBD) (Ho and Dehm, 2017). Upon binding to androgens, AR undergoes a conformational change, leading to nuclear translocation, phosphorylation, homodimer, and interaction with DNA (Li and Al-Azzawi, 2009). Subsequently, AR dimer binds to androgen-response elements (AREs), recruits essential co-factors and regulates the expression of androgen-regulated genes (Ho and Dehm, 2017).
The development and maintenance of the prostate is inseparable from androgen acting through the AR. Since Huggins and Hodges first demonstrated the responsiveness of prostate cancer to androgen deprivation, it has been clear that prostate cancer is dependent on androgen and AR activation for growth and survival (Huggins and Hodges, 1941). From then, hundreds of studies have demonstrated that androgen withdrawal results in initial regression of essentially all prostate cancers, albeit for a finite period, with the ultimate development of castration-resistant disease. Androgen deprivation therapy, via either orchidectomy or use of a gonadotropin-releasing hormone (GnRH) agonist has become the cornerstone of therapy in the treatment of prostate cancers. Newer agents, such as abiraterone, which block androgen synthetic pathways, have added clinical benefit in disseminated disease, demonstrating that even in “castration resistant disease” androgens may still be supporting prostate cancer growth (Morgentaler, 2009). These data support the notion that prostate cancer, in most cases, is a hormone (androgen) sensitive disease.
Overview of the Mechanisms of Castration-Resistant Prostate Cancer
Historically, there are much debate about the mechanisms of castration resistance, which are mainly summarized as the following by recent studies: canonical AR signaling, relying on AR nuclear translocation and AR-DNA binding, and non-nuclear AR signaling which requires neither AR nuclear translocation nor AR-DNA binding(Qin and Bin, 2019; Pisano et al., 2021).
Canonical AR Signaling
The potential mechanisms of canonical AR signaling that lead to CRPC can be categorized into three parts. 1) common alterations in AR, which can lead to AR increase its sensitivity to very low levels of androgens or constitutive activation of AR signaling; 2) AR activation by androgens converted from adrenalandrogens or synthesized intratumorally via the de novo route; 3) alterations in cofactors of the AR pathway (Figure 1).
[image: Figure 1]FIGURE 1 | Canonical AR in castration-resistant prostate cancer. Common alterations in AR, including AR amplification or overexpression, AR mutations and truncated AR lacking ligand-binding domains (ARΔLBD), can increase its sensitivity to very low levels of androgens or lead to constitutive activation of AR signaling. There are two possible ways for the initial substrates to convert to intratumoral DHT in CRPC. The first way is that androgens are synthesized intratumorally via the de novo route and the second is that androgens are converted from adrenal androgens. Genomic and transcriptomic alterations in AR pathway coregulators are also associated with resistance to AR-targeted therapies in CRPC.
Common Alterations in AR
One possible mechanism by which the prostate cancer becomes resistant to androgen deprivation therapy is alterations in AR, including AR amplification or overexpression, AR mutations and truncated AR lacking ligand-binding domains (ARΔLBD). Thus, these changes in AR increase its sensitivity to very low levels of androgens or lead to constitutive activation of AR signaling. Strictly speaking, this mechanism of prostate cancers is not androgen-independent and the responses still depend on AR and androgen.
.AR Amplification or Overexpression
Despite low circulating androgens in the CRPC patients, one potential mechanism that would allow tumor cell proliferation is by promoting the expression of the AR itself, which increases ligand-occupied receptor content (Feldman and Feldman, 2001). Plenty of studies have shown that approximately 50% of tumors that become castration resistant after ADT have amplified the AR gene, the most frequent genetic alteration reported for CRPC tumors, whereas none of the untreated primary tumors before androgen ablation had an AR gene amplification (Robinson et al., 2015; Djusberg et al., 2017).
Numerous studies provide the simplest explanation of how increased androgen receptor expression leads to resistance to anti-androgen therapy. According to one study, a three-to-five-fold increase in receptor levels could compensate for low ligand levels and restore androgen receptor signaling in xenotransplantation models. (Chen et al., 2004). Although tumors with AR amplification have increased levels of AR, the signal for cell proliferation presumably continues to require androgen (Visakorpi et al., 1995). Maybe this can explain why tumors with castration resistance have increased sensitivity to androgens in a low androgen environment.
.AR Mutations
In CRPC, the frequency of AR mutations in pre-treated tumors is 5–30% (Grasso et al., 2012; Robinson et al., 2015; Kumar et al., 2016). Most mutations identified in CRPC were located in the AR-LBD. These alterations could facilitate AR signaling in CRPC by offering: 1) ligand facilitation, thereby inducing AR activation even in the presence of low or absent levels of androgens and 2) agonist properties to AR antagonists (Coutinho et al., 2016). In addition, mutations can also occur in the AR-NTD that account for about a third of all mutations described in AR. And mutations can usually cause alterations that contribute to AR transactivation, such as facilitated recruitment of co-factors and other components of the transcriptional machinery, promoted N/C interaction, increased response to DHT activation and enhanced protein stability and nuclear retention (Network C. G. A., 2015; Coutinho et al., 2016).
.Truncated AR Lacking Ligand-Binding Domains (ARΔLBD)
Latest RNA sequencing data from big data sets, strongly suggests that constitutively active ARΔLBD may play a role in 40–50% of patients with CRPC (Robinson et al., 2015). Compared with hormone naïve PCa, ARΔLBDs are frequently upregulated in CRPC, and may serve as an adaptive response to therapies targeting the androgen/AR-signaling axis (Guo et al., 2009; Li et al., 2013). The recent genomic data on unique exon junctions reveals that at least 12 distinct AR-V mRNA species are detectable in primary PCa and 23 in CRPC (Abeshouse et al., 2015). However, among these variants, AR-V3/AR-V7 appears to be one of the most abundantly and ubiquitously expressed isoforms in our screening of a panel of human prostate cancer cell lines and tissues (Guo et al., 2009; Schweizer and Plymate, 2016). In addition, nonsense mutations leading to premature chain termination (Q641X, formerly Q640X) as well as enzymatic cleavage (tr-AR) were also shown to induce AR△LBDs (Haile and Sadar, 2011). F. Zengerling et al. reported that inhibition of IGF-1R resulted in a down-regulation of AR, Q641X and AR-V7 signaling in PCa cells (Zengerling et al., 2016), which suggests that IGF-1/IGF-1R axis is a modulator of the AR△LBD signaling, providing a rationale by targeting growth factor receptor for CRPC treatment.
AR Activation by DHT Synthesized Intratumorally via the de novo Route or Converted From Adrenal Androgens
There are two possible ways for the initial substrates to convert to intratumoral DHT in CRPC. The first way is that androgens are synthesized intratumorally via the de novo route and the second is that androgens are converted from adrenal androgens.
.DHT Intratumorally via the de novo Route
The use of cholesterol for de novo steroidogenesis requires the components of the steroidogenic machinery present in the adrenals and gonads, including steroidogenic acute regulatory proteins, CYP11A1 and CYP17A1 (Miller and Auchus, 2011), which may play important roles in prostate cancer (Locke et al., 2008). Comparisons between primary prostate cancer and CRPC demonstrate that the transcription levels of these proteins are upregulated in CRPC (Montgomery et al., 2008) and CYP17A1 protein is detectable in a subset of metastatic CRPC cases (Efstathiou et al., 2012). In contrast to steroidogenesis in the adrenals and gonads, CRPC expresses steroid-5α-reductase (SRD5A1) with obvious 5α-reductase activity (Chang et al., 2011). One of the functions of robust SRD5A enzyme activity is that any de novo steroidogenesis would likely occur through the back door pathway that bypasses the requirement for T and involves 5-reduction of a 21-carbon steroid (progesterone or 17α-hydroxyprogesterone) instead of a 19-carbon androgen (Shaw et al., 2000; Auchus, 2004). Although this biochemical pathway may be engaged in CRPC, the relatively lengthy eight enzymatic steps required for conversion from cholesterol to DHT, the abundance of adrenal precursors present in serum, and the much closer pathway proximity of adrenal precursors to DHT, together suggest that adrenal precursors serve as the major substrate pool.
.DHT Converted From Adrenal Androgens
There are two possible pathways from adrenal precursor steroids to DHT (Luu-The et al., 2008; Chang and Sharifi, 2012). The canonical adrenal pathway is the route that results in T synthesis as the penultimate metabolite, which undergoes 5-reduction to DHT (Scher and Sawyers, 2005; Ryan and Tindall, 2011; Hofland et al., 2012; Stein et al., 2012). This pathway is probably favored in the field because of the general notion that T must be the precursor to DHT and T is frequently detectable at concentrations greater than DHT in CRPC, as occurs with gonadal androgen physiology (Titus et al., 2005; Montgomery et al., 2008). In this pathway, DHEA is converted by 3β-hydroxysteroid dehydrogenase (3βHSD) to androstenedione (AD), which is then 17-keto reduced by aldo-keto reductase 1C3 (AKR1C3) or 17βHSD3 to T, the immediate precursor to DHT. The second possible pathway is that AD, like T, a 3-keto, △4-steroid, is also a potential substrate for SRD5A (Tomkins, 1957). AD is reduced to 5α-androstanedione (5α-dione), which then becomes the immediate precursor to DHT. The 5α-dione pathway is the major pathway for the synthesis of DHT in CRPC (Chang et al., 2011).
Alterations in Cofactors of the AR Pathway
Resistance to AR-targeted therapies in CRPC was also associated with genomic and transcriptomic alterations in coregulators of the AR pathway. Expression of 50 of the ∼200 AR-associated coregulators is aberrant in clinical CRPC specimens (Liu et al., 2017). For example, a higher frequency of mutations in FOXA1, the gene encoding a pioneer factor that facilitates AR chromatin binding and transcriptional activation, was found in CRPC (12%) than in primary prostate cancer (4%) (Watson et al., 2013; Abeshouse et al., 2015). In addition, as one class of coregulators, steroid receptor coactivators (SRC-1, SRC-2 and SRC-3) play a key role in facilitating aberrant AR signaling in CRPC e. There have been studies reported that all 3 SRCs is elevated in CRPC (Taylor et al., 2010; Grasso et al., 2012; Abeshouse et al., 2015; Beltran et al., 2016; Bernemann et al., 2016). GATA2, another AR pioneer factor in the AR signaling axis, is aberrant expressed in CRPC and associated with poor outcome (He et al., 2014; Yan et al., 2014). Gupta et al. detected genomic copy number changes of circulating tumor cells from 16 patients with CRPC resistant to abiraterone or enzalutamide and revealed that multiple genes encoding AR coregulators had copy number alterations, including copy number gains BRD4 (43.75%) (Gupta et al., 2017). Moreover, changes of AR corepressors also play a key role in CRPC. For example, loss of activity of the key nuclear receptor corepressors NCOR1 and NCOR2, is prevalent in CRPC due to mutation and/or deletion (Grasso et al., 2012; Abeshouse et al., 2015; Kumar et al., 2016).
Non-nuclear AR Signaling
Trafficking from the nucleus into the cytoplasm, AR may have unexpected consequences because AR has known functions in the cytoplasm, which is called non-genomic signaling (Foradori et al., 2008). One of the main characteristics of non-nuclear signaling is its rapidity with which it occurs. When steroid receptors stay in the cytosol, they can undergo several protein–protein interactions within seconds to minutes after steroid stimulation, which activates a variety of signaling pathways to promote the development of CRPC (Figure 2).
[image: Figure 2]FIGURE 2 | Non-nuclear AR signaling in castration-resistant prostate cancer. Cytokines, interleukins and the growth factors secreted by the prostate cancer cells activate various signaling cascades like PI3K/AKT, Src, MAPKs and JAK/STAT3 pathways involved in castration-resistant prostate cancer, leading to cell proliferation, survival and tumor metastasis. Intracellular Ca2+ centration can be modulated through Calcium channel. This increase in intracellular Ca2+ can lead to activation of PKC and filamin A, ultimately influencing gene transcription through phosphorylation. TRPM4 is also activated by a rise in intracellular Ca2+ in prostate cancer cells. Upon activation, a Na+ influx via TRPM4 depolarizes the membrane potential, which decreases the driving force for Ca2+, and thus contributes to migration of androgen-insensitive prostate cancer cells. There are other genomic alterations in castration-resistant prostate cancer, including PTEN mutation, SPOP mutation and TMPRSS2-ERG rearrangement.
PI3K/AKT Signaling Pathway
The PI3K/AKT pathway is one of the most frequently activated signal transduction pathways in human cancer, including prostate cancer(Hoxhaj and Manning, 2020; Park et al., 2018; Braglia et al., 2020). Alterations of the PI3K/AKT pathway, including altered expression, mutation, and copy number alterations, have been reported in 42% of primary prostate tumors and 100% of metastatic tumors (Taylor et al., 2010). Androgens induce the accumulation of TORC2 complex, rapamycin insensitive chaperone of mTOR and stress activated protein kinase interacting protein 1 in the nucleus, thus stimulating TORC2 to activate Akt (Fang et al., 2012). Activated AKT can stimulate many downstream functions via its kinase activity, including glycogen synthase kinase 3 (GSK3), tuberous sclerosis complex (TSC), FOXO transcription factors, NF-kappa-B and Bcl-2 family members BAD, which regulate a range of cellular processes (Liu et al., 2009; Courtney et al., 2010). It is estimated that genomic phosphatase and tensin homolog gene (PTEN) alterations, which is a negative inhibitor of PI3K/AKT pathway, occur in 9–45% of high-grade prostate intra-epithelial neoplasia (HG-PIN), 20–60% of localized prostate cancer, and up to 100% of cases of metastatic prostate cancer (Taylor et al., 2010; Jia et al., 2013).
Src Signaling Pathway
Preclinical studies have confirmed that non receptor tyrosine kinase c-Src and Src family kinase (SFK) regulate a complex signal network, driving the development of castration-resistance prostate cancer and bone metastasis. (Cai et al., 2011). After the establishment of bone metastasis, prostate cancer cells destroy the balance of osteoclasts and osteoblasts by secreting a variety of molecules, such as growth factors and cytokines that disrupt the normal process of bone maintenance and reconstruction (Yang et al., 2001; Mundy, 2002). The balance is in favor of osteoblastogenesis, which explains the usual condensing aspect of PCa-derived bone metastases. Src activity specifically affects ruffled borders of osteoclasts (essential for bone resorption), through dynamic regulating the interactions of actin cytoskeleton and formation of podosomes (Horne et al., 2005; Destaing et al., 2011). Src and other SFKs also play important roles in the antiapoptotic signal transduction of RANKL and other tumor necrosis factor family members in osteoclasts (Xing et al., 2001). One essential role for Src in osteoblasts has also been demonstrated that reduction of Src expression decreases osteoblast(responsible for bone formation) proliferation and increases differentiation (Marilena et al., 2000).
Recently, a large number of studies have shown that the activation of SRC is an important mediator of AR signaling. (Asim et al., 2008). AR can form a tertiary complex with the scaffold protein modulator of non-genomic actions of the estrogen receptor (MNAR/PELP1) and Src (Unni et al., 2004). Initially, Src is inactive within this complex. However, when AR binds to Src, this results in the activation of Src in this complex (AR/MNAR/Src) and the subsequent activation of a downstream effector, MEK (Unni et al., 2004). Subsequent studies have shown that AR-induced Src activation can promote cell proliferation through cell cycle progression from G1 phase to S phase (Migliaccio et al., 2002).
MAPKs Signaling Pathway
The MAPKs signaling cascade play important roles in regulating diverse biological functions including cell proliferation, motility and survival, which are essential to prostate carcinogenesis (Rossomando et al., 1989; Armenia et al., 2018; Abida et al., 2019). Studies of DHT-responsiveness in prostate cancer cells show that DHT treatment induces phosphorylation of ERK-1/2 within 1–2 min and peak levels of phosphorylation within 5–10 min (Liao et al., 2013). Activated ERK-1/2 then translocate to the nucleus and directly interact with and phosphorylate transcription factors (TFs), such as nuclear ETS domain-containing Elk1 (Marais et al., 1993; Gille et al., 1995; Yang et al., 1998). Elk1 transcriptionally regulates immediate early genes (IEGs) such as c-fos (Gille et al., 1995; Unni et al., 2004), and regulates the expression of several genes related to cell proliferation (Marais et al., 1993; Unni et al., 2004). In addition, recent studies showed that other molecules induce prostate cancer via MAPK signaling. Jason et al. reported that ADP-ribosylation factor 1 (ARF1), a crucial regulator in vesicle-mediated membrane trafficking and involved in the activation of signaling molecules, promotes the occurrence of prostate cancer via targeting oncogenic MAPK signaling (Davis et al., 2016). Gonzalo et al. reported that epidermal growth factor (EGF) could stimulate G0/G1-S transition via p38 MAPK to overcome the growth restriction of androgen deprivation in prostate cancer cells (Rodriguez-Berriguete et al., 2016).
JAK-STAT3 Signaling Pathway
Janus kinases (JAK) signal transducers and activator of transcription (STAT) pathway play an important role in differentiation, hematopoiesis, immune function and cell growth (Bolli et al., 2003). Recently, accumulating evidence indicated that IL-6 is indispensable for activation of JAK/STAT pathway, which is involved in the oncogenesis of prostate cancer (Liu X. et al., 2012). Compared with men with normal prostates, benign prostatic hyperplasia, prostatitis and localized disease, approximately 50% of patients with advanced prostate cancer have increased levels of serum IL-6 (Twillie et al., 1995). Upon the binding of IL-6 to the IL-6 receptor, JAK-1 and STAT-3 become activated in sequence (C Schindler and Jr, 1995). L Tam et al. reported that cytoplasmic expression of IL-6 receptor and pSTAT3 Tyr705 are associated with the shortened biochemical recurrence time and death time from hormone relapse, respectively. Therefore, it is reasonable to target this pathway in hormone-refractory prostate cancer treatments (Tam et al., 2007).
Ca2+ Signaling Pathway
Ca2+signaling is also involved in prostate cancer progression (Figiel et al., 2019; Chalmers and Monteith et al., 2018). Increased calcium intake from dairy products has been considered as a risk factor for prostate cancer (Foradori et al., 2007; Flourakis and Prevarskaya, 2009). As a primary signaling molecule, extracellular Ca2+ works through the Ca2+-sensing receptor (CaR, a G protein coupled receptor) which directly regulates cell signal transduction and the Ca2+ channels (Vaz et al., 2015). Depletion of intracellular Ca2+ stores serves as a signal for the activation of Ca2+ influx across the plasma membrane. The proteins STIM1 and ORAI1 were identified as the key components of store-operated Ca2+ entry (SOCE). When Ca2+ is released from intracellular Ca2+ pool, Ca2+ dissociates from a luminal EF hand motif of STIM1. As a consequence, STIM1 proteins aggregate and recruit Orai1 Ca2+channels, which then mediate SOCE (Kilch et al., 2016).
Recently, Huang et al. found that Ca2+ via CaR-mediated signaling induces filamin A cleavage, which is an actin-binding protein, and promotes the migration of AR-deficient and highly metastatic prostate cancer cells (Huang et al., 2016). In one additional study, Christian demonstrated that transient receptor potential melastatin 4 channel (TRPM4) is activated by a rise in intracellular Ca2+ in prostate cancer cells. Upon activation, a Na+ influx via TRPM4 depolarizes the membrane potential, which reduces the driving force for Ca2+ and limits SOCE, and thus promotes migration of androgen-insensitive prostate cancer cells (Christian et al., 2015).
Other Genomic Alterations in Castration-Resistant Prostate Cancer
Prostate cancer is characterized by a high genetic heterogeneity due to genomic alterations and instabilities associated with diverse PCa risk factors (Squire et al., 2011; Yap et al., 2016; Ciccarese et al., 2017; Rodrigues et al., 2017), which was evidenced by extensive genomic profiling analysis conducted on primary tumors (Network T. C. G. A., 2015) and on metastatic samples (Dan et al., 2015).
Speckle-type POZ protein (SPOP) is the substrate-binding subunit of a cullin-3 (CUL3)-based E3 ubiquitin ligase complex, which mediates the ubiquitylation and degradation of many target proteins. SPOP binds to the substrates through its N-terminal meprin and traf homology (MATH) domain, whereas it interacts with cullin-3 via BTB domain on its C terminal (Pintard et al., 2003; Xu et al., 2003; Zhuang et al., 2009). Recent cancer whole-genome and exome sequencing studies have shown that SPOP is the most frequently mutated gene (in up to 15% of cases) in primary prostate cancer (Barbieri et al., 2012; Network T. C. G. A., 2015). Interestingly, all SPOP somatic mutations identified in prostate cancer are clustered in its substrate binding MATH domain, thus having a dominant-negative effect on substrate binding and degradation (Theurillat et al., 2014). Recent studies have unanimously reported that SPOP interacts with bromodomain and extraterminal (BET) proteins that largely act as transcriptional coactivators and play vital roles in cell cycle, apoptosis, migration and invasion in physiological conditions. In addition, SPOP also promotes the ubiquitylation and proteasomal degradation of bromodomain-containing protein 2 (BRD2), BRD3 and BRD4, (Dai et al., 2017; Janouskova et al., 2017; Zhang et al., 2017). Pathologically, BET proteins are frequently overexpressed and are clinically linked to various types of human cancer (French et al., 2003; Crawford et al., 2008; Belkina and Denis, 2012). Recently, Janouskova et al. reported prostate cancer–associated SPOP mutants impaired its binding to BET proteins, leading to the reduced proteasomal degradation and accumulation of these proteins in prostate cancer cell lines and patient specimens, which subsequently causes resistance to BET inhibitors (Janouskova et al., 2017). Similar study has also demonstrated that SPOP-mutated prostate cancer cell lines and patient-derived organoids were intrinsically resistant to BET inhibitor-induced growth arrest and apoptosis (Dai et al., 2017). Furthermore, Dai et al. provided that stabilization of BRD4 may be a molecular mechanism for resistance to BET inhibitors in patients with prostate cancer bearing SPOP mutations (Dai et al., 2017). Taken together, these findings offer mechanistic insights into how SPOP mutations influence prostate cancer.
The TMPRSS2-ERG fusion gene arising from genetic rearrangement (fusion of encoding transmembrane protease serine 2, TMPRSS2 gene, and EST-related gene, ERG) has also been a central focus in prostate cancer, which leads to aberrant expression of the ETS transcription factor ERG (Tomlins et al., 2005; Kandoth, 2013). TMPRSS2-ERG is the most common gene rearrangement in prostate cancer and is present in approximately 50% of prostate cancer tissues in Western countries (Cary and Cooperberg, 2013). Previous studies indicated that ERG overexpression was driven by hijacking of androgen-responsive elements within the TMPRSS2 promoter (Tomlins et al., 2005; Wang et al., 2007; Thangapazham et al., 2014). However, Kron et al. found that the molecular process is more complex. Their study indicated that the frequent deletion allows a cluster of regulatory elements (CORE) in the TMPRSS2 promoter to expand into the rearranged ERG allele. This expanded CORE contains some CREs within the ERG locus that can promote ERG overexpression. Studies also revealed that overexpressed ERG co-opts prostate-specific master regulatory transcription factors, including AR, HOXB13 and FOXA1, in a process facilitated by their physical interaction with ERG and actives NOTCH signaling in primary prostate cancer (Kron et al., 2017). ERG overexpression is now an instrumental indicator in the diagnosis of prostate cancer. In addition, Graff et al. recently found that obesity and height might be correlated with the development of TMPRSS2-ERG-positive prostate cancer (Graff et al., 2018). Collectively, the functions and mechanisms of TMPRSS2-ERG increase the opportunities for finding new therapeutic targets for prostate cancer(Wang et al., 2017; Kong et al., 2020).
NATURAL COMPOUNDS THAT EXERT ANTI-PROSTATE EFFECTS
Natural compounds that have been found to inhibit prostate cancer cells proliferation/tumor growth, promote prostate cancer cells apoptosis, or modulate specific signaling pathways involved in prostate cancer in vivo and in vitro are categorized and presented according to their source of isolation (marine organisms, microorganisms and plants) and the structural scaffolds. Besides the effects on prostate cancer cells growth or apoptosis, special emphasis was given to the mechanism of action of a compound interfering specific signaling pathways involved in prostate cancer.
Natural Compounds Obtained From Marine Organisms or Microorganisms
As is well known, marine organisms or microorganisms possess the capacity to produce a large amount of diverse secondary metabolites with unique structural features and biological properties. Thus, marine and microbial organisms represent interesting and important sources of single molecules with promising skeletons and significant anti-prostate cancer activity. Up to now, a total of 24 natural compounds (Figures 3) isolated from marine organisms have been found to exhibit significant anti-prostate cancer activity either in vivo or in vitro. Detailed information about the compounds origin, activity and mechanism of action is listed in Table 1. Most of them exhibit antiproliferative, apoptosis inducing or metastasis inhibitory activities, with various acting mechanisms such as induction of autophagy, inhibition of AR activation, PI-3K/AKT/mTOR or JAK/STAT signaling pathways (Senderowicz et al., 1995; Liu et al., 2006; Wang WL. et al., 2008; Hellsten et al., 2008; Gantar et al., 2012; Meimetis et al., 2012; Shin et al., 2013; Liberio et al., 2015; Liu et al., 2016). Especially, frondoside A not only caused cell type specific cell cycle arrest and induction of caspase-dependent or -independent apoptosis in vivo but also significantly inhibited the cell growth of PC-3 and DU145 with a notable reduction of lung metastasis and decrease of circulating tumor cells in the peripheral blood (Dyshlovoy et al., 2016). In addition, gliotoxin, chaetocin and chetomin exhibited antiangiogenic effects in vitro and attenuated tumor growth mainly by disrupting the HIF-1α/p300 complex, which makes them attractive molecules for the design of future chemotherapeutic agents (Cook et al., 2009).
TABLE 1 | Natural compounds obtained from marine organisms or microorganisms with anti-prostate cancer activities.
[image: Table 1][image: Figure 3]FIGURE 3 | Natural compounds obtained from marine organisms or microorganisms with anti-prostate cancer activities.
Natural Compounds Isolated From Plants
Medicinal plants have always been a very good source of drugs, which could produce plenty of secondary metabolites with high structural diversity and versatile bioactivities. Many candidates with promising anti-prostate activity have been reported, including 7 alkaloids, 23 flavanoids, 25 terpenoids, 13 polyphenols, 10 lignans and 48 other compounds (Figures 4–9). Almost all these candidates show anti-prostate cancer activities via anti-proliferation, apoptosis induction or metastasis and invasion inhibition, involved in canonical AR signaling and non-AR signaling like caspase cascades, AKT/mTOR pathway, MAPKs pathway, NF-κB pathway, Ca2+ pathway and JAK/STATs pathway. Additionally, there exist other acting mechanisms, for example, anibamine exhibited anti-prostate cancer activity by binding to the chemokine receptor CCR5; fisetin inhibited tumor growth by downregulating the expression of NudC protein, MMP-2 and MMP-9; lycopene showed anti-prostate cancer effects by inhibiting androgen receptor element and signaling of insulin-like growth factor-1 (Afaq et al., 2008; Khan et al., 2008; Bureyko et al., 2009; Wertz, 2009; Zhang et al., 2010b; Chien et al., 2010; Suh et al., 2010; Tang et al., 2011; Holzapfel et al., 2013; Mukhtar et al., 2015). Detailed information is provided in Tables 2–7.
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Extracts consist of a group of bioactive natural compounds, which may exert and possess the advantages of synergistic effects against diseases. Recently, nutraceuticals have also received increasing attention as the agents or dietary supplements for cancer prevention and treatment, as well as some extracts derived from edible sources. Thus in this section we will respectively review those extracts and nutraceuticals that have the potential effects against prostate cancer either in vitro or in prostate cancer mice models. Chinese herbal compound preparations of more than one medicinal plants that have been reported to inhibit prostate cancer are also presented in this review.
Herbal Extracts
Traditional and folk herbal medicines from medicinal plants offer great potential for the discovery of novel anti-prostate cancer drugs. The plant extracts listed in Table 8 are complex mixtures, which need further investigations to reveal their bioative constituents through bioguided isolation and to clarify the roles of these different compounds in agaisnt prostate cancer when used alone or in combination. Also, the synergistic effect of the individual active components of these extracts and molecular mechanisms involved need further elucidation in order to evaluate the potential of these compounds as antineoplastic agents.
TABLE 8 | Extracts obtained from plants with anti-prostate cancer activities.
[image: Table 8]Chinese Herbal Compound Preparations
There are four traditional Chinese medical formulations reported to display significant anti-prostate cancer properties, that is, Zyflamend, PC-SPES and LCS101, which are composed of different medicinal plants (Table 9; Bemis et al., 2005; Hsieh et al., 1997; Cohen et al., 2015). Especially, PC-SPES significantly inhibited prostate tumor growth in tumor-bearing mouse model, mainly through cell cycle arrest and apoptosis induction, which is already clinically utilized for the treatment of clincal patients with prostate cancer (Hsieh et al., 1997).
TABLE 9 | Chinese herbal compound preparations obtained from plants with anti-prostate cancer activities.
[image: Table 9]Nutraceuticals and Extracts Derived From Edible Sources
Nowadays, dietary factors play an increasingly important role in the chemopreventive and/or therapeutic management of cancer (Table 10). The study of dietary agents (nutraceuticals or extracts derived from edible sources) in prostate cancer prevention is an important area of research since about 43–80% patients with prostate cancer are on alternative therapy based on dietary modification (Lippert et al., 1999; Nam et al., 1999). There are strong evidences that nutraceuticals and extracts derived from edible spices, vegetables or fruits such as vitamin D, pomegranate and tea polyphenols have demonstrated significant anti-prostate cancer activity when tested either in vitro and/or in vivo (Kasimsetty et al., 2009; Gregory et al., 2010; Koyama et al., 2010; Mordanmccombs et al., 2010; Hsu et al., 2011; Xiao et al., 2011; Turan et al., 2017). Especially, dietary phytochemicals that can selectively interfere cellular pathways involved in prostate cancer cells have attracted research interest of scientists in prostate cancer therapies in recent years.
TABLE 10 | Nutraceuticals and extracts obtained from plants with anti-prostate cancer activities.
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Prostate cancer is the second most frequently diagnosed tumor and the fifth leading cause of cancer-related deaths in men in the worldwide (McEleny et al., 2002). And the mortality of prostate cancer mainly occurs as a result of the castrate resistant ones. Up to date, different kinds of drugs have been employed to improve the treatment condition, mainly including LHRH antagonists, antiandrogen (androgen receptor antagonists and androgen synthesis inhibitors), tyrosine kinase inhibitors, angiogenesis inhibitors, endothelin antagonists, matrix metalloproteinase inhibitors, antioxidants, and cell cycle inhibitors. However, as mentioned above, there is no effective therapy for CRPC at present, except for docetaxel, which is the only chemotherapeutic agent that has been proven to prolong the overall survival in CRPC patient population though with many adverse effects reported (Eyben et al., 2015). Hence, it is urgent for us to explore an effective treatment for prostate cancer, especially for CRPC. In recent years, many natural products and extracts have been scientifically investigated in vitro and/or in vivo and proved as potential anti-prostate cancer agents, which are currently scattered across various publications. So a systematic summary and knowledge of future prospects are necessary to facilitate further chemical and pharmacological studies for anti-prostate cancer agents.
In our review, we provided a comprehensive overview of the molecular basis of the incidence and development of prostate cancer, especially for castration-resistant prostate cancer (CRPC), which mainly including canonical AR signaling (AR amplification, over-expression, mutation, and unconventional activation), and non-nuclear AR signaling (PI3K/AKT, Src, MAPKs, JAK-STAT3, and Ca2+ signaling pathways). So most components involved in above-mentioned pathways represent potential targets for screening natural compounds and/or extracts with anti-prostate cancer activity. And natural compounds or extracts that could function as modulators of canonical AR or non-nuclear AR signalling pathways thus can be regarded as promising candidates for anti-prostate interventions.
So far, a great amount of natural products isolated from diverse sources have been found to significantly inhibit prostate cancer cell proliferation/tumor growth or affected cellular signaling pathways in prostate cancer. As shown in our paper, the majority of natural compounds with direct relevance to prostate cancer are primarily derived from plants, with comparatively few molecules from marine and microbial sources. For these reported bioactive constituents, there is still plenty of room for improvement regarding the studies focused on efficacy enhancement and side effects amelioration by semi-synthetic modifications based on quantitative structural activity relationship elucidation. Since marine and microbial organisms represent important sources for single molecules exploit, more available and improved approaches should be included in finding novel natural products with significant anti-prostate cancer activity from these resource. Especially, engineering bacteria or fungus with novel gene clusters, currently used mainly for the identification of antibiotics or anti-tumor drugs, would be another promising approach for discovering natural compounds with anti-prostate activity. Extracts are another applicable option for anti-prostate purposes, in which case the chemical profile should be further elucidated, possibly affording a pure bioactive compound with precise mechanism of action. Also clinically used Chinese herb preparations should be profiled using techniques such as HPLC–MS to standardize the complex system to make it more controllable, stable, and reproducible in prostate cancer treatment. Furthermore, drug combination of these reported natural compounds with conventional chemotherapeutic agents may also be a promising way in finding solution for prostate cancer treatment. Finally, safty large-scale studies are needed to evaluate promising compounds or extracts and determing non-toxic doses for treating prostate cancer in mammals.
In conclusion, tackling prostate cancer (especially CRPC) is a much needed task that requires not only the great progress in understanding the genetic basis of prostate cancer, but also the significant technological improvements in tracking of bioactive natural compounds and structural characterization, which will facilitate the identification of novel natural compounds with significant anti-prostate cancer properties for drug development and therefore can be translated into significant health benefits for humans.
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Natural compound

Artemisinin(51)

Betulinic Acid(52)

Celastrol(53)

Caseamembrin C(54)

Giycyrhizin(5s)

Lycopene(s6)

Oridonin(57)

Pachymic acid(58)
Pseudolaric acid B(59)

Sugiol60)

Triptolide(61)

Ursolic Acid(62)

Zerumbone(63)

p-elemene(64)

7-xylosyl-10-deacetyl
pacitaxel(65)

26-OCH3-PPD
(GS25)(66)

Bakuchiol (67)

Afrocyclamin A (68)

Corosolic acid (69)

3-0x0-4-0xa-A-homo-
25,06,27-
trinordammarano-24,20-
lactone triterpene (70)
20,25-dihydroxy-3-
oxodammarane
titerpene (71)

Britanin (72)

Linalool (73)

p-elemonic acid (74)

Heliantriol B2 (75)

Botanical name

Artemisia annua L.

Bacopa monnieri (L)
Wettst.

Tripterygium wifordii
Hook f.

Casearia membranacea

Glyoyrhiza glabra L.

Distributed in various
plants

Isodon rubescens
(Hemsl) H.Hara

Poria cocos

Larix kaempferi (Lamb.)
Carridre
Salvia prionitis Hance

Tripterygium witfordii
Hook f.

Distributed in various
plants

Zingiber zerumbet (L)
Roscoe ex Sm

Distributed in various of
plants

Taxus wallichiana Zucc.

Panax notoginseng
(Burkil) FH.Chen

Cullen corylifolum (L)
Medik.

Androsace umbellata
(Lour) Merr.

Eriobotrya japonica
(Thunb) LindL;
Crataegus pinnatifida
Bunge; Actiniclia
chinensis Planch.
Cleome khorassanica
Bunge & Bien

Cleome khorassanica
Bunge & Bien

Inula linariifolia Turcz.

herbs, spices and fruits

Boswellia carterii Birdw

Chuguiraga erinacea
subsp. erinacea
(Asteraceae)

Cell type

DU145
PC3

LNCaP

LNCaP
PC3

PC3

DU145
LNCaP

PC3

PC3

DU145
LNCaP
DU145

DU145
LNCaP
PC3

DU145
LNCaP
PC3
22Rv1
DU145
LNCaP

DU145
HRPC
PC3

DU145
PC3

PC3

DU145
LNCAP
PC3

PC3

DU145

PC-3;
DU145;
22RV1;
WPMY-1

DU-145 ;
LNCaP

DU-145 ;
LNCaP

PC-3;
PC-3-
L;
DU-145
22Rv1

DU145,
PC-3 and
22RV1
PC-3;
LNCaP

Observation

In vitro

In vitro
In vivo

In vitro
In vivo

In vitro

In vitro

In vitro

In vivo

In vivo

In vitro

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro;
In vivo

In vitro

In vitro

In vitro

In vitro;
In vivo

In vitro;
In vivo

In vitro

In vitro

Activity

Induction of apoptosis

Induction of apoptosis
Inhibition of tumor
growth

Induction of apoptosis

Antiprolferation
Induction of apoptosis

Antiprolferation
Induction of apoptosis

Antiproliferation
Antimetasis
Induction of apoptosis

Induction of apoptosis
Inhibition of tumor
growth
Antiproiferation
Antiprolferation
Induction of apoptosis
Antiprolferation
Induction of apoptosis
Antiproliferation

Antiproliferation
Induction of apoptosis

Antiproliferation
Induction of apoptosis

Antiprolferation
Induction of apoptosis

Antiproiferation
Induction of apoptosis

Antiprolferation
Induction of apoptosis

Induction of apoptosis

Inhibition of cel
prolferation and
migration;

Induction of apoptosis;
inhibition of migration
and invasion; inhibition
of cell growth

Inhibition of cell growth;
Induction of apoptosis

Cell growth inhibition

Cell growth inhibition

Inhibition of cell
proliferation, migration,
and motiity

Antiproliferation;
Induction of apoptosis;
Inhibition of migration
invasion

Induction of apoptosis

Antiproliferation;
Induction of apoptosis;
Inhibition of migration
Tonaiaalae

Mechanism of action

Increase of synthesis, and
cleavage of procaspase-9,
cleavage of caspase-3, and
PARP-1 degradation.
Activation of selective
proteasome-dependent
degradation of the transcription
factors specificity protein
1(Sp1), Sp3, and Sp4;
regulation of survivin and VEGF
expression; downregulation of
NF-kappaB expression.
Accumulation of ubiquitinated
proteins and three natural
proteasome substrates IKB-A,
Bax, and p27.

Downregulation of Bel-2 and
Bol-xL expression; upregulation
of Mcl-18 protein and activation
of caspase-9 and caspase-3.
Downregulation of the
expression of caspase-3 and
caspase-8.

Inhibition of the androgen
receptor element, resulting in
decreased PSA velocity;
inhibition signaling of insulin-like:
growth factor-| (IGF-I); decrease
of the expression of avp3 and
avp5 integrin.

Increase of expression of P21
and the mRNA level of beclin;
increase of caspase-3 activity.

Decrease of prostaglandin
synthesis and AKT activity.
Increase of ROS generation and
Bcl-2 degradation.

Induction of GO/G1 cell cycle
arrest; downregulation the
expression of STATS;
interaction with TKT.

Decrease of CDK7-mediated
phosphorylation; disruption of
the phosphorylation of AR
through XPB/CDKT.
Upregulation of DRS activation
of JNK; inhibition of NF-xB and
STATS pathways.

Increase of MPM-2 expression;
increase of Bcl-2 and Bel-xL
phosphorylation; induction of
Cak1 activty; induction of
Cdc25C downregulation.
Downregulation of Bei-2
expression; increase of
cytochrome ¢; activation of
PARP and caspase-3, -7, -9,
and -10,

Induction of G2/M cycle arrest;
upregulation of pro-apoptotic
Bax and Bad protein
expressions and
downregulation of anti-
apoptotic Bcl-2 and BekXL
expressions.

Decrease of MDM2 protein
level; increase of the protein
levels of the wid-type 53, Bax,
cleaved-PARP.

Inactivating NF-xB signaling via
AR and ERp

Via the PI3k/AKVMTOR
pathway

The activation of endoplasmic
reticulum (ER) stress-
associated two pro-
apoptoticsignaiing pathways

Not investigated

Not investigated

Through PIBK/AKY/NF-xB
Signaling Pathways

Mitochondria-mediated intrinsic
and death-receptor-mediated
extrinsic pathways; inhibition of
expression of Ki-67 and PCNA
in the 22Rv1 xenograft model.
Through the suppression of
JAK2/STAT3/MCL-1 and NF-
KB signal pathways

Not investigated

Refs

Nakase et al. (2009)

Chintharlapalli et al.
(2007)

Wolfram et al. (2014)

Huang et al. (2004)

Thirugnanam et al.
(2008)

(Bureyko et al,, 2009;
Wertz, 2009; Tang

et al,, 2011; Holzapfel
etal, 2013)

(Deepak and Handa,
2000; Xiang et al.,
2012; Ming et al.,
2016)

Gapter et al. (2006)

Zhao et al. (2012)

Jung et al. (2015)

Fei et al. (2016)

(Deepak and Handa,
2000; Shanmugam
et al., 2011; Meng
et al., 2015)

Chan et al. (2015)

Liet al. (2010)

Jiang et al. (2008)

Wang et al. (20082)

Miao et al. (2017)

Sachan et al. (2018)

Ma et al. (2018)

Sajjadi et al. (2018)

Sajjadi et al. (2018)

Zeng et al. (2020)

Zhao et . (2020)

Bao et al. (2021)

Castro et al. (2019)
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Natural compound

Apigenin(28)

Baicalein(29)

Cajanol(30)

Cryptocaryone(31)

CG901(32)

Deicizein(33)

Fisetin(@4)

Formononetin(35)

Flavokawain B(36)

Genistein(37)

Ginkgetin(38)

Isoliquiritigenin(39)

Isoangustone A(40)

Luteolin(41)

Licochalcone A(42)

Quercetin-6-C-b-D-
glucopyranoside(43)

Quercetin(44)

Xanthohumol(45)

Vitexicarpin(46)
2'4'-

dihydroxychalcone (47)
Auriculasin (48)

Naringenin (49)

Casticin (50)

Botanical name

Distriouted in various
plants

Scutelaria baicalensis
Georgi

Gajanus cajan (L)
Huth

Cryptocarya
wightiana Thwaites

Artocarpus altilis
(Parkinsor) Fosberg

Glycine max (L) Merr.

Distributed in various
plants

Trifolium pratense L.

Piver methysticum
G.Forst.

Glycine max (L) Merr.

Ginkgo biloba L.

Distributed in various
plants

Ginkgo biloba L.

Distributed in various
plants

Glycyrrhiza glabra L.

Ulmus wallichiana
Planch.

Distributed in various
plants

Humulus lupulus L.

Vitex rotundifolia Lf.
Herba oxytropis

Flemingia
macrophyla var.
philppinensis (Merr. &
Rolfe) H.Ohashi
aitrus fuits and
tomatoes

Vitex rotundiiolia L.,

Cell type

C4-28
DU145
PC3
22Rv1

LNCaP
PC3

PC3

PC3

C4-2B
DU145
PC3

DU145
LNCaP

DU145
LNCaP
PC3
22Rv1

PC3
RWPE1

DU145

LNCaP
LAPC4

DU145
PC3 PC-
3m

DU145
LNCaP
PC3

D4-2B
LNCaP

DU145
PC3

LNCaP
PC3

LNCaP

DU145
LNCaP
PC3

RWPE1

DU145
LNCaP
PC3

BPH-
1PC3

PC3
PC3

LNCaP-
FGC;
RWPE-1

MAT-LyLu
cells
DU 145

Observation

In vitro

In vivo

In vitro
In vivo

In vitro

In vitro

In vitro

In vivo

In vitro
In vivo

In vitro

In vivo

In vitro
In vivo

In vitro
In vivo

In vitro
In vivo

In vitro
In vivo

In vitro

In vivo

In vitro
In vivo

In vitro
In vivo

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro

In vivo

In vitro

In vitro

Activity
Antiprolferation

Anti-invasion
Suppression of
prostate cancer growth

Antiprolferation
Inhibition of tumor
growth

Induction of apoptosis

Antiproliferation
Induction of apoptosis

Antiproliferation

Antiprolferation
Induction of apoptosis

Antiprolferation

Inhibition of tumor
growth
Antiproliferation
Induction of apoptosis

Antiproliferation
Induction of apoptosis

Inhibition of migration

Antiprolferation
Induction of apoptosis
Inhibition of turmor

growth

Antiprolfration
Inhibition of turor
growth

Antiprolieration
Induction of apoptosis

Inhibition of tumor
growth

Antiproliferation
Prevention of
metastasis

Antiproliferation
Induction of apoptosis

Antiprolferation
Induction of apoptosis

Induction of apoptosis

Antiprolferation
Induction of apoptosis

Induction of apoptosis
Induction of apoptosis

Induction of apoptoss;
antiprolferation

Inhibition of metastasis

Inhibition of prostate
cancer cell metastasis

Mechanism of action

Binding with IKKa; inhibition of
NF-kB/p65 activi hibition of
apoptosis proteins and Ku70-
Bax interaction; inhibition of
tumor suppressor ER-B
degradation; inhibition of class |
HDACs expression; inhibition of
ABCB1 expression and
sensitivity improvement of
docetaxel-resistant prostate
cancer cells to docetaxel
treatment.

Induction of G1 cell cycle arrest;
inhibition of androgen receptor
(AR) expression.

Induction of G1 and G2/M cell
cycle arrest; modulation of the
ERa-dependent PI3K pathway
and induction of GSK3 and
CyclinD1 activation.

Induction of caspase-8 and 3
activation; upregulation of DRS
surface expression; induction of
Fas clustering and theassodation of
downstream signding mdlecuiss,
induding FADD and procaspase-8;
incuction of DR4 and DR5
aggegaion.

Selective inhibition of prostate
cancer cell lines proliferation and
mouse xenograft growth by
inhibiting the expression of
STATS target genes.

Decrease the expression of
'VEGF and AR genes; induction of
G2/M phase in the PC3 cells by
downreguiating Cyciin B1 and
CDK1, and upregulating CDK
inhibitors (p21 and p27);
upregulation of Fas ligand (FasL)
and the expression of proapoptatic
Bim; dowrreguation of the
expressin of p-FOXO3a and
inaease of the nuckear stabiity of
FOXOBa.

Downregulation of the
expression of NudG protein;
downregulation of MMP-2 and
MMP-9 expressions.

Induction of GO/G1 phase cell
cycle arrest; inhibition of the IGF-
1/IGF-1R pathway and alteration
of the Bax/Bcl-2 ratio;
downregulation of expression
levels of cyciin D1 and CDK4.
Selective inhibition on androgen
receptor (AR)-negative prostate
cancer cell growth; induction of
apoptosis with associated
increased expressions of
proapoptotic proteins: death
receptor-5, Bim, Puma and
downregulation of XIAP and
survivin expressions.

Prevention of metastasis by
directly binding to MEK4 and
downregulation of p38
expression; downregulation of
expression and activity of
MMP-2.

Induction of GO/G1 cell cycle
arrest; selective suppression of
STAT Tyr705 phosphorylation
but not through inhibiting
upstream tyrosine kinases and
tyrosine phosphatase.
Downreguiation of the
expression of NudC protein;
downregulation of MMP-2 and
MMP-9 expressions.

Induction of p27kip1 tumor
suppressor gene accumulation
by attenuating p27kip1 at Thr
187 phosphorylation; inhibition of
CDK2 activation through binding
with the CDK2 complex;
inhibition of mTOR kinase activty
by binding with the mTOR
complex.

Inhibition of ANO1 expression;
inhibition of the expression and/
or function of ARs via regulation
of prostate derived Ets
transcription factor(PDEF);
inhibition of IGF-1/GF-1R
system; decrease of the
expression of E-cadherin
through MDM.

Induction of G2/M cell cycle
arrest; downregulation of cycin
B1 and cdc2 expression;
inhibition of phosphorylation of
retinoblastoma (Rb); decrease of
expression of transcription factor
E2F, cyclin D1, CDKs 4 and 6;
increase of expression of

cyclin E.

Induction of apoptosis via
induction of cleaved PARP and
Cas-3; induction of GO/G1 cell
cycle arrest; inhibition of reactive
oxygen generation and AKT/
mTOR sunvival pathway via
directly binding with aryl
hydrocarbon receptor.

Increase of expression of c-Jun
and its phosphorylation;
decrease of expression of
HSP72; intervention of BaP
toxicity.

Induction of § and Sub G1 cell
cycle arrest; inhibition of NFKB
activity and expression.
Upregulation of pro- apoptotic
proteins Bax and p53
expression.

Induction of G2/M cell cycle
arrest.

Induction of G1/S cell cycle
arrest.

Regulation of the PIBK/AKT/
mTOR pathway in LNCaP
prostate cancer cellsROS
acoumuiation

Blocking voltage-gated sodium
channels

Inhibition of the protein levels of
AKT, GSK3ap, Snai, and MMPs
(MMP-2, -9, -13, and -7);
diminision of the expressions of
NF-xB p65, GRB2, SOS-1,
MEK p-ERK1/2, and p-JNK1/2

Refs

Zhu et al. (2013), Salmani
etal (2017)

Heimson et al. (2005)

Haimson et al. (2005)

Chen et al. (2010)

Jeon et al. (2015a)

Labow and Layne, (1972)

(Shimo, 1998; Afaq et al,
2008; Khan et al., 2008;
Chien et al., 2010; Suh
etal., 2010; Mukhtar etal.,
2015)

(Huang et al., 2013; Bi,
2014; Li et al., 2014)

Tang et al. (2010)

(Li and Sarkar, 2002; Hsu
etal, 2010)

Jeon et al. (2015b)

Zhang et al. (20108)

Lee et al. (20133)

Seo et al. (2017)

Suetal. (2017)

Hamidullah et al. (2015)

Asea et al. (2001), Yuan
et al. (2004), Chaudhary
et al, (2007), Aaiinkeel
et al. 2008)

Colgate et al. (2007)

Meng et al. (2012)
Sheng et al. (2015)

Cho et al. (2018)

Gumushan Aktas and
Akgun (2018)
Lin et al. (2019)
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Natural compound

Deoxypodophyliotoxin(g8)

Magnolol (89)

Silbinin(@0)

VB1(91)

Magnoline (92)

Arctigenin (93)

2-(5'-allyl-4"" 9""-dihydroxyphenyl-furan)-3-
hycroxy-7-methoxy-8-(6"7"-cimethyl-
furan-2"-one)-chromen-4-one. (94)
2-(5'-allyl-3" 5" 9""-trinydroxy-4""-
methoxyphenyl-furan)-3-hycroxy-7.8-furan-
fing-chromen-4-one. (95)
2,3-dehydrosiychristin (96)

siychristin A (97)

Botanical name

Anthriscus
syvestris (L)
Hoftm.

Magnolia officinalis
ReNder &
EH.Wiison
Silybum marianum
(L) Gaertn.

Vitex negundo L.
Phellodendi
amurensis cortex
Arctium lappa L.
Hosta plantaginea
(Lam) Aschers

Hosta plantaginea
(Lam) Aschers

Hosta plantaginea
(Lam) Aschers

Hosta plantaginea
(Lam) Aschers

Cell
type

LNCaP
PC3

PC3
PrEC

LNCaP
22Rv1

PC3

22RV1

PC-3M

LNCaP

LNCaP

LNCaP

LNCaP

Observation

In vitro

in vivo

In vitro
In vivo

In vitro

In vivo

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

Activity

Antiproiferation
Induction of
apoptosis
Cytotoxicity

Antiproliferation

Induction of
apoptosis

Antiproiferation

Induction of
apoptosis and
autophagy
Inhibition of cel
growth

Inhibition of cell
growth

Inhibition of cell
growth

Inhibition of cell
growth

Mechanism of action

Accumulation of the reactive oxygen
spedies, intracellular Ca?*; increase of
mitochondrial membrane potential
Decrease of MMP-2 and MMP-9
expression; decrease of the level of
phosphorylated AKT.

Activation of acetyl-CoA carboxylase;
reduction in hypoxia-induced NADPH
oxidase (NOX) activity; increase of the
lipid accumulation and NOX activity;
downregulation of HIF-1a expression,
lipid levels, clonogenicity and NOX
activity.

Activation of PARP cleavage.

Disturbance of nutrition metabolism
and energy metabolism

Via PIBK/Akt/mTOR inhibition

Not investigated

Not investigated

Not investigated

Not investigated

Refs

Kim
etal.
(2013)
Leeetal.
(2009)

Ting
etal.
(2016)

Zhou
etal.
(2009)
Sun
etal
(2018)
Sun
etal.
(2021)
Wei
etal.
(2020)
Wei
etal.
(2020)
Wei
etal
(2020)
Wei
etal
(2020)
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Natural compound

Atraric acid (76)

Curcumin(77)

Ellagic Acid(78)

Galic Acid(79)

Gossypol(80)

Honokiol(81)

Nordihydroguaiaretic
acici(82)
Obovatol(83)

Resveratrol(84)

Procyanicin

Sinapic acid (85)

Carvacrol (86)

Hispolon (87)

Botanical
name

Prunus afficana
(Hook.f)
Kalkman
Curcuma
longa L.

Distributed in
various plants

Toona sinensis
(Juss.) M.Roem.

Gossypium
hirsutum L.

Magnolia
officinalis

Larrea tidentata
(DC) Covile
Magnolia
obovata Thurb.

Reynoutria
Japonica Houtt,

Avachis
hypogaea L.

various
vegetables and
fruit species

Origanum and
Thymus

Phelinus linteus

Cell type

LNCaP

DU145

LNCaP

DU145 PC3
22Rv1

DU145 PC3

PC3 LNCaP
Myc-CaP

PC3 LNCaP

DU145

DU145

LNCaP

Human
0SCC Tea-
8113;
SCC-25

DU145

Observation

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro
In vivo

In vitro
In vivo

In vitro
In vivo
In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro

Activity

Inhibition of prostate cancer
cell growth

Antiproliferation

Antiprolferation Induction of
apoptosis

Inhibition of migration
Induction of apoptosis

Antiproliferation Induction of
apoptosis

Induction of apoptosis
Inhibition of prostate tumor
growth

Inhibition of migration
Antiprolferation

Induction of apoptosis

Induction of apoptosis

Antiproliferation

Antiproliferation;induction of
apoptosisiinhibition of
migration invasion

Antiproliferation, inhibition of
metastasis and invasion;
Induction of apoptosis

Induction of apoptosis

Mechanism of action

Inhibition of AR nuclear translocation.

Inhibition of the expression of MT1-
MMP and MMP2 proteins; inhibition of
the DNA-binding abilty of NICD.
Increase of Bax/Boi2 ratio and increase
caspases 3, caspases 6, caspases 8,
and caspases 9 and PARP cleavage;
inhibition of mTOR activation and
reduction of intracellular levels of
p-catenin; downregulation of the
expressions of anti-apoptotic proteins,
silent information regulator 1 (SIRT1),
human antigen R (HUR) and heme
oxygenase-1 (HO-1).

Activation of Chit and Chk2 and
inhibition of Cdc25C and Cdc2
activiies; blocking of the p38, JNK,
PKC and PIBK/AKT signaling pathways
and downregulation of NF-«B protein
level; inhibition of MMP2 and MMP 9
gene expression

Downregulation of Bcl-2 and Bel-x and
the upregulation of Bax; activation of
caspase3, caspase8 and caspase9
through the ROS-independent
mitochondrial dysfunction pathway and
the inorease of PARP cleavage;
suppression of the expression of AP-
1and NF-«B blocked the activation of
VEGF receptor 2 kinase.

Activation of Bax and/or Bak; decrease
of expression of ¢-Myc.

Suppression of NRP1 function.

Inhibition of TNF-a and TPA-induced
DNA binding activity of NF-«B;
translocation inhibition of p65 and p50
into nucleus via decreasing k8
phosphorylation; increase of the
apoptotic genes expression: Bax,
caspase-3, caspase-9; inhibition of the
anti-apoptotic genes expression: Bal-
2, inhibitor of apoptosis protein (IAP-1)
and X chromosome AP (XIAP).
Downregulation of Bcl-2 and Bel-xL
and upregulation of Bax; activation of
caspases-3, -8 and -9 and increased
PARP cleavage.

Induction of apoptotic cell death and
cell cycle arrest at S phasejincrease of
intracelular ROS level and the decrease
of Bl-2/Bax ratio, and the activation of
p53 and caspases-3

Increase of the expression of BAX,
CASP3, CASP8, CYCS, FAS, TIMP-1
and CDH1 decrease of expression of
MMP-9in PC-3 cells;decrease of in the
expressions of CDH2, MMP-2 and
MMP-9 in LNGaP celisiincrease of
caspase-3 activity

Regulating the cell cycle-associated
proteins (P21, CCND1 and CDK4) and
apoptosis-associated proteins (Cox2,
Bcl-2, and Bax); inhibiting P-FAK, and
reducing p-catenin, ZEB1, and MMP-
2/9 expression

Via modulation of mitochondrial and
STAT3 pathways

Refs

Schleich et al
(2006)

Yangetal. (2017)

Vanella et al.
(2013

(Hastak et al.,
2003; Kaur et al,
2009)

Huang et al.
(2006)

Shigemura et al
(2007)

Lietal. (2016)

Soyong et al.
(2009)

Chang et al.
(2013)

Chenetal. (2018)

Erogu et al

(2018)

Dai et al. (2016)

Masood et al.
(2019)
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Natural
compound

Anibarine(21)

Berberine(22)

Pipernonaline(23)

Piperlongumine(24)

Sanguinarine(25)

Piperine (26)

Neferine (27)

Botanical name

Aniba panurensis

Coptis chinensis
Franch.

Piper longum L.

Piper longum L.

Argemone
mexicana L.

Piper nigrum L.
and Piper
longum L.
Nelumbo
nucifera Gaertn

Cell type

DU145 M12
PC3

DU145
LNCaP PC3
PC82 PWR1E

DU145
LNCap PC3

LNCaP
PC3

PC3E

RWPE1 TEM4-
18

DU145

PC3, CD44*
CSCs ; LNCaP

Observation

In vitro

In vitro

In vivo

In vitro

In vitro

In vitro

in vitro

in vitro

Activity

Antiproiferation
Inhibition of metastasis and
invasion
Antiproliferation Induction of
apoptosis and programmed
necrosis

Induction of apoptosis

Antiproliferation

Oytotoxicity
Inhibition of migration
progression

Inhibition of proliferation and
migration

Mechanism of action

Binding to the chemokine receptor
CCRs.

Inhibition of p53-Cyp-D association via
decreasing the ROS production;
downregulation of HIF-1a and VEGF
expression; induction of G1 and G2/M
cell cycle arrest by activating ATM-Chik1;
induction of caspase-3 and -9 activation;
upregulation of bax/bcl-2 expression.
Induction of sub-G1 and GO/G1 el
cycle arrest through downregulation of
CDK2, CDK4, cyclin D1 and cyclin E;
upregulation of procaspase-3/PARP
cleavage; induction of ROS production
and intracelular Ca2+, and mitochondrial
mermbrane depolarization.

Induction of G2/M phase cell cycle arrest;
upregulation of bax/bcl-2 expression;
activation of caspase-3; downreguiation
of PARP expression.

Inhibition of RGS17 activity.

downreguiating the Ak/mTOR/MMP-9
signaling pathway

through p38 MAPK/INK activation

Refs

Zhang et al
(20100)

Wang et al.
(2012), Zhang
et al. (2014)

Leeetal
(2013b)

Kong et al
(2008)

Bode et al.
(2017)

Yuan and Ying
(2018)

Erdogan and
Turkekul (2020)
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Natural compound

C-phycocyanin

Eusynstyelamide
B(1)

Frondoside A(2)

Galielalactone(3)

Chaetocin(4)

Chetomin()

Gliotoxin(6)

Halichondramide(7)

Lejimalide B(8)

Jasplakinolide{9)

Malformin A1(10)

Stellettin A(11)

Niphatenone B(12)

4H-1,3-dioxin-4-
one-2,3,6-trimethyl
Alternol

Hapalindole H (13)

Heteronemin (14)

xanthoquinodin
JBIR-99 (15)

Giluterrin (16)

Elaiophylin (17)

Urupocidin C (18)

Pseudopterosin H

Nalidixic acid (19)

Discorhabdin L (20)

Sort

Proteins.

Alkaloids

Triterpene
glycosides

Ketones

Ketones

Ketones

Ketones

Trisoxazol-e
macrolides

Macrolide-s

Cyclopent-
apeptides

Cyclopent-
apeptides

Triterpene-s

Glycerol ethers

Dioxin

unknown

indole-alkaloid

sesterterpenoid

Quinolines

alkaloid

antibiotic

bicyclic
guanidine
alkaloid
diterpene
glycosides

quinolone
antibiotic
alkaloid

Name of
microorganisms

Limnothirix sp.

Didemnum candidum

Cucumaria
okhotensis

Galiella ruffie

Trichoderma virens

Trichoderma virens

Trichoderma virens

Chondrosia corticata

Eudistoma cf. rigida

Jaspis johnstoni

Aspergillus niger

Geodlia japonica

Niphates digitalis

Trichoderma
atroviride
mutant fungus

Fischerella muscicola

Hyrtios sp.

Parengyodontium
album MEXU 30054

Aspergillus
terreus P63

Actinomycete
streptomyces

Monanchora pulchra

Pseudopterogorgia
elisabethae

Streptomyces sp.
©n
Latruncula sp.

Cell type

LNCaP

LNCaP

DU145
LNCaP
PC3 22Rv1
VCaP

DU145
LNCaP
PC3

PC3

PC3

PC3

PC3

LNCaP
PC3

LNCaP
PC3
TSUPr
LNCaP
PC3

LNCaP

LNCaP
PC3

PC3

22RV
BPH1
PC-3

LNcap;
PC3

PC-3

PC-3

22Rv1 ;
VCaP

22Rv1;
LNCaP

PC-3

PC3

Observation

In vitro

In vitro

In vivo

In vitro

Invivo

In vitro

In vivo
In vitro

Invivo
In vitro

In vivo
In vitro

Invivo

Invivo

In vitro

In vitro

Invivo

In vitro

In vitro
Invivo
in vitro
in vitro

In vitro
Invivo

in vitro

in vitro

in vitro
in vivo

in vitro

in vitro

in vitro

in vivo

Activity

Induction of
apoptosis

Antiproliferation

Antiproliferation
Induction of
apoptosis
Inhibition of
metastasis
Inhibition of tumor
growth

Induction of
apoptosis
Inhibition of tumor
growth
Antiangiogenesis
Inhibition of tumor
growth
Antiangiogenesis
Inhibition of tumor
growth
Antiangiogenesis
Inhibition of tumor
growth
Antiproliferation
Inhibition of
metastasis

Antiproliferate
Induction of
apoptosis

Antiproliferation

Antiproliferation
Induction of
apoptosis and
necrosis

Induction of
oxidative stress and
apoptosis
Antiproliferation

Induction of
apoptosis
Antiproliferation;
Induction of
apoptosis;
Antiproliferation;

Induction of
apoptosis

Induction of
apoptosis

Antiproliferation

blocking RORg
transcriptional
regulation activities
Induction of

apoptosis
reducing PC-3 cell
viabiity

cytotoxic effect

Inhibition of cel
arowth

Mechanism of action Refs

Gantar et al.
(2012)

Increase of radical oxygen
species (ROS) generation;
increase of caspase-9 and
caspase-3 activities.
Induction of G2 cell cycle
arrest; increase of CHK2
phosphonytation;
upregulation of p21CIP1/
WAF1; decrease of CDC2
expression.

Induction of G2/M cell
cycle arrest; upregulation
of Bax, Bad, PTEN,
cleavage of PARP and
caspase-3;
downregulation of anti-
apoptotic proteins (survivin
and Bcl-2); inhibition of
pro-survival autophagy by
upregulation of phospho-
mTOR.

Inhibition of Stat3 activity;
downregulation of the
expressions of Bcl-2, Bal-
xL, c-myc and cyclin D1
Disruption of the HIF-1a/
p300 complex.

Liberio et al.
(2015)

Dyshiovoy et dl.
(2016)

Helsten et al
(2008)

Cook et .
(2009)

Cook et al.
(2009)

Disruption of the HIF-1a/
p300 complex.

Cook et .
(2009)

Disruption of the HIF-1a/
p300 complex.

The suppression of PRL-3
via downregulation
phosphoinositide 3-kinase
(PI3K) subunits p85 and
p110 the expression;
downregulation of matrix
metalloproteases (MMPs).

Shin et al. (2013)

Induction of GO/G1 cell  Wang et al.

cycle arrestand expression  (2008b)

of p21wafi/cipt;

downregulation of the

expression of cyclin A, E, D

sunvivin, p21B and BNIP3.

Not investigated. Senderowicz
etal. (1995)

Induction of mitochondrial  Liu et dl. (2016)

damage and autophagy.

Upregulation of FasL and  Liu et al. (2006)

caspase-3 expression.

Binding with the activation  Meimetis et al.

function-1 (AF1) region of  (2012)

the AR N-terminus

dormain (NTD).

Increase of expression of  Ks et al. (2019)

caspase -3

Interaction with multiple Ui et al. (2019)

Krebs cycle enzymes

Through the intrinsic
mitochondrial pathway

Acuaetal. (2018)

Oxidative and ER Stress  Lee et al. (2018)

Combined with the

Inhibition of

Topoisomerase Il and

Hspo0

Though intrinsic and Anaya-Eugenio

extrinsic apoptotic etal (2019b)

pathways

Not investigated Gubiani et al.
(2019)

Inhibition of the expression ~ Zheng et al.

of RORg target genes AR~ (2020)

and AR variant

Though mitochondria Dyshiovoy et al.

targeting (2020)

Inducing apoptosis and  Bowers et al.

downregulating the (2021)

production of intracelular

reactive oxygen species

Not investigated Avora et al
(2018)

Not investigated Harris et al.
(2018)
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Extract

Ethanol extract

Methanolic extract

Ethanolic extract

Aqueous extract

Methanolic extract

Hexane extract

Ammonia
dichloromethane extract

Supercritical extract

Acetone extract
Hexarnic lipidosterolic

extract

Aqueous extract

Ethyl acetate extract

Aqueous extract

Acidified dimethy!
sulfoxide extract

Dichloromethane extract

Punica granatum exeract

Hydroalcoolic extract
Ethyl acetate fraction

Ethyl acetate extract

Hydroalooholic extracts

Ethanol extract

methanolic extract

Ethanolic extract

Ethanolic extract

Ethanolic extract

Dimethyl sulfoxicie extract

Methanolic extract

Dichloromethane and
methanol extract
Methanolic extract

Extract of multi-solvent
systems(Cyclohexane,
Hexane, Diethyl Ether,
Ethyl Acetate, Methanol,
Water)

Ethanolic extract

Ethanolic extract

Methanolic extract

Ethanolic extracts

Ethanolic extracts

Botanical name

Vitex negundo L.

Aloe perryi Baker

Annona muricata L.

Camela sinensis (L)
Kuntze

Artocarpus altis
(Parkinsor) Fosberg

Juglans regia L.

Berberis libanotica

Azadirachta indica
A.Juss.

Chaenomeles
Japonica (Thunb.)
Lindl. ex Spach
Serenoa repens
(W.Bartram) Small

Taraxacum officinale
F.H.Wigg.

Commiphora mukul
(Hook. ex Stocks)
Engl

Cistus creticus L. ;
Cistus
monspeliensis L.
Morus nigra L.

Strobianthes crispa
(L) Blume
Punica granatum L.

Justicia spicigera
Schitdl

Phoenix dactylifera L.
(Ajwa dates)
Kalanchoe flammea
Stapf (Crassulaceae)

Euphorbia szovitsit
Fisch. & CAMey., U
dioica and Medicago
sativa L.

Moringa oleifera
flower

Paederia foeida L.

Moringa peregrina
(Forssk) Fiori

dandelon
(Taraxacum officinale)
root and lemongrass
(Cymbopogon
citratus)

Gyeyrhiza glabra
(Fabaceae family)

Ganoderma lucidum

Moringa oleifera Lam.

Cecropia
pachystachya Trécul
Dracocephalum
palmatum Stephan

Hippophae
rhamnoides L. and
Hippophae tibetana
Schitdl.

Salvia mittiorrhiza
Bunge

Spirogyra neglecta
(Hassal) Kutzing
Artemisia kruhsiana
subsp. alaskana
(Rydb.) DF Murray &
ENven

Treculia africana
Decne. (Moraceae)
and
Entandrophragma
angolense Welw
(Melaceae)

Moringa oleifera Lam.

Medicinal
part

Seed

Fruit

Leaf

Leaf

Leaf and
stem

Leaf

Root

Leaf

Fruit

Whole plant

Root

Bark

Whole plant

Fruit

Leaf

Seed

stems;
leaves
Fruit

Leaves

aerial parts

flower

leaves

Root

roots

whole plant

leaf

leaves

leaves

leaves

roots

whole plant

stems and
leaves

whole
plants

Flower

Cell type

PC3

HTB-81

PC3

PC3

DU145
LNCap PC3

PC3

DU145 PC3
22Rv1

LNCaPPC3

PNT1APC3

LNCaPPC3

C4-28
LNCaP

LNCaP
PrEC

PZ-HPV-7
PNTIA

PC3
CRL1435

DU145 PC3

LNCaPPC3

LNCaP
PC3
PC-3;

LNCaP;
PrEC

PC-3,

DU145
; HDF

PC-3

PC-3, DU-
145,HaCaT

PC-3

PC-3

PC3

DU145;
PC-3

PC3

PC-3

LNCaP;
C4-2

DU-145

PC3

PC-3

LNCaP,
DU145
and PC3

PC3

Observation

In vitro
In vivo

In vitro

In vitro
In vivo

In vitro
In vivo

In vitro

In vivo

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro;

In vivo

In vitro

In vitro

In vitro

In vitro

In vivo

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro;

In vivo

In vitro

In vitro

In vitro

In vitro

Activity

Antiproliferation

Induction of
apoptosis
Antiproliferation
Inhibition of tumor
growth
Antiproiferation
Induction of
apoptosis
Inhibition of tumor

growth

Antiproliferation
Induction of
apoptosis
Inhibition of tumor
growth
Antiproiferation
Indluction of
apoptosis
Antiproiferation
Inhibition of
metastasis

Antiproiferation
Induction of
apoptosis
Inhibition of tumor
growth

Induction of
apoptosis

Induction of
apoptosis

Inhibition of
metastasis

Induction of
apoptosis

Antiproliferation

Antiprolferation
Induction of
apoptosis

Induction of
apoptosis
Induction of
apoptoss Inbition
of metastasis

Antiproiferation

Induction of
apoptosis
Induction of
apoptosis

Antiproiferation

Induction of
Apoptosis
Inhibition of cell
growth, migration;
induction of

apoptosis

Induction of
apoptosis

Induction of
apoptosis

Antiproliferation

Induction of
apoptosis
Antiproliferation;
induction of
apoptosis:GO/G1
cell cydle arrest

Senescence
induction
Induction of
apoptosis

Antiproliferation

Antiproliferation;
induction of
apoptosis;

Antimetastasis
activity
Induction of

autophagy;

Antiproiferation;
induction of
apoptosis; anti-
metastatic effects

Induction of
apoptosis

Mechanism of action

Induction of cleavage in
poly ADP ribose
polymerase protein;
upregulation of Bax and
downregulation of Bol-
2; increase of caspase-
3and -9

Not investigated.

Not investigated.

Increase of Bax/Bcl-2
ratio and decrease of
Ki67 protein
expression; decrease of
blood concentrations of
tumor growth factors
and tumor
concentrations of VEGF
and EGF expressions.
Inhibition of STAT3
Ty705 phosphorylation
and STATS activation.

Not investigated.

Induction of GO/G1 cell
oydle arrest; eradication
of self-renewal abiity of
highly resistant prostate
cancer stem cels.
Inhibition of calreticuiin,
integrin b1, and focal
adhesion kinase
activation; increase of
the AKR1C2 level.
Increase of Bax/Bel-2
ration.

Increase of caspase 9
activation and poly
(ADP-ribose)
polymerase 1 cleavage,
and mitochondrial PTP
activation.

Decrease of
phosphorylation levels
of FAK and SRC, and
activities of matrix
metalloproteinases
(MMP-2 and MMP-9).
Decrease of Bax
expression;
suppression of JNK
activation.

Not investigated.

Induction of G1 cell
cydle arrest; decrease
mitochondial
membrane potential.
Increase of caspase 3
and/or 7 activity.
Upregulation of p21
and p27; increase of
JNK phosphonytation;
suppression of AKT/
MTOR signaling:
modulation of the IGF-
IGFBP axis.

cytostatic mechanism

Arestofthe cell cycle in
S phase
Phosphatidylserine
translocation;
overproduction of
reactive oxygen
speciesirelease of
Cytochrome G at
mitochondial level;
activation of caspase-3
and -9;downregulation
of apoptosis-related
proteins Bol-2, XIAP,
and PKCe and DNA
fragmentation and cell
oydle arrest

Not investigated

Downregulation of AKT
Pathway

Modulating chromatin
modification enzymes
and altering pro-
inflammatory cytokine
gene expression

Cell cycle arrest at sub-
GO phase and DNA
fragmentation.

Not investigated

Both apoptosis and
autophagy
mechanisms
Inhibition of Jak-1/
STAT-3 activity
Downregulation of
Notch signaiing ;
downregulation of
Hedgehog Signaling
Pathway
p-galactosidase
overexpression

Via the caspase-8-
mediated extrinsic
pathway
Downregulation of
androgen responsive
genes, PSA, ELL2,
EAF2 and CALR

Increase of the
expression of ps3 and
reducion of the
expression of Bcl-2
proteins

Inhibiting the Akt
signaling pathway
Inhibitions of phosphor
(p)-AKT, p-mTOR, Bo-
2, and Bax, activating
becin 1 and LGB atioin
PC-3 cells
Overexpression of
caspase-3; low
expression of Akt, pAkt
and Bol-2 proteinsia
decrease of chemotaxis
and cell migration
Downregulation of AKT
Pathway

Refs

Zhou et al. (2009)

Al-Ogail et al. (2016)

Yang et al. (2015)

Wang et al. (2016b)

Jeon et al. (2015a)

Li et al. (2015b)

Wu et al. (2014)

Lewandowska et al.
(2013)

Baron et al. (2009)

Sigstedt et al. (2008)

Xiao et al. (2011)

Vitali et al. (2011)

Turan et al. (2017)

Visweswaran et al
(2010)
Deng et al. (2017)

Fernandez-Pomares
etal (2017)
Mirza et al. (2018)

Avias-Gonzélez et al.
(e018)

Asadi-Samani et al.
(2018)

Juet al. (2018)

Pradhan et al. (2019)

Abou-Hashem et al.
(2019)

Nouyen et al. (2019)

Gioti et al. (2020)

Wang et al. (2020)

(Khan et al., 2020a;
Khan et al., 2020b)

Rosa et al. (2020)

Lee et al. (2020)

Masoodi et al. (2020)

Bae et al. (2020)

Arjsri et al. (2021)

Lee et al. (2021)

Zingue et al. (2021)

Juet al. (2018)
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Natural compound

Aloe-emodin(98)

Calcitriol(99)

Diindolylmethane(100)

Diallyl Trisulfide(101)

Embeiin(102)

ESK246(103)

Ginsenoside Rg3(104)

Guggulsterone(105)

Guttferone F(106)

Indole--carbinol
(I8C)(107)

Juglone(108)

Marchantin M(109)

Monilfformediquinone
(110)

Oleuropein (111)

Physapubescin B (112)

Pristimerin (113)

Phenethyl-
Isothiocyanat(PEITC)
(114)

Putrescine-1,4-
dicinnarmide (115)

Physalins A(116)

Physalins B (117)

Physachenolide C (118)

Reevesioside A (119)

Scopoletin(120)

Sulforaphane(SNF) (121)

Thymoquinone (122)

Wedelolactone(123)

Z-Liustiide(124)

2,5-cimethylphenol(125)

3-oxo-tirucaliic acid(126)

3-a-acetoxy-tirucalic
acidl(127)

3-p-acetoxy-tinucalic
acidl(128)

ba-
acetoxyanopterine(129)

24-epibrassinolide(130)

25-OH-PPD (131)

28-
homocastasterone(132)

2"
Hydroxycinnamaldehyde
(133)

Methylucidone (134)

Ophiopogonin D * (135)

Corchorusoside C(136)

Daucosterol (137)

Cyanidin 3-

glucoside (138)

Germacrone (139)

Ineupatolide (140)

Jegosaponin A and B
(141 and 142)

Isolobetyol (143)

Lobetyol (144)

Lobetyolin (145)

Sort

Anthraquin-ones

Secosteroids.

Indoles

Trisulfides

Quinones

Glycosides

Steroids

Steroids

Prenylated
benzophenones

Indoles

Quinones

Diphenyls

Phenanthradiquinones

Glycosides

Steroids

Esters

Isothiocyan-ates

Phenylprop-anoids

Secosteriods

Secosteriods

Steroids

Glycosides

Coumarins

Sulfides

Quinones

Esters

Esters

Phenols

Lupanic acids

Lupanic acids

Lupanic acids

Esters

Brassinoste-roids

Saponins

Brassinosteroids

Aldehydes

cyclopentenedione

triterpenoid saponins

steroid

steroid saponin

Glycosides

Ketones

Esters

Saponins

polyacetylene

Alkynes

Alkynosides

Botanical name

Rheum palmatum L.

Distributed in
various plants

Distributed in
various plants

Allium sativum L.

Embelia ribes
Burm.f.

Pittosporum
venulosum

Panax ginseng
C.AMey.

Commiphora mukl
(Hook. ex Stocks)
Engl

Allanblackia
stuhimannii (Engl)
Engl.

Distributed in
various plants

Juglans
mandshurica
Maxim.

Asterela angusta

Dendrobium
monilforme (L) Sw.

Olea europaea L.

Physalis
pubescens L.

Distributed in
various plants

Distributed in
various plants

Distributed in
various plants

Physalisalkekengi
var. francheti

Physalisalkekengi
var. francheti

Disbributed in
various plants

Reevesia formosana

Erycibe obtusitolia

Disbributed in
various plants

Nigella sativa

Wedelia sinensis

Angelica sinensis
(Oliv) Diels

Chlaenius cordicoll

Boswellia carteri
Birdw.

Boswellia carteri
Birdw.

Boswellia carteri
Birdw.

Anopterus
macleayanus

Distributed in
various plants

Panax ginseng
CAMey.

Distributed in
various plants

Cinnamomum
verum J.Pres|

Lindera
enythrocarpa
Makino (Lauraceae)

Radix Ophiopogonis

Streptocauion
juventas (Lour)
Merr.

(Apocynaceae)

Crateva adansoni
DC (Capparaceae)

The dark purple
glutinous rice (Oryza
sativa L) cultivar
Luem Pua (LP)

Rhizoma Curcuma

Carpesium
cernuum L.

Styrax japonica
Siebold et al.
Zuccarini.

Platycodon
grandiforus
(Jacq) ADC.
Platycodon
granafiorus
(Jaca.) ADC.
Platycodon
grandifiorus
(Jaca.) ADC.

Cell type

PC3

C4-2B
LNCaP

LNCaP PC3

DU145
LNGap PC3

C4-2B
DU145
PC3

LNCaP

PC-3M

DU145
LNCaP PC3
PrEC

LNCaP PC3

LNCaP

LNCaP

DU145
LNCaP PC3

DU145 PC3

LNCaP
DU145 BPH-
1

PC3

PC3
LNCaP
C4-2B

Ca-2B
DU145
LNCaP PC3

DU145

C4-2B22Rv1

C4-2B22Rv1

LNCaP PC3

DU145 PC3

LNCaP

TRAMP C1

C2-2B
DU145
LNCaP PC3
DU145
PrEC PC3
LNCaP

TRAMP C1

PC3

LNCaP PC3

LNCaP PC3

LNCaP PC3

LNGaP
PC3

DU145
LNCaP

LNCaP PC3

DU145
LNCaP

DU145;
LNCaP

DU145

PC3 ;
DU145
DU-145

LNCaP;
DU145:PC3

PC3

PC-3;22RV1

PC-3

PC-3

PC-3
PC-3

PC-3

Observation

In vitro
In vivo

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro

In vivo

Invitro In vivo

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro
In vivo

In vitro
In vivo

In vitro

In vitro
In vivo

In vitro

In vivo

In vitro
In vivo

In vitro
In vivo

In vitro

In vitro
In vivo
In vitro
In vivo

In vitro

In vitro

In vitro

In vitro

In vitro
In vivo

In vitro

In vitro

In vitro

Activity

Antiprolferation
Suppression of
prostate cancer
growth

Antiprolferation
Induction of

apoptosis

Antiproliferation
Induction of

apoptosis

Induction of
apoptosis

Antiprolferation
Induction of
apoptosis

Antiproliferation

Antiprolferation
Antimetastasis

Antiproliferation
Induction of
apoptosis

Induction of
apoptosis

Antiprolferation

Antiprolferation
Induction of
apoptosis

Induction of
apoptosis

Antiproiferation
Induction of
apoptosis
Inhibition of tumor
growth

Anti-oxidation
Cytotoxicity
Inhibition of tumor
cell growth and
invasiveness
Antiproifferation

Induction of
apoptosis

Antiprolferation
Induction of
apoptosis

Induction of
apoptosis

Antiproliferation
Induction of
apoptosis

Antiproliferation
Induction of
apoptosis

Cytotoxicity
Inhibition of tumor
cell growth
Antiproliferation
Induction of
apoptosis

Antiproliferation
Induction of
apoptosis

Anti-oxidation

Induction of
apoptosis

Induction of
apoptosis

Cytotoxicity

Cytotoxicity

Induction of
apoptosis
Inhibition of tumor
cell growth

Induction of
apoptosis
Inhibition of tumor
cell growth

Induction of
apoptosis
Inhibition of tumor
cell growth

Antiprolferation
Induction of
apoptosis
Antiproliferation;
Induction of
apoptosis

Antiprolferation
Induction of
apoptosis
Inhibition of tumor
growth

Antiprolferation;
Induction of
apoptosis

Antiproliferation;
Induction of

apoptosis

Inhibition of cel
growth; Induction
of apoptosis

Induction of
apoptosis
Induction of
apoptosis

Antiprolferation;
inhibition of cell
growth;induction
of apoptosis

Inhibition of
progressive
cancer cell
behaviors

Antiproliferation;
Induction of
apoptosis
Antiprolferation

Exhibiting cell
membrane
disruptive
properties
Antiprolferation

Antiproliferation

Antiproliferation

Mechanism of
action

Binding with mTOR
complex2 ;
Inhibition of
mTORC2 kinase
activity and
downstream
substrates of
mTORG2, AKT and
PKCa activiy.
Upreguiation of
Vitamin D receptor
(VDR) expression;
induction of BAX
expression; increase
of cleaved caspase-
3and
downregulation of
cdk2 expression.
Induction a [Ca*]
fise by evoking
phospholipase
C-dependent Ca®*
release from the
endoplasmic
reticulum and Ca®*
entry via
phospholipase A2-
sensitive store-
operated Ca®*
channels; regulation
of FOXO3a/
p-catenin/GSK-3p
signaling; regulation
of estrogen
metabolism and
acting as an
antiandrogen, finally
leading
downregulation of
the AR and PSA.
Downregulation of
XIAP protein
expression.
Induction of G1 cell
cydle arrest;
induction of
apoptosis by
triggering caspase 3
acivation and PARP
cleavage; inhibtion of
sunivin expression by
intibting AKT/NF B
patway.

Inhibition of leucine
uptake, leading to
reduced mTORC1
signaling, cell cycle
protein expression
and cell proiferation.
Suppression of
aquaporin 1 (AQP1)
water chamel protein
expresson by
actvatng p38 MAPK.
Increase of Bax
expression,
downregulation of
Bolxl and Bol-2
expression; increase
of caspase-9 and
caspase-8 cleavage;
increase of ROI
generation by
activating JNK;
selective inhibition of
androgen receptor
promoter activity in
LNGaP cell
Increase of sub-G1
fraction and DNA
fragmentation;
down-regulation of
androgen receptor
expression and
phosphorylation of
ERK1/2.

Induction of G1 cell-
cycle arrest and
downregulation of
AR expression and
inhibition of AR
promoter activity.
Downregulation of
AR expression;
increase of caspase-
3 and -9 activity.
Inhibition of the 20
proteasome activity;
induction of
microtubule-
associated protein-1
light chain-3 beta
(LC3B) expression
and conversion;
induction of RNA-
dependent protein
kinase-like ER kinase
activity; suppression
of the PIBK/AKT/
mammalian target of
rapamycin axis
through preventing
the activation and
expression of AKT.
Induction of S cell
cydle arrest;
induction of DNA
damage response
associated with
Chict, Chk2, cJun
and JNK adtiatiort
incuiction of caspase-
2,378ad-9
cleavage through
mitoctondral
membrane loss and
oybotrome G release.
Not investigated.

Downregulation of
Cdc25C protein
expression;
induction of G2/M
cell cycle amest;
decrease of Cdc25C
level and increase of
levels of CyclinB1,
P21 and p-Cak1
(Tyr15).

Inhibition of
proteasomal
chymotrypsin-iike
activity assay and
polyubiquitinated
protein
accumulation ;
Interaction with the
proteasomal 5
subunitin a
conformation
suitable for
proteasome
inhibition; increase of

caspase-3
activation.

Increase in the G2-M
phase;
downregulate AR
expression through
inhibition of the
transcription factor
Sp1 and p300/CBP-
associated factor
(PCAR); upregulation
of miR-194 via
directly targeting
BVP1, and
downregulation of
BMP1 led to
decrease expression
of key oncogenic:
matrix
metalloproteinase,
MMP2 and MMPO,
Increase the
caspase-3 activity;
increase of ROS
generation.
Inhibition of JNK and
ERK activation;
downregulation of
AR expression and
PAS expression.
Inhibition of JNK and
ERK activation;
downregulation of
AR expression and
PAS expression.

Not investigated.

Indction of G cel
cyde anest by the
dowrreguiaton of
sevaral related cel
cyde regulators,
incliding cydiin D1,
cydinE andCDC25A;
inorease of
association between
RBand E2F1 and the
subsequent
suppression of E2F1
acivity via decreasing
RB phosphorylation
Induction of G2/M
cell cycle arrest by
the downregulation
of cycin D1
expression.
Regulation of Nri2's
GpGs demethylation
and reactivation.
Not investigated.

Increase of c-JNK
and caspase-3
activity by
downregulation of
PKCe without AKT
inhibition.

Increase of Nrf2
expression via the
Nrf2 promoter CpGs
demethylation.
Induction of [Ca®]i
rise through PKC-
reguiated store-
operated Ca®*
channels and PLC-
dependent Ca®*
release from the
endoplasmic
reticulum.

Inhibition of Akt
activity and Akt
signaling pathways,
including glycogen
synthase kinase-3p
and BAD
phosphorylation,
and nuclear
acoumulation of p6s5,
androgen receptor,
p-catenin, and
cMyc.

Inhibition of Akt
activity and Akt
signaling pathways,
including glycogen
synthase kinase-3p
and BAD
phosphorylation,
and nuclear
acoumulation of p6s5,
androgen receptor,
p-catenin, and
cMyc.
Inhbionof Aktactivity
and Akt sigreling
pathways, induding
glycogen syrthase
Kinase-3p and BAD
phosphonytation, and
nuckar accumuation
of pB5, androgen
receptor, p-catenin,
and c-Myc.
Interaction with
tubulin.

Induction of G1 cel
oycle arrest
accompanied by
reductions in cyciin
D1, CDK4/6 and
PRb expression in
LNCaP cells;
induction of G2/M
cell cycle arest by
reductions in cyciin
A, cyclin expression
in DU145 cells.
Induction of G1 cel
cydle arrest by
downregulation of
MDM2, E2F1, Bol2,
dk2/4/6, and cyclin
D1 expressions;
increase of p21, p27,
and Bax
expressions;
induction of PARP
cleavage and
caspases activation.
Induction of G1 cell
cydle arrest
accompanied by
reductions in cycin
D1, CDK4/6 and
PRb expression in
LNGaP cells;
induction of G2/M
cell cycle amest via
reductions in cyclin A
expression.

Signal transducer
and activator of
transcription 3
inactivation and
reactive oxygen
species generation
Arrest of the cell
cyde at G1 phase;
reguiation of the
expression of the
protein tyrosine
phosphatase MEG2
Via a RIPK1-related
pathway

Inhibition of activity
and protein
expression of NF-xB
(p50 and p65), IKK(a
and p), and ICAM-1;
decrease of protein
expression of Bcl-2
and increase of
expression of PARP-
1iincrease of
caspases 3 and 7
Downregulation of
cell cycle proteins
(cak1, pedk1, cyclin
Aand B) in DU145
and PC3 cells;
downregulation of
cdk2 in PC3 cels;
downregulation of
Akt, pAKT 18 and
Bal-2 proteins;up-
regulation of Bax
Inhibit EMT through
Smad signaling
pathway(s)
mediating Snail/
E-cadherin
expression

Inhibiting the AkY/
mTOR signaling
pathway

Promoting apoptosis
and arresting the cell
cydle in the G2and S
phases;

Not investigated

Not investigated

Not investigated

Not investigated

Refs

Liu et al. (2012a)

Ben-Eltiki ot al.
(2016)

Wang et .
(20162)

Kim et al. (2011)

Xuetal. (2017)

Wang et al. (2014)

Panet al. (2012)

Singh et al. (2005)

Liet al. (2015¢c)

Hsu et al. (2005)

Jiang et al. (2013)

Jiang et al. 2013)

Hsu et al. (2014)

Acquaviva et al.
(2012)

Ding et al. (2015)

Yang et al. (2008)

Wang et al. (2006),
Yin et al. (2009),

Jiang et al. (2013),
Zhang et al. (2016)

Russo et al. (2007)

Han et al. (2011)

Han et al. (2011)

Xu et al. (2015)

Leu et al. (2014)

Liet al. (20158

Zhang et al. (2013)

Trang et al. (1993)

Koka et al. (2010),
Sarveswaran et al.
(2012)

Su et al. (2013)

Wang et al
(20162)

Estrada et al.
(2010)

Estrada et al.
(2010)

Estrada et al.
(2010)

Levrier et al. (2016)

Steigerova et al.
(2012)

Wang et al
(20082)

Steigerova et al.
(2012)

Yoon et al. (2019)

Jinet al. (2018)

Luetal. (2018)

Anaya-Eugenio
etal. (2019a)

Zingue et al.
(2019)

Jongsomchai et al.

(2020)

Yu et al. (2020)

Huanget al. (2021)

Nishimura et al.
(2021)

Li, (2020)

Li, (2020)

Li, (2020)
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Dietary agents

Epigallocatechin-3-
Gallate (Green Tea)

Grape skin

Modified Citrus Pectin

ProstaCaid

Pomegranate

Selenium

Soy

Vitamin D

Vitamin K2

Aigerian propolis

Cell type

Du145
LNCaP

C4-28
LNCaP
ARCaP-E
LNCaP PC3

PC3

C4-28
DU145
LNCaP
LNCaP-AR
PC3

22Rv1
C4-2B
LNCaP PC3

LNCaP
PC3

DU145
LNCaP PC3

VCaP

LNCaP

Observation

In vivo
In vitro

In vitro
In vivo

In vivo
In vitro

In vitro

In vitro

In vivo

In vitro
In vivo

In vitro
In vivo

In vitro
In vivo

in vitro

in vitro

Activity

Antiprolferation
Induction of apoptosis

Induction of apoptosis
Inhibition of metastasis

Induction of apoptosis
Antiproliferation

Inhibition of and
migration invasion

Antiproliferation
Induction of apoptosis
Inhibition of metastasis

Antiprolferation
Induction of apoptosis

Antiprolferation

Inhibition of tumor
growth

Antiprolferation
Inhibition of migration

Antiproliferation;
Induction of apoptosis

Induction of apoptosis

Mechanism of action

Downregulation of ID2; increase of Bax/Bcl-2;
inducing cell death via an ID2-related
mechanism; Antiprolferation by increasing
the activity of ERK 1/2 through a MEK-
independent and PI3K-dependent
mechanism.

Decrease of nail and pSTATS expression;
inhibition of Snail-mediated CatL activity.

Cellgrowth inhibition and apoptosis induction
via inhibiting MAPK/ERK signaling pathway
and activating caspase 3.

Downregulation of expression COND1,
CDK4, E2F1and MAPKS; upregulation of
CDKN1A expression; downregulation of
CAV1, IGF2, NR2F1, and PLAU genes
expression; suppression of the urokinase
plasminogen activator (uPA) secretion.
Inhibition of enzyme (cytochrome P450)
expression and activity; inhibition of MTOR
phosphorylation at Ser2448 and Ser2481
and IGF1 expression.

Increase of p53 expression; apoptosis
induction by superoxide generation through
the mitochondrial-dependent pathway
Decreased of COX-2 RNA and protein
expression; inhibition of the synthesis of
prostaglandins; downreguiation growth
factors involved in angiogenesis (EGF and
IGF-1) and the IL-8 gene; inhibition of ERK-1
and ERK-2 expression.

Increase of E-cadherin expression; decrease
of urokinase plasminogen activator receptor
levels.

Downregulation of the expression of
androgen receptor, BIP, survivin, while
activating caspase-3 and -7, PARP-1
dleavage, p21 and DNA damage response
marker, phospho-H2AX

Blocking the cell cycle at GO/G1 phase.

Refs

Xiao et al. (2011), Turan et al. (2017)

Burton et al. (2015)

Azémar et al. (2007), Yan and Katz
(2010)

Jiang et al. (2011)

Mealik et al. (2005), Hong et al. (2008),
Kasimsetty et al., (2009), Koyama
et al. (2010)

Pinto et al. (2007), Xiang et al. (2009),
Sarveswaran et al. (2010)

Wang et al. (2004), Swani et al
(2009), Rabiau et al. (2010)

Gregory et al. (2010),
Mordanmecombs et al. (2010), Hsu
etal. (2011)

Dasari et al. (2018)

Zabaiou et al. (2019)
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Medical
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Composition

Rosemary; Ginger; Turmeric; Green tea;
Holy basil; Hu zhang; Chinese goldthread;
Oregano; Barberry;

Scutellaria baicalensis.

Ganoderma lucidium;

Dendranthera morifolium; Isatis indigotica;
Glycyrrhiza glabra; Rabdosia rubescens;
Panax pseudoginseng; Serenoa repens;
Scutellaria baicalenss;

Atractylodes macrocephala; Astragalus
‘membranaceus; Glehnia littoralis; Citrus
reticulate; Lycium chinense; Ligustrum
lucidum; Oldenlandia diffusa; Milletia
reticulata; Ophiopogon japonicus; Paconia
obovata; Pagonia lactiffora; Prunella vulgaris;
Poriae cocos; Scutellaria barbata.

Cell
type

LNCaP

DU145

LNCaP

PC3
DU145
PC3

Observation

In vitro

In vitro

In vivo

In vitro

Activity

Antiproliferation

Induction of
apoptosis
Induction of
apoptosis
Inhibition of tumor
growth

Induction of
apoptosis

Mechanism of action

Inhibition of COX-1 and COX-2 enzyme
activities; upregulation of p21 expression;
downregulation of AR expression; induction
of phosphorytation of Stat3 and PKCa/p.

Induction of GO/G1 and G2/M cell cycle

arrest; upregulation of p21waf1 expression
and downreguiation of B2 expression.

Not investigated

Refs

Bemis
etal
(2005)

Hsieh
etal
(1997)

Cohen
etal.
(2015)





